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Abstract

This paper introduces ISL, a language for representing
and manipulating image schemas. ISL supports the rep-
resentation of symbolic as well as quantitative dynamic
properties of objects and relationships. We have en-
coded a number of the image schemas commonly covered
in the cognitive linguistics literature and tested them
in three domains: patterns in chess, tactics in military
scenarios, and behavior in a simple robot arm simula-
tion. This paper discusses the design of the language
and demonstrates its representational capabilities with
examples from these domains.

Introduction
In cognitive linguistics (Oakley 2006), “an image schema
is a condensed redescription of perceptual experience for
the purpose of mapping spatial structure onto conceptual
structure. According to Johnson (1987), these patterns
‘emerge as meaningful structures for us chiefly at the
level of our bodily movements through space, our ma-
nipulations of objects, and our perceptual interaction’.”
Another source (LinguaLinks 2003) has it that “an im-
age schema is a mental pattern that recurrently provides
structured understanding of various experiences, and is
available for use in metaphor as a source domain to pro-
vide an understanding of yet other experiences.” Image
schemas have also been suggested to play a critical de-
velopmental role, forming the basis of early cognitive de-
velopment, and possibly extending to all sensori-motor
perceptual modalities (Mandler 1992, 2004).

For over two decades, cognitive linguists have devel-
oped accounts of how the semantics of words and sen-
tences can be explained in terms of image-schematic rep-
resentations (e.g., Lakoff & Johnson 1980, Lakoff 1987,
Gibbs & Colston 1995, Talmy 2003). Some words have
unadulterated physical meanings, but many transfer the
original physical meaning to non-physical situations. As
you grasp this point, you grasp it in a nonphysical way,
yet a large chunk of the original physical meaning of
grasp remains.

Although the theory of image schemas accounts for
lexical semantics pretty well, almost all accounts are
post-hoc. Some steps have been taken toward the com-
putational formalization of image schemas (notably, Bai-
ley 1995 and Regier 1996), but image schemas are still
largely discussed in qualitative, abstract terms.

In this paper we introduce ISL, a language in which
image schemas can be modeled computationally. ISL

has been under development for almost a year. We have
applied it to three domains: patterns in chess, tactics in
military scenarios, and behavior in a simple robot simu-
lation. As we developed ISL we also learned important
lessons about image schemas. This paper touches on
four: First, there is an inherent ambiguity in accounts
of schemas like“path”—it is unclear whether it means
“a physical configuration” or “the path I intend to fol-
low.” Since we want our image schemas to serve an in-
tentional agent, this ambiguity had to be resolved. Con-
sequently, we distinguish three kinds of schema: static,
dynamic, and action. Second, image schemas for verb-
like concepts need several parts: controllers, “maps” of
dynamic behavior, role bindings, and associated axioms.
Third, the previous two points drive home the idea that
many image schemas require quantitative and procedu-
ral components as well as a symbolic/declarative compo-
nent. The difference between ”brushing”, ”bumping”,
and ”crashing” into a wall, for example, depends on
quantitative rather than symbolic properties of the inter-
action, yet we also need to bind entities and declaratively
represent relations that we track over time. Finally, im-
plementing image schemas has given us insight about
how they can function as a semantic core for reasoning.

Image Schemas & Cognitive Architecture
Image schemas are integrally tied to perception and mo-
tor function, but serve as the bridge to higher-level cog-
nition. Figure 1 locates image schemas in a simple
schematic of a cognitive architecture, cutting across the
boundaries of low to high level perceptual-motor func-
tion, to the basis of higher level cognition where we find
deliberative reasoning, planning and problem solving.
We believe image schemas serve to organize and rep-
resent characteristic perceptual-motor patterns to form
a semantic core on which higher-level cognition rests.1

A full computational model of image schemas will in-
clude aspects of the mapping from lower-level to higher-
level perception. There is ample evidence that we reuse
our perceptual and motor systems for modeling and rea-
soning, such as mental imagery (Kosslyn 1994), and
surely this plays a role in the representational power
of image schemas. But image schemas also have dis-
tinctly compositional and symbolic properties. In this
paper we focus on the upper half of the image schema

1This view is consonant with Barsalou’s (1999) proposal
that the semantic core is based on a perceptual symbol system.
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Figure 1: Locating schemas in a cognitive architecture.

portion of the architecture, the logical structuring of im-
age schemas that forms the basis of the semantic core
(depicted as the oval in Figure 1). This sets our ideal
target for ISL: at this level, image schemas have a rela-
tional structure with compositional semantics that ad-
mits operations of interpretation and permits cross do-
main transfer of image schema structure. ISL should rep-
resent image schemas as general-purpose syntactic forms
(representations) with the property that syntactic oper-
ations on them are equivalent to semantic operations in
an indefinitely large number of domains.

