
Very Predictive Ngrams for Space-Limited
Probabilistic Models

Paul R. Cohen and Charles A. Sutton

Department of Computer Science,
University of Massachusetts, Amherst, MA 01002

{cohen,casutton}@cs.umass.edu

Abstract. In sequential prediction tasks, one repeatedly tries to predict
the next element in a sequence. A classical way to solve these problems
is to fit an order-n Markov model to the data, but fixed-order models are
often bigger than they need to be. In a fixed-order model, all predictors
are of length n, even if a shorter predictor would work just as well. We
present a greedy algorithm, vpr, for finding variable-length predictive
rules. Although vpr is not optimal, we show that on English text, it
performs similarly to fixed-order models but uses fewer parameters.

1 Introduction

In sequential prediction tasks, one repeatedly tries to predict the next element in
a sequence. More precisely, given the first i ≥ 0 elements in a sequence, one tries
to predict the next element xi+1. After making a prediction, one is shown xi+1

and challenged to predict xi+2. In general, it is very difficult to predict the first
element x0 in a sequence (imagine trying to predict the first letter in this paper).
Often it is easier to predict x1 having seen x0, easier still to predict x2, and so
on. For instance, given the sequence wa most English speakers will predict the
next letter is s; indeed, in English text s is about seven times more likely to
follow wa than y, the next most likely letter. One might form a prediction rule
[wa → s] that says, “When I am trying to predict the next letter in a corpus of
English text and I have just observed wa, I should predict s.” However, if there
are Nwa occurrences of wa in a corpus, then one must expect at least Nwa/8
incorrect predictions, because roughly one-eighth of the occurrences of wa are
followed by y, not s. In English, the sequence l w a is almost always followed by y,
so one can add the prediction rule [lwa → y] to “mop up” most of the prediction
errors committed by the rule [wa → s].

This paper is concerned with finding the best k rules, the rules that together
reduce prediction errors the most. We present a greedy algorithm, vpr, for find-
ing sets of k very predictive rules. Although vpr finds suboptimal rules in some
cases, it performs well on English-language text. If our algorithm always found
the most predictive rules we would call it mpr; instead, we call it vpr, for Very
Predictive Rules.

One motivation for vpr is from previous work on ngram models and Markov
chains in which ngrams are of fixed length. ngrams are sequences x0x1 . . . xn



that may be used as prediction rules of the form x0x1 . . . xn−1 → xn, whereas
Markov chains are conditional probability distributions which have the form
Pr(Xn = x|X0...Xn−1). Typically, n is fixed, but fixed-order models are often
bigger than they need to be. Consider the case of the letter q in English. q is
invariably followed by u, so the prediction rule, [q → u] has a very low error
rate. If we insist that all prediction rules be of length three (say), then we would
have to write additional rules — [aq → u], [bq → u], [cq → u] ... — none of
which reduces the errors made by the original, shorter rule. Similarly, an order-3
Markov chain requires conditional probabilities Pr(X2 = u|X0, X1 = q) though
none of these is different from Pr(X2 = u|X1 = q).

Reducing the number of predictors is good both for minimizing space and
increasing accuracy. For a given amount of space, one can increase accuracy by
using variable-length predictors, because one short rule, like [q → u], can do the
work of many longer ones. And also, for a desired level of accuracy, having few
predictors makes the parameter learning problem easier. A lot of data is needed
to train a full 7-gram model; considerably less is needed to train a model that
has mostly 3- and 4-grams, but a few highly predictive 7-grams.

The vpr algorithm finds k very predictive rules which are no longer than
they should be. The rule [aq → u] will not be among these k because it makes
identical predictions with, so cannot reduce more errors than, the shorter rule
[q → u]. In contrast, the rule [lwa → y] was shown to reduce errors that would
be committed by [wa → s], but it might not reduce enough errors to warrant
including it in the k rules found by vpr.

