Applicability of Reinforcement Learning

Paul E. Utgoff and Paul R. Cohen
Department of Computer Science
University of Massachusetts
Ambherst, MA 01002
{utgoff|cohen}@cs.umass.edu

Abstract

We describe our experiences in trying to imple-
ment a hierarchical reinforcement learning system,
and follow with conclusions that we have drawn
from the difficulties that we encountered. We
present our objectives before we started, the prob-
lems we encountered along the way, the solutions
we devised for some of these problems, and our
conclusions afterward about the class of problems
for which reinforcement learning may be suitable.
Our experience has made it clearer to us when
and when not to select a reinforcement learning
method.

Introduction

We describe our experiences in trying to implement a hi-
erarchical reinforcement learning system. This includes
our design objectives, the problems we encountered, the
solutions we devised for some of these problems, and our
conclusions afterward. These conclusions are somewhat
lengthy, making the paper fall into two larger parts: the
technical aspects of what we tried to do, and the think-
ing that our difficulties led us to do.

Before proceeding, it is important to circumscribe
what we mean by ‘reinforcement learning’. To us, this
is the class of techniques such as Q-learning and V-
learning (temporal difference learning) that modify a Q
or V function based on estimates of future discounted
reward. This is a narrower definition than is often as-
sumed. For example, Sutton and Barto (in press) say
‘Reinforcement learning is defined not by characterizing
learning algorithms, but by characterizing a learning
problem. Any algorithm that is well suited to solving
that problem we consider to be a reinforcement learning
algorithm.” Q-learning and V-learning are very useful
techniques that can be used in conjunction with other
components to build useful learning systems. We prefer
to talk about a configuration of components, instead of
calling the entire system reinforcement learning.

Related Work

People have long recognized that an acquired skill may
depend on previously acquired skills. For example, to

be able ride a bicycle, one needs to be able to bal-
ance, steer via handlebars, and pedal with the feet.
Researchers have begun to study how skills learned
through reinforcement learning can be composed, con-
trolled, and learned effectively. This work is still in
its infancy, and represents one of the open problems in
reinforcement learning (Dietterich, 1997).

Kaelbling (1993) discusses her HDG learning algo-
rithm, which uses landmarks as subgoals in its state
space. This helps to organize the state space hierar-
chically, so that the agent can consider travel in larger
chunks by travelling from one landmark to the next.

Thrun and Schwartz (1995) present the SKILLS al-
gorithm, which constructs new operators from useful
sequences of existing operators. The usefulness of a se-
quence is related to how often it is used in a collection
of related tasks. Policy learning and operator creation
are interleaved.

Tadepalli and Dieterrich (1997) describe their EBRL
algorithm for hierarchical explanation-based reinforce-
ment learning. Their system has a two-level hierarchy.
The lower level uses a planner to achieve a selected sub-
goal, and their higher level uses their own version of
Q-learning to learn a policy for selecting (and implicity
ordering) which subgoal to achieve next.

Design Objectives

The context of our work is that we are attempting to
build an autonomous agent (as are a great many other
researchers). Part of the system’s design is that it will
construct simple activities in a recursive manner, pro-
ducing a logical hierarchy of activities. For each activ-
ity, the agent has available the global state vector, a set
of subactivities that can be employed while executing
the activity, and a goal for the activity. A subactiv-
ity is either another activity or a base-level operator
that switches an effector. For each activity, the system
needs to learn how to achieve the goal for that activity.
Said another way, the system needs to learn a policy
for each activity, using its available subactivities as its
operators, and the stated goal as its objective.
Q-learning (Watkins & Dayan, 1992) seemed to be
a natural choice for policy learning in such a scenario,
and this is the choice that we made. Based on our expe-

riences as reported below, we would not make this same
choice again. One pragmatic reason is that much tinker-
ing is required to get Q-learning to work, and we cannot
envision an agent doing this specification and tinkering
autonomously. However, there are more fundamental
reasons that suggest a more limited scope of useful ap-
plicability for reinforcement learning techniques, as dis-
cussed below in Section .

When building an autonomous agent, it is essential
to give it an embodiment in the real world. We have
available a Pioneer 1 robot for this purpose, but we
decided to do our initial experiments in a simulated en-
vironment, for two reasons. First, a simulated world
can be deterministic. Second, a simulated world can
run at a speed many orders of magnitude faster than
real time, allowing one to test and debug prototypes
much more rapidly. We assume that if an algorithm
does not work in a simulated environment, then it will
not work in a real environment. Hence, our plan was
to develop and test the algorithms in a simulated en-
vironment, and, when seemingly adequate, transfer the
subsequent development process to the robot. Enough
problems arose in the simulated world that we have yet
to make such a transfer. A related project which tried
to implement hierarchical reinforcement learning on the
Pioneer, ran into the same difficulties as this one.