Properties of ISL
Informing our representation is a catalog of
linguistically-derived image schemas provided by
Croft and Cruse (2004), reproduced (with some mod-
ifications) in Table 1. In their most basic form, these
image schemas can be taken as abstract descriptions of
objects and relationships. For example, a containment
relationship exists between its contents and a container
consisting of an inside, an outside, and a boundary. A
path consists of a starting location, an end location,
and a (possibly continuous) set of intermediate points.

Space: Location, Up-Down, Front-Back,
Left-Right, Near-Far, Verticality,
Center-Periphery, Straight, Contact

Force: Compulsion, Blockage, Diversion,
Counterforce, Restraint, Resistance,
Attraction, Enablement

Containment: Container, In-Out, Surface,
Content, Full-Empty

Locomotion: Momentum, Path
Balance: Axis Balance, Twin-Pan Balance,

Point Balance, Equilibrium
Identity: Matching, Superimposition
Multiplicity: Merging, Collection, Splitting,

Iteration, Part-Whole, Linkage,
Count-Mass

Existence: Removal, Bounded space,
Cycle, Object, Process, Agent

Table 1: Image schemas

As represented in ISL, image schemas are objects, as
in the object-oriented data model.2 Each schema has a
set of operations that determine its capabilities. For ex-
ample, operations for a basic container schema include
putting material into a container and taking material
out. Each schema also has a set of internal slots that
function as the equivalent of roles in a case grammar
sense (Fillmore, 1968). Slots permit image schemas to
be related to each other through their slot values. For
example, the contents of a container can be other im-
age schemas; containers are one way that we intuitively
understand the concept of sets.

An important aspect of ISL is its use of interpretation.
In object-oriented terms, interpretation can be thought
of as an extended form of delegation. Interpretations
map from one or more specifications of a “source” image
schema to a “target” schema. For example, we would
probably first think to represent a room as a location or
bounded space (i.e. a region) image schema, but from
a fire marshall’s perspective it would be useful to in-
terpret a room as a container with a capacity of some
number of people. Interpretation gives us flexibility in
evaluating the properties of some domain in terms of im-
age schemas; different (even conflicting) interpretations
can be maintained at the same time for a single “real”
object or relationship. Interpretation is also critical to
metaphorical extension and bears relations to analogical
mapping (Gentner & Markman 1997).

To illustrate the use of ISL, it will be helpful to walk
through an example, which we take from our work on
representing chess patterns. Consider a chess board in
which the Black queen has the White king in check. In
image schema terms, we say that there exists a path
from the queen to the king. In ISL, we generate a path
schema, which contains a set of locations, as shown in
Figure 2. Representing a path simply as a set of loca-
tions gives us generality, but here it’s important that the
queen can traverse the path in the situation that holds
currently on the board. This is captured by an interpre-
tation of the path as a set of directional linkages from
each location (a source) to the next on the path (a des-
tination). Another piece of domain information is that
no location can be occupied by more than one piece at a
time. This is represented by an interpretation of each lo-
cation as a container with a capacity of 1. When a piece
moves to a location, the container reaches capacity and
yet another image schema, empty/full, is automatically
created, indicating that the location is full.

Given these image schemas, their relationships, and
the operations that they support, it becomes possible
to reason about the situation and the possible responses
White can make to counter the threat of the queen. The
check exists because the path from the queen to the king
is traversable. Traversability for a path schema is de-
fined, in words, as follows: a path can be traversed when
every linkage between successive locations can be tra-
versed. Traversability for a linkage schema, in turn, is
allowed when its source can be entered and its desti-

2. . . which in turn is descended from the frame knowledge
representation model (Fikes & Kehler 1985).



Figure 2: Representing blockage in ISL.

nation can be exited. Basic locations have no built-in
constraints on entering and exiting, but when a location
is interpretable as a container, this changes. One can-
not add more to a container that has reached capacity.
The interpretation relationships between these schemas
cause changes to propagate outward: a full container
cannot be added to; its location cannot be entered; a
directional linkage cannot be traversed (via its source);
a path cannot be traversed (due to a non-traversable
linkage). The result is a new image schema, blockage,
which is created when a container representing a loca-
tion that acts as the source of a directional linkage in a
path becomes full. The contents of the container con-
stitute the blocker. This structured combination of im-
age schemas—locations, path, linkages, blockage, and so
forth—can be stored away in memory for later retrieval,
limiting the need for a complete reconstruction of the
combination from scratch.