2 Reducing Errors by Extending Rules

It is best to introduce the algorithm with a series of examples. Suppose someone
opens an English text to a random location and says to you, “I am looking at
the letter n, predict the letter that follows it.” If the text is the first 50 000
letters in George Orwell’s 1984 (the source of all examples and statistics in this
article), then your best guess is t, because n t appears 548 times in the text, more
than any other subsequence of length two that begins with n. A prediction rule
[X → Y ] is called maximal if XY is more frequent in a corpus than XZ, (Z 6= Y ).
The rule [n → t] is maximal because the sequence n t occurs 548 times whereas
n d, the next most frequent subsequence that begins with n, occurs only 517
times. Maximal prediction rules incur fewer errors; for example, [n → t] incurs
548− 517 = 31 fewer errors than [n → d] .

Although it is maximal, [n → t] incurs many errors: because n occurs 3471
times, and n t only 548 times, the rule is wrong 2923 times. To cover some of
these errors, we can extend the maximal rule, by adding an additional letter to
the left-hand side, producing a new rule of the form [αn → β]. Of course, then
both [n → t] and [αn → β] will match the sequence a n, so we need a precedence
rule to decide which to use. Since the longer rule is designed to be an exception
to the shorter one, the precedence rule we use is: Always use the rule with the



longest left-hand side. It turns out that the best extension to [n → t] is [in → g].
This rule eliminates 341 errors, more than any other extension of [n → t].

The reduction comes from two sources, one obvious, the other less so, as
shown in Table 1. The first two rows of the table show what we already know, that
there are 548 instances of n t and 3471 instances of n, so predicting t following n
incurs 3471 − 548 = 2923 errors. The next two lines show the number of errors
incurred by the maximal rule [in → g]. There are 1095 occurrences of i n in the
corpus and 426 occurrences of i n g, so 1095 − 426 = 669 errors are incurred by
this rule. The surprise comes in the final two lines of Table 1. The rule [in → g]
applies whenever one sees the sequence i n, but what if one sees, instead, o n?
Should we continue to use the rule [n → t] in this case? No. Once we have a
rule [in → g], we can distinguish two kinds of sequence: those that include n
and start with i and those that include n and start with something other than i,
denoted ¬i in Table 1. To treat these cases as identical, to use [n → t] for both,
is to ignore the information that we’re looking at n and the previous letter was
not i. This information can reduce errors. Table 1 shows 2376 instances of ¬in
and in these cases the maximal rule predicts not t but d. Whereas [n → t] incurs
2923 errors, the pair of rules [in → g] and [¬in → d] incur 669 + 1913 = 2582
errors. The reduction in errors by substituting these rules for the original one,
[n → t], is 341 errors. As it happens, this substitution is the best available for
the rule [n → t], the one that reduces errors the most.

LHS x Prediction α Frequency N(x) Frequency N(xα) Error

n t 3471 548 2923

in g 1095 426 669
¬ i n d 2376 463 1913

Table 1. How error rates change when maximal rules are extended

Although [in → g] is the best extension of [n → t], it is not the only one,
and others may reduce errors, too. In Figure 1 we show how a second extension
of [n → t] is added to a tree of prediction rules. Panel A shows the rule [n → t].
Panel B shows the substitution of two rules, [in → g] and [¬(i)n → d] for the
original one. The original 3471 instances of n are broken into 1095 occurrences
of in and 2376 instances of ¬(i)n. Correspondingly, the best prediction for ¬(i)n
switches from t to d and the errors for both rules sum to 2582, a reduction of 341
over the single rule in panel A. A further substitution is shown in panel C. This
time [¬(i)n → d] is replaced by two rules, [¬(i, a)n → t] and [an → d]. The 2376
cases of ¬(i)n are split into 1704 occurrences of ¬(i, a)n and 672 occurrences
of an. By pulling the an cases out of the ¬(i)n cases, we gain information that
helps to reduce errors. If we observe an and predict d we make 328 errors ([an →
d]). If we observe n preceded by neither i nor a and predict t we make 1359
errors ([¬(i, a)n → t]). The two new rules together incur 228 fewer errors than
[¬(i)n → d].