We adopted Q-learning because it does not require an
operator model. In a robotics application, the successor
state that will result from the application of an operator
is not entirely predictable. This choice is also in keeping
with our longer term design goal that the agent not start
with any operator model. One could envision learning
an operator model, but we did not do this. Setting
up a Q-learning task, and refining the setup so that it
works well are known to require considerable manual
tinkering. One must specify and refine:

1. the state space
2. the operators

3. the function approximator, possibly with its own pa-
rameters

4. the immediate reward function

5. the penultimate reward function, implicitly depend-
ing on the goal

6. the stepsize parameter o

. the discount rate ~y

8. the exploration strategy, possibly with its own pa-
rameters

This is the state of the art, but from the outset we
know that it will be undesirable to adjust these choices
manually, both because it violates the autonomy of the
agent, and because it will be impractical in a system
such as ours with multiple Q-learning tasks. We re-
quire the ability to spawn an activity automatically, in-
cluding the components on which Q-learning is based.
How can we formulate a Q-learning task in such a way
that manual tuning of the Q-learning specification is
not needed?

~

Attempting An Implementation

We consider first how to specify a Q-learning task in an
activity-independent manner, given the world in which
the agent will exist, and given the effectors and sen-
sors that are available to the agent in its embodiment.
We then define the hierarchical flow of control. The
section concludes with an experiment in a simulated
world. Although this attempt at an implementation
represents a solution of sorts, we encountered several
problems that we did not expect, many of which re-
main unsolved. Some of these problems are indigenous
to reinforcement learning approaches.

Activity-Independent Specification

Let us consider the eight components of a Q-learning
specification in turn. The state space is the state vector
of real values of the various sensors and effector settings.
One might implement a mechanism for including addi-
tional state variables that are functions of the present
or past state values, or higher level interpretations of
them. We would rather not do that because ultimately
we will want the agent to be able to construct such
variables. Instead, we make just one transformation of
the state vector, based on the fundamental assumption
that the goal associated with an activity is defined as
a particular value for each of those state variables that
are also designated as goal variable for the activity.

In this view, one can state a single acceptable value
for a state variable, not a multitude of values. For a
given activity, the state vector s is transformed to a
mapped state vector s’ as follows. For each state vari-
able s; that is not a goal variable, define s} to have the
same value as s;. For each state variable s; that is a
goal variable, construct two mapped state variables s},
and s},. Define s, to have the value s; — g; if 5; > g;
or 0 otherwise. Also define s}, to have the value g; — s;
if g; > s; or 0 otherwise. Here, g; is the goal value for
state variable s;. These mapped variables measure the
amount of overshoot and undershoot with respect to a
goal value, making the state vector a function of the
present state and the goal state.

The operators available for the activity are specified
once when the activity is created, and held fixed there-
after. In principle, it is possible that the activity’s goal
may not be achievable from one or more states, but this
is not an issue in the work reported here. In the broader
design of the agent, constructing a fatally flawed ac-
tivity, in this sense, might occur. We envision useless
activities becoming unattractive and purged. In any
case, this is immaterial here because we guarantee in
our setup that this does not occur.

The function approximator is a homegrown algorithm
ATT (Adeline Tree Inducer) that fits the observed point
estimates with a tree-structured piece-wise linear fit.
The approximation starts with a single linear fit, and
then breaks any single linear fit that has too much
error into two separate linear fits. This is done re-
cursively as necessary to produce finer precision where

needed. The split of one block of the partition into two
is done obliquely. We dispense with further explana-
tion of the algorithm because in the application here,
the tree structured piecewise linear fit always remained
a leaf, i.e. a single linear fit. One might want to use
a lookup table, with one cell per state, but that is in-
feasible except for the simplest of domains, so we did
not.

The immediate reward function is the amount of the
reduction in the distance to the goal state. Another
choice might be -1 for the cost of the step, but some
steps are better than others, so we preferred to use dis-
tance reduction. A potential problem with using dis-
tance reduction is that it can be misleading when appar-
ently retrogressive steps are needed in order to achieve
a goal, for example in moving around an obstacle, or
unstacking a block.

The penultimate reward function is zero. This is
seemingly anticlimactic, but it corresponds to distance
from the goal. With these choices for immediate and
penultimate reward, the Q values can be interpreted as
minimum distance to the goal.