The ISL representation provides a description of the
situation in the form of a structured combination of im-
age schemas. Compare this combination with how we
might describe a tactic in chess: “When an opponent’s
piece puts your king in check, you can counter by mov-
ing another piece into its path.” The combination of
schemas captures the essence of this natural language
description. The representation is general, abstracting
away the specific positions of the pieces, the existence
of other pieces, even the identity of the attacking piece.
The generality of the representation can also be seen in
that its substructure maps to other basic concepts in
chess. By using object schemas that include informa-
tion about the color of a piece, we can use the path/
linkage substructure to represent a threat of one piece

on another, when the colors of the pieces are different;
if they are the same, we can represent a defense rela-
tionship. The representation also supports the ability to
reason about emergent structure. White might have a
dozen possible moves in the situation given in the exam-
ple, but few of them will be appropriate. One of White’s
most plausible responses, in terms of image schemas, is
to recognize that the situation is a partial match to a
blockage schema (which does not yet exist), and that a
specific response will lead to the creation of the blockage.
Rather than reasoning about the low-level properties of
individual pieces, White reasons using tactical abstrac-
tions. Other chess concepts similarly lend themselves
to abstraction that can be naturally captured by im-
age schemas: application of force on the opponent’s king
(even if the king is never put in check), balance in the
distribution of pieces on the board, control of the center
of the board, and so forth. Lower-level descriptions of
moves (e.g., based on paths alone) are not inaccurate,
but they fail to capture the reasons behind the moves.

Types of ISL Image Schemas

The symbolic representation provided by ISL can cap-
ture a variety of chess patterns, but other domains lack
the representational simplicity of chess. For example, in
some physical environments, properties vary over contin-
uous ranges; time marches forward rather than stopping
for turn-taking; descriptions hold to a greater or lesser
extent. If ISL were limited to symbol manipulation, it
would fall prey to many of the same problems faced by
early attempts in AI research to capture realistic envi-
ronments (e.g. Schank & Abelson 1977).

To address these issues in ISL, we distinguish three
general types of image schemas. In the following sections
we describe these image schema types in more detail.

Static Schemas
Static schemas are instantaneous descriptions of non-
process relationships. The examples in the previous sec-
tion give a reasonable overview of static schemas, but
for contrast with dynamic and action schemas it will be
helpful to see how static schemas are created and com-
bined. Consider an agent A in some environment with
a ball B. A’s sensory input includes its distance from
B, which allows A to generate a static near-far schema
for the non-commutative relationship {A,B}. The slots
of the near-far schema include this distance and the
(domain-dependent) degree to which B is near to or far
from A. For simplicity, we might say that if A can come
into contact with B without changing its location (e.g.,
by reaching rather than walking), then B is near A to a
high degree. In cases where sufficient domain informa-
tion is not available, the degree slot can be left empty.

The near-far schema is created automatically based
on the input from A’s sensors. Other schemas can be
generated as interpretations of the near-far schema. For
example, if A and B are so close that they are essen-
tially in the same place, then a superposition or a con-
tact schema can be generated as an interpretation of
the near-far relationship. In ISL, this is expressed in a



declarative form using ISL constructs that act as pro-
duction rules. When the predicates associated with a
specific relationship hold, based on the information pro-
vided by the near-far schema, a superposition schema is
generated and attached as an interpretation of the rela-
tionship.

Importantly, static schemas represent instantaneous
relationships at any point at time. They become active
and change when perceived conditions change. But they
do not represent change itself. To incorporate dynamics,
a second type of schema is used.

Dynamic Schemas

While a static schema is adequate to represent a snap-
shot in time of the relationship {A,B}, there are many
cases where we must also represent the dynamics of a
relationship. For example, A may be far from B but
moving in B’s direction, a dynamic situation that we
can naturally capture as an approaching schema. The
approaching schema is a dynamic extension of the static
near-far schema. In order to identify relationship dy-
namics, dynamic schemas are associated with recogniz-
ers. The recognizer for an approaching schema tests the
distance between A and B at time intervals (or rather
the slot of the near-far schema representing the relation-
ship), to determine whether the distance is decreasing.
When this is the case, an approaching schema is gener-
ated; when not, any existing approaching schema for the
relationship is destroyed.