Node: n

Frequency: 2376

Best Pred.

not [i] : d

Errors: 1913

Node: in

Frequency: 1095

Best Pred.: g

Errors: 669

Reduction: 341

Node: an

Frequency: 672

Best Pred.: d

Errors: 326

Reduction: 228

Node: n

Frequency: 1704

Best Pred.

not [i,a] : t

Errors: 1359

Node: in

Frequency: 1095

Best Pred.: g

Errors: 669

Reduction: 341

Node: n

Frequency: 3471

Best Pred.: t

Errors: 2923

A B C

Fig. 1. The evolution of a tree of prediction rules

3 The Space-Limited-Ngrams Problem

Now we formally define the problem. Let X be a string of length n with alphabet
Σ. We define a prediction set P for X as a set of rules [r → α] for ngrams r and
characters α. We require that P contain a rule for the empty string ε; this is the
rule of last resort. To add an ngram r to P is to add the rule [r → γ], where rγ
is maximal. An extension of the rule [r → γ] is any rule [αr → β].

We can organize a prediction set P as a tree, as shown in Figure 1, where each
ngram has its extensions as descendants. For example, the tree in Figure 1(C)
corresponds to the prediction set {[¬(i, a)n → t], [in → g], [an → d]}. Using this
tree it is easy to find the longest rule that matches a given sequence. One simply
“pushes” the sequence into the tree. Suppose the tree is as shown in Figure 1(C)
and the sequence is o n: This sequence “stops” at the rule [¬(i, a)n → t] because
on matches ¬(i, a)n. Alternatively, if the sequence were i n it would stop at the
rule [in → g].

The error E(P ) of a prediction set is the number of mistakes it makes in
predicting all the characters of X. More formally, for a string Y , let fP (Y ) be the
prediction made by the longest rule in P that matches Y . Let X(i) = x0x1 . . . xi.
Let δ(a, b) be the function that is 0 if its arguments are equal, and 1 otherwise.
Then we can write

E(P ) =
∑

i

δ(fP (X(i)), xi). (1)

For trees like those in Figure 1, we can compute E(P ) by summing the
Errors: field for all the nodes.

This error metric is an interesting one for judging rules because it combines
precision and recall. Rules with longer antecedents are correct more often when
they apply, but they apply less frequently. So a rule that is very precise but is



uncommon, such as [declaratio → n], will not reduce the error of P as much as
a more fallible rule like [th → e].

The Space-Limited-Ngrams problem is, given an input string X and an
integer k, to return the prediction set P ∗ of size k that minimizes E(P ∗). Al-
though we do not have a polynomial time algorithm for this problem, we have a
greedy polynomial-time approximation, which we call vpr.

The vpr algorithm, shown in Figure 2, repeatedly adds the ngram to P that
would most reduce E(P ). With some bookkeeping we can quickly compute the
error after adding an ngram (line 4). We do this by maintaining for each node
q ∈ P its frequency N(q) (that is, the number of times it is needed to make
predictions), and its follower table v(q), that is, for each α ∈ Σ, the number
of times α follows q. When we add an ngram r that extends q, we modify the
frequency and follower count so that they do not include the portions of the string
that are handled by the exception. More specifically, note that every point in
the string X that r predicts was previously predicted by q, for q is a suffix of r.
So the new frequency N ′(q) is simply N(q)−N(r). And the new follower table
v′(q) is v(q)− v(r).

The running time of vpr depends on the loop in line 4 in Figure 2, that is,
how large the set Q can be. For each ngram we add to P , we add at most Σ new
ngrams to Q, so the size of Q is at most kΣ. We can cache the frequencies and
follower counts of the ngrams using a linear preprocessing step over the string.
So the running time of vpr is O(n + k2Σ).