The stepsize parameter « is fixed at 0.3. This controls
the rate at which old Q values are phased out as new
Q-values are phased in. The discount rate v is fixed
at 0.0, which means that the cost of future steps is
ignored (fully discounted). This is extreme, and seems
to disable much of what Q-learning offers. Non-zero
values produced divergence in the Q function values, as
described below.

The exploration strategy consists of selecting the ac-
tion with highest value 98% of the time, and a different
action selected at random the remaining 2% of the time.
Several versions of softmax action selection were tried,
but were not as good in the application.

Simulated World

The simple agent has three degrees of freedom. First,
it can move one unit of distance per time step forward
or backward along a one-dimensional line. Second, the
agent can widen or narrow its gripper aperture by one
unit of width per time step. Finally, the agent can raise
or lower its arm by one unit of elevation per time step.
The gripper is attached to the arm.

There is a block of a fixed width at one end of the
travel line. At the beginning of a trial, the agent is
placed at a random location on the travel line at least
one unit of distance from the block. The gripper is
initialized to a random width at least as wide as the
block. The arm is initialized to a random elevation.
The top-level task is for the agent to raise the block as
high as it can. This requires that the agent move to the
block, grasp it, and raise its arm. One can easily devise
more interesting worlds, but this one is sufficient for
a simple test of the hierarchical reinforcement learning
system that has been described.

The state variables and their value sets are shown
in Table 1. The size of the state space is

Table 1: State Variables

Variable Name Value Set Cardinality

Gripper Aperture {0,...,,10} 11

Gripping Block {-1,1} 2

Arm Height {0,...,20} 21

Distance to Block {0,...,25} 26

Elevation of Block {0,...,20} 21
Obtain

%N

Pos Neg Open Close Raise Lower

N

I+1 I-1 g+l g-1 a+l a-1

Figure 1: Activity Hierarchy

11x2x21x26x21=252252, though some states are impos-
sible. For example, the block cannot have a nonzero
elevation without being gripped. With a state space
this small, one might be tempted to use a lookup table
for the function approximator but as discussed above,
we did not. The Q function is represented as a piece-
wise linear fit (tree-structured piece-wise linear fit, but
everyone of them remained a single leaf, i.e. linear fit)
over its mapped state space, one for each subactivity
available to the activity as one of its operators. The
resulting Q function is much like a ¢-machine (Nilsson,
1965) because it partitions the mapped state space into
convex regions in which one of the operator (action)
values is greater the others.

The activity hierarchy is shown in Figure 1. The
lowest level activities are the six primitive operators.
For example, there is an effector ‘loc+1’ that moves the
agent one unit of distance in the positive direction. The
agent needs to learn that to move in the positive direc-
tion, this is the effector to use. This may seem like a
superfluous level in the hierarchy, but it represents the
connection between effectors and intended action. In
this way, the agent learns which effectors have which
effects on which state variables. Although only connec-
tions from Pos to each of the six effectors are shown,
the same connections exist for all the siblings of Pos.

Hierarchical Control

We assume that there is a distinguished root activity
that is executed repeatedly. In the larger context, the
hierarchy of activities is changing as new activities are
created and old activities are deleted. However, for
our initial adventure, we elected to construct an ac-
tivity hierarchy once, and hold it fixed. In Figure 1,
one sees that Obtain is the distinguished root activity.
The purpose of this setup was to provide a testbed for

50 OPq 81 OPq 52 OPb S3 OPb S4 OPp S5 OPq S6

Figure 2: Discontinuity in an Abstract Trajectory

the Q-learning tasks, given a static hierarchy. Given
this hierarchy, and given that the root activity is exe-
cuted repeatedly, when are the other activities in the
hierarchy invoked?

In our initial design, an action was selected at the
root, and the subactivity was executed recursively, until
a primitive operator was selected, resulting in a primi-
tive step and a state change. Thus, at each time step,
a path of activities is executed simultaneously. Each
has its own mapped state, QQ function, and reward.
When an activity finishes executing, control returns to
the calling activity. This parent activity then decides
what to do next. It may itself return to its caller, or it
may continue by selecting and executing one of its sub-
activities. This looks reasonable because the system
considers what to do at each time step, based on the
current state, the current Q function for each invoked
activity, and stochastic exploration.

However, the system did not learn well at all. One
reason is that this strategy for hierarchical control pro-
vides little continuity in the state trajectory with re-
spect to the operators (activities). Consider the hy-
pothetical trajectory depicted in Figure 2. There is
discontinuity in the trajectory with respect to activity
a. It is as though there is an unexplained jump from
state sy to state s;. This is very bad for Q learning
because Q values need to be grounded in truth, which
occurs only when an activity’s goal is achieved. Updat-
ing Q values in sequences that are not grounded leads
to faulty updating.