At any point in time, a large number of dynamic and
static schemas may be active. Some schemas, for exam-
ple the approaching relationship, may appear and dis-
appear (e.g., consider the relationship between you and
the car in front of you as you slowly move through stop
and go traffic). The properties of a given schema may
change over time as well. All of the schemas and their
properties, taken together, constitute the state of the en-
vironment. Of course, not all of this information is rele-
vant. For example, while A is approaching B, A is also
approaching other objects and locations that happen to
be near B. Determining what is relevant is the subject
of future research on mechanisms for focus of attention.
For now we constrain dynamic relations generated.

So far we have not said how dynamics—changes in
state variables over time—are represented in ISL. Ex-
panding on previous work using dynamic maps to repre-
sent dynamics described by verbs used by children and
adults (Cohen 1998; Cohen, Morrison & Cannon 2005),
ISL uses dynamic maps to represent continuous state
changes. In this case, a map is a space whose dimen-
sions correspond to variables, such as distance, relative
velocity or energy transfer. Changes in state variables
tracked over time are then represented as trajectories
through the map space. Characteristic regions or tra-
jectories (directed paths through regions) can be used
to describe classes of dynamics. For example a map for
approach for the {A,B} relationship records trajecto-
ries of the decreasing relative distance between A and B
over time. In the same way, the recognizer for the ap-
proaching schema tests for decreasing distance trajecto-

ries over a short interval of time, and if the observed tra-
jectory matches a prototypical decrease, the approach-
ing dynamic schema is created; if the trajectory later
diverges from that prototype, the approaching schema is
removed.

Action Schemas
Even with the added representational flexibility of dy-
namic schemas, ISL is still missing an important prop-
erty in its description of A: A is an agent with intentions.
A can choose to take some actions rather than others,
and these lead to different behaviors and outcomes in
the environment. ISL thus includes a representation of
action schemas, each associated with a controller.

In the example of approaching given above, if A is to
approach B, an approach action schema is selected. Its
controller determines an appropriate action or sequence
of actions to take in order to reduce the distance between
A and B. In this arrangement, the dynamic schema that
recognizes “approaching” acts as an expectation for the
result of taking the action.

Individual dynamic schemas are sufficient to specify
very simple behaviors resulting from actions, but their
scope is limited. Consider the approach action schema
above: eventually A reaches B, and approaching is no
longer relevant. A qualitative change occurs, which can
be represented by the appearance of a contact schema
(and, if the agent is moving with sufficient speed and
the ball is light enough, a movement schema is created
and associated with the ball as it is pushed away).

To represent these transitions between dynamic states,
we use the formalism of state machines. States captured
by static and dynamic schemas, as discussed in the pre-
vious two sections, can be chained together with actions
taken by the agent. For example, we might represent
the agent A “kicking” the ball B as a sequence of three
dynamic states: A approaching B, A coming in con-
tact with B, and A stopped with B moving away (Co-
hen 1998). Of course, there may be possible transition
to different states, depending on the parameters of con-
trollers or other conditions. For example, if A’s velocity
decreases to zero at point of contact, then the expected
transition to B moving away may not happen—no en-
ergy is transferred to B and the two remain in contact.
While static and dynamic schemas are typically asso-
ciated with individual states in a state machine, action
schemas may include transitions between multiple states.

A Continuous, Dynamic Example

A simple physics simulation illustrates using ISL with
all three types of image schemas to describe a dynamic
environment. The domain is a simple “playpen” en-
vironment with ballistic physics, modeled in the breve
3-D simulation engine (Klein 2002). Figure 3 shows a
snapshot of the playpen with a “cat” (red ball) and an
“agent” (blue rectangle) in an open field surrounded by
the walls of the playpen. The cat is programmed to
run away from the agent if the agent gets too close or
approaches too fast. When the agent is a reasonable
distance away and not moving too fast in the cat’s di-



Figure 3: A simple toy domain in breve.

rection, the cat is not “threatened.” Given this behavior,
an effective way for the agent to catch the cat is to move
to the cat slowly (sneak), and then move very rapidly to
the cat (pounce) once the cat is close.

Using ISL, we can build a state machine that com-
pletely describes the agent’s potential interactions with
the cat. Each state is described by sets of image schema
instances. For example, instances of the static near-
far schema maintain information from the environment
about the distance between the agent and other objects,
such as balls, cats, and walls. In its interaction with
balls, over a large number of scenarios, the agent finds
that it can come into contact with a ball simply by ap-
plying any controller (via an action schema) that it has
available for approaching. For cats, however, the sit-
uation is different: the cat’s behavior depends on its
distance from the agent. An approach-slowly controller
is appropriate for sneaking up on the cat at a distance,
while an approach-fast controller is appropriate for the
pouncing phase. The differing outcomes in the envi-
ronment arising from the cat’s behavior at different dis-
tances (as well as the actions that turn out to be success-
ful at different distances) give rise to a natural distinc-
tion between near and far in the near-far schema. Below
some threshold (in this case distance ≤ 6), the cat is
near the agent; above that threshold the cat is far from
the agent.