Note that vpr does not necessarily find the optimal prediction set. This
can happen if, for example, none of the bigrams appear very predictive, but
some trigrams are highly predictive. An example is the string “abccbbacaabc-
caacbaabccbbbac,” where the bigrams are equally distributed, but the trigrams
are not.

An alternate greedy algorithm, vpr*, is given in Figure 3. Although slower,
vpr* finds better predictive sets. Whereas vpr chooses greedily among one-step
extensions of existing rules, vpr* chooses greedily among all the ngrams that
occur in the corpus. Clearly, vpr* can perform no worse than vpr, but this
comes at a price: in the worst case, vpr* will iterate over all the ngrams that
appear in the corpus to select each of the k prediction elements. At most

(
n
2

)
distinct ngrams occur in the corpus—n of length 1, n− 1 of length 2, and so on.
So vpr* has a worst-case running time of O(kn2).

4 Experiments

Although vpr does not always find the optimal predictor set, we believe that it
performs well on naturally occurring sequences. To demonstrate this, we com-
pared vpr to fixed-order classifiers on the first 50 000 characters of George Or-
well’s 1984. Each algorithm was trained on the entire corpus, and then the
resulting classifier was used to predict each character in the corpus, given the
preceding characters. This task is challenging only because k is small; if k were
50 000, for example, it would be trivial to find an optimal predictor set.



VPR(seq, k)
1 P ← an ngram-set predictor, initially {ε}
2 Q← a list of all 1-grams in seq
3 repeat k times
4 r ← arg minr∈Q E(P ∪ {r})
5 Add r to P
6 Remove r from Q
7 Add all one-character extensions of r (that is, αr for all α ∈ Σ) to Q
8 return P

Fig. 2. The vpr algorithm

VPR*(seq, k)
1 P ← a rule set, initially {ε}
2 Q← the list of all ngrams in seq
3 repeat k times
4 r ← arg maxr∈Q E(P ∪ {r})
5 Add r to P
6 Remove r from Q
7 return P

Fig. 3. The vpr* algorithm. This differs from vpr* in that it considers all possible
rules, not just one-step extensions of current rules

0 50 100 150 200 250 300

30000

35000

40000

45000

k

E
rr

or

VPR
VPR*
order 2
order 3
order 5

Fig. 4. Comparison of vpr, vpr*, and space-limited fixed-order models on the Orwell
data set. The horizontal line is the number of errors made by a full bigram model



0 50 100 150 200 250 300

1
2

3
4

5

k

Le
ng

th
 o

f l
as

t n
gr

am

Fig. 5. The length of the k-th ngram chosen by vpr, for each k

0 50 100 150 200 250 300

1
2

3
4

5

k

Le
ng

th
 o

f l
as

t n
gr

am

Fig. 6. The length of the k-th ngram chosen by vpr*, for each k



We ran vpr and vpr* with k ranging from 1 to 300. For the fixed-order
classifiers, we trained an order-n Markov chain on the text, for n ranging from
1 to 7. But using a full fixed-order model would not be fair to vpr, because
a full bigram model, for example, contains 676 predictors, while the largest
variable-length model we built has only 300. We made the fixed-order models
space-limited by selecting the k fixed-length ngrams that most reduced error.
Figure 4 shows the number of errors out of 50 000 made by vpr, vpr*, and the
space-limited fixed-length models for different values of k.

With 300 ngrams, vpr makes 32 600 errors on the Orwell corpus out of 50 000
characters. vpr* makes 30 364 errors, about 7% better. By comparison, a full
bigram model makes 33 121 errors but uses 676 ngrams. vpr gets that level of
performance with 214 ngrams.

To see how useful variable-length ngrams are, we plotted for vpr and vpr*,
the length of the k-th ngram added for each k, as shown in Figures 5 and 6.
After an initial period of adding 1-grams and 2-grams, the algorithm choose 3-,
4-, and 5-grams alternately. In fact, many 5-grams are chosen before the last few
1-grams.