One needs to remain within an activity, preferably
until its goal is achieved, but certainly for long enough
that reaching its goal is a possibility. To this end, we
revised the control structure so that when an activity is
selected for execution, it continues to execute either un-
til its goal is achieved, or until four consecutive operator
(subactivity) applications have failed to achieve a new
minimum distance from the activity’s goal. Distance
is measured by the sum of the distances of the cur-
rent mapped state values to the goal values for the goal
variables. Distance reduction is a form of progress esti-
mator (Mataric, 1994). Tsitsiklis and Van Roy (1996)
discuss the importance of online sampling more gener-
ally.

A Run of the System

The simulated system as described above was run for
2,000 trials. For each trial, the system was initialized
to a quasi-random state, and then allowed to run until
the goal was achieved. The efficiency of each trial was
measured as the ratio of the number of primitive steps
used to the minimum number of primitive steps that
were needed for that starting state. Optimal efficiency
would be 1.0. One would expect to see the efficiency of

Efficiency

10 20 30 40
Trials, in 50s

Figure 3: Efficiency Improvement

the agent improve over time, but never achieve optimal-
ity due to exploration. Note that a single misstep at a
high level can cost many primitive steps. For example,
deciding to open the gripper instead of closing it will
cost the number of steps to open it plus the number of
steps to bring it back to its previous aperture.

Figure 3 shows the learning curve for the 2,000 trials.
Each block of 50 trials is shown as a single mean value.
The system settles in fairly quickly to an efficiency of
approximately 2.0. A more sophisticated exploration
strategy might bring further improvement. At the lower
level of this hierarchy, the system has learned which
effectors to use to succeed in these simpler activities.
The system has also learned how to use these middle
level activities to succeed at its top level activity. The
top level activity is quite simple.

Discussion

Our effort in trying to implement a hierarchical pol-
icy learner led us to confront a variety of issues, which
led us to think more carefully about the merits of the
approach. The following discussion was provoked by
our experience, but the thinking and the conclusions
that we draw are in a large sense independent. The
conclusions follow more from our thinking about Rein-
forcement Learning than from our experience with our
implementation.

Our goal is activity-independent learning of activ-
ities, and we have concluded that we are expecting
too much from a formulation based on a reinforcement
learning method such as Q-learning. Indeed, a great
many activity-specific specifications must be provided
for Q-learning to produce desired behaviors, and one
must tinker with these at length to produce a Q-learner
that finds a policy to achieve the activity’s goal. Above
in Section we list eight specifications, and while some
might have activity-independent values, e.g. the step-
size parameter or the discount rate, others cannot be
specified without biasing Q-learning to learn some ac-
tivities in preference to others. We expand on this point
in Section .

Why is it necessary to specify so much, or con-
versely, why should we not expect to achieve activity-
independent Q-learning? The answer we give in Sec-
tion is that Q-learning is a weak search algorithm, so
its search space must be tightly constrained or its search

made more directed or both. We argue that strengthen-
ing the search in these ways makes Q-learning look more
like a planning algorithm. Unfortunately, policy learn-
ing lacks some desirable characteristics of planning, no-
tably flexibility in novel situations and explicit repre-
sentations of action sequences, as we discuss below in
Section .

Two Specification Problems

After one has specified a goal, a state space, a set of op-
erators, a function approximator, immediate and penul-
timate reward functions, discount and stepsize param-
eters, and an exploration strategy, one has specified
tightly an activity for Q-learning to learn. Unfortu-
nately, one generally does not know what policy will
be learned given these choices, and more importantly
whether the policy will achieve the goal of the task.
Tinkering with these specifications to make Q-learning
learn any particular task is an art. Changing a speci-
fication often has unpredictable effects on what will be
learned, in part because the specifications are not in-
dependent. Some dependencies, such as those between
goals and reward functions, are relatively clear, but oth-
ers become apparent only when a system fails to master
the activity that the implementer had in mind. One
can think of getting Q-learning to work for a specific
task as programming in specification space for the eight
(groups of) specifications outlined above.

To illustrate the dependencies between specifications,
consider the problem of subgoal ordering. For example,
the goal for the Obtain activity is to be gripping the
block, and be holding it at as high an elevation as pos-
sible. The elevation of the block will be the same as
that of the arm when it is being gripped, and zero oth-
erwise. One could just as easily state the goal this way,
that the arm should be as high as possible while grip-
ping the block. However, were the goal to be stated
this way, the agent would detect progress when raising
the arm, whether or not the block was gripped. One
cares about the elevation of the arm if it is gripping the
block, and not otherwise. This can be modeled by stat-
ing the goal in terms of the elevation of the block. This
is disconcerting however because now one needs to tin-
ker with the statement of the goal, and potentially the
state variables. One might say that the poorly speci-
fied subgoal can be used anyway, and that the learned Q
function will iron this out. However, this supposes that
the goal can be achieved through a random walk, and
that the function approximator can represent a function
with this aberration.