Figure 4 shows the state machine that describes the
agent’s interactions with balls and cats in the Breve sim-
ulation. The state S2, for example, says that if the cat
is near the agent, and the cat’s velocity is slow, then if
the agent can execute the fast-approach action schema
it should be able to make contact with (i.e. catch) the
cat.

State machines like this one play several useful roles
for an agent. First, the agent can use the state ma-
chine to formulate plans, in this case for catching the
cat quickly, by identifying desirable transitions between
states. Second, the state machine provides a general
description of such plans, once numerical values have
been abstracted away. For example, “I should first move
slowly toward the cat, then faster,” regardless of specific
values for “slow” and “fast”. Third, if the state ma-
chine has been constructed appropriately, the agent can

Figure 4: A schema-based state machine describing the
agent’s possible interactions with either a ball or a cat.

in principle identify what properties of the environment
lead to its success or failure in some task. For example,
at the most abstract level, “I was not able to contact
the cat because it did not behave like a ball,” or, more
specifically, “When I approached the cat, it moved far-
ther away.”

Again, this example makes use of only the simplest ISL
components, such as near-far, approaching, and move-
ment. The true power of the language will become more
evident when we must deal with more complicated envi-
ronments where schematic concepts such as container or
blockage will come into play.

Discussion

In this short paper we have had to elide several impor-
tant issues that will be the subject of future work – in
particular, the origin of schemas, learning of and with
schemas, the role of context, and reasoning and infer-
ence with schemas.

Our account of image schemas is agnostic about their
fundamental origin. Our hunch is that much of image
schema structure and function is learned or a result of
development. In any case, given some image schema
foundations, we do believe new image schemas and their
elaborations will be learned, and our goal is to have ISL
support this.

ISL provides a language for representing the rich
knowledge that we can learn by interacting with the
physical world. This representation facilitates the trans-
fer of knowledge learned in one domain to a new, dif-
ferent domain via metaphorical extension. Using semi-
Markov decision processes to model the world, a tradi-
tional propositional state description would be inflexi-
ble; knowledge learned in one domain could not easily
be transfered to a new domain. Using ISL, we instead
model the structural relationships between objects and
their dynamics. We can identify similar structures in
new domains, that is, identify the “gist” that captures
what we’ve learned previously about this type of situa-
tion. These gists, which could be represented using ISL



state machines as described in the previous section, are
essentially learned sequences of image schemas that per-
tain to particular goals. For example, “catching a cat by
sneaking up to it” might be a learned gist. It prescribes
a sequence of action schemas given observations of static
and dynamic schemas that predictively leads to catching
the cat. In addition to learning compositions of image
schemas, we may also want to learn specializations of
specific image schemas. For example, we might want to
learn the difference between “push” and “shove,” even
though both can be thought of as variations on our “ap-
ply force” action schema. This specialization, in turn,
helps us better predict outcomes of actions. We are cur-
rently working on mechanisms to automate the learning
of image schema composition and specialization.

We have touched on a couple of simple examples of
reasoning with schemas, such as how to identify that a
path is blocked. The example of propagating changes to
schema state based on interpretation is tantalizing but
requires more work to provide an automated mechanism.
In particular, we need to understand the mechanisms for
on-the-fly schema combination and interpretation, some-
thing humans do with great facility. Some of this may
be based on special-case learning, but it may also be the
result of general principles. We need to identify these
general principles of schema combination so that prop-
agation is well-defined given any novel combination of
schemas.

Context plays an important role in interpretation. For
example, suppose I have the goal of getting from Los
Angeles to San Francisco. As I drive south from my
home to the airport, am I “approaching” San Francisco?
Not geographically, but if my actions are interpreted as
steps in a more abstract plan, then there is a reasonable
sense in which the answer is yes. Such context can be
represented in schematic terms in ISL as a path over
a non-geometrical space, but we have not yet explored
the implications of this aspect of metaphorical extension.
This is also likely related to issues of attention and goal-
directed planning.

ISL is still in its infancy, but we are excited with what
it has already achieved. ISL is the product of many
strands of research. Still, to our knowledge, we know of
no other knowledge representation that attempts to cap-
ture relations, dynamics, and actions while also sitting
squarely on the cusp of the transition from perceptual-
motor function to higher cognitive functions such as
planning and reasoning.
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