These results suggest that using variable-length predictors can generate clas-
sifiers with the same predictive power but fewer parameters. In addition, the
fact that vpr* performs only marginally better than vpr despite having more
flexibility suggests that vpr performs well for natural inputs.

5 Related Work

Several authors have used suffix trees to represent variable-memory Markov
probabilistic models: Ron et al. [6] call them Probabilistic Suffix Trees (PSTs),
and Laird and Saul [4] call them Transition Directed Acyclic Graphs (TDAGs).
The rule sets we generate are essentially deterministic versions of these, although
we can use the follower tables to build a probabilistic classifier. Ron et al. apply
PSTs to finding errors in corrupted text and identifying coding sequences in
DNA. PSTs have also been applied to protein family modeling [2]. Laird and
Saul describe applications to text compression, dynamic optimization of Prolog
programs, and prefetching in mass-storage systems.

Given a corpus generated by a PST T ,1 Ron et al. [6] give a polynomial-
time algorithm that with probability 1− δ, returns a PST T̂ such that the KL-
distance between T and T̂ is less than ε, for any choices of δ and ε, assuming that
the sample size is sufficiently large. They give an upper bound on the number
of states in T̂ , but in terms of the size of the unknown generator T . A later
algorithm for PST-learning has linear time and space complexity [1].

Laird and Saul [4] construct a full suffix tree up to a fixed depth, but omit
states whose relative frequency are below a user-specified threshold.

Both of these algorithms use variable-memory models to reduce the space
used by the model while retaining predictive power, as does ours. Our approach

1 There is actually a minor restriction on the source PST.



differs from these in that vpr takes the number of predictors k as a parameter,
and guarantees that the model it returns will not exceed this. Furthermore, the
question of what is the best accuracy that can be attained with a fixed predictor
size has not been explored in the previous work.

Our error metric E(P ), the number of errors P would make in predicting the
input, is also novel. Ron et al. choose to add an ngram if its follower distribution
is sufficiently different from its parent’s. Laird and Saul include an ngram in
a model if it occurs a minimum number of times and its probability of being
reached, no matter the confidence in its prediction, is above some threshold. A
comparison of these methods is left for future work.

Many methods exist for fixed-memory sequence prediction. Commonly-used
techniques include Markov chains, HMMs [5], and recurrent neural networks [3].

6 Conclusion

We have given a greedy algorithm for sequential prediction tasks that uses
variable-sized predictors, rather than the fixed-size predictors used in classical
Markov models. By doing this, we can build predictors that are equally good as
Markov models, but have a smaller number of predictors.

Although both vpr and vpr* require time polynomial in the length n of the
corpus, neither of them is optimal. We do not have a polynomial-time optimal
algorithm for the Space-Limited-Ngrams problem. Future work includes ei-
ther giving a polynomial time algorithm or showing that the associated decision
problem is NP-complete. If the problem is NP-complete, then it would be good
to derive an approximation ratio for vpr.

It is also natural to extend the Space-Limited-Ngrams problem so that the
input is a sample drawn from a language. Then the problem would be to learn a
predictor set from the sample that has low expected error on the language. We
suspect, but have not demonstrated, that similar algorithms would be useful in
this case.

References

1. Alberto Apostolico and Gill Bejerano. Optimal amnesic probabilistic automata or
how to learn and classify proteins in linear time and space. In RECOMB, pages
25–32, 2000.

2. G. Bejerano and G. Yona. Variations on probabilistic suffix trees: statistical mod-
eling and the prediction of protein families. Bioinformatics, 17(1):23–43, 2001.

3. Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley,
2nd edition, 2001.

4. Philip Laird and Ronald Saul. Discrete sequence prediction and its applications.
Machine Learning, 15:43–68, 1994.

5. Lawrence Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–285, 1989.

6. Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learning prob-
abilistic automata with variable memory length. Machine Learning, 25(2-3):117–
149, 1996.