As another example, suppose that the goal is to fetch
the block, i.e. go get it and return to the point of origin.
If the goal states that the location should be the point
of origin, then moving away from it constitutes negative
progress. One can get around this by creating subactiv-
ities with useful intermediate goals, but this is another
kind of tinkering. In the reinforcement learning com-
munity, subgoals are sometimes built into the reward
function, but this too is just pushing the problem into

a different realm. (It also nullifies the often-heard char-
acterization that one does not need to give any indica-
tion of how to solve a task when using reinforcement
learning.)

In these examples goals, operators, reward functions,
the state space and function approximator, and the
exploration strategy must all be considered simultane-
ously to enable Q-learning to learn a policy for achiev-
ing the goal of a particular activity (learning the ac-
tivity). However, no mapping from these specifications
to the policy that will be learned when using them is
known, and not all specifications work. To learn a new
activity, one must change the configuration of the learn-
ing algorithm. To be autonomous, an agent therefore
be able to search this specification space. Since no map-
ping of specifications to policies is known, it will be dif-
ficult to search such a space. If we are going to burden
the agent with a large search like this, then one must
then ask whether that search effort could be spent more
effectively elsewhere.

The Weak Search Problem

Much of what is specified for Q-learning is intended
to make learning more efficient. For example, function
approximators can provide values for unvisited parts
of the state space, operator models permit improve-
ment over random exploration by enabling lookahead,
the state space itself can be made smaller by recoding
continuous state variables such as ‘orientation’ to have
discrete, task-specific, meaningful values such as ‘left-
of-goal.” Without such specifications, Q-learning is a
weak search algorithm, hence slow.

It is striking to us that for activity learning, at
least, these specifications require the same knowledge
that a state-space planner needs to formulate plans.
Means-ends analysis, for example, requires an operator-
difference table, which relates operators to their ef-
fects on state variables. In reinforcement-learning par-
lance, an operator difference table is an action model.
If Q-learning needs such knowledge to be efficient,
might it not be more efficient to learn activities by
planning, executing, evaluating and storing the plans
that work and their generalizations? Some proponents
of reinforcement-learning will argue that this is what
they do: use operator models to guide reinforcement-
learning, value functions to “store the plans that work,”
and function approximators to represent their gener-
alizations. For example, Sutton and Barto (in press)
say (ch 9), “(1) all state space planning methods in-
volve computing value functions as a key intermediate
step toward improving the policy; and (2) they compute
their value functions by backup operations applied to
simulated experience.” This is either a very general
characterization of planning that encompasses conven-
tional AI methods such as means-ends analysis, or it is
a recommendation that planning be implemented by
one or another reinforcement learning method. The
former interpretation offers no guidance for building
planners, and the latter requires a manual search of

specification space. A conventional state-space plan-
ner can change its plans quickly when the environment
changes, whereas Q-learning updates value functions
slowly; planners can reason about what to do, whereas
policy-followers do not (they react); and plans are ex-
plicit representations of activities, whereas activities are
implicit in policies.

Our argument to this point is that if one is going to
specify a state space, function approximator, and ac-
tion model, then one is better off building a planner and
learning which plans work than relying on Q-learning to
learn policies. But there is a deeper argument, related
to the specification problems of the previous section:
Each specification of an Q-learning algorithm leads to
one policy, whereas the knowledge inherent in — the
state space, action model, etc. — can be used to build
a planner that can generate many plans, which sug-
gests a better approach to activity-independent learn-
ing than Q-learning. To have Q-learning learn a policy
to produce a new activity, we have to tinker with the
specification, but to have a planner construct a plan to
achieve the goal of that activity, we need only change
the goal. For instance, suppose we want an agent to
learn to approach and pick up a block. This required
considerable tinkering with the state space and oper-
ator definitions in the experiment we reported above,
but a plan to approach and then pick up a block is very
easy to generate.

Compilation and Reasoning

Learning a Q function or a value function, V, represents
a compilation of experience, possibly with generaliza-
tion from the function approximator that represents Q
or V. Consider the shape of an optimal V* over the
state space. Every goal state represents a peak cost of
0. Every other state has a negative value. There are no
local maxima for the nongoal states. With this func-
tion, or a good approximation V, one could hillclimb
from any state to a goal. Possession of such functions
obviates the need for search of any greater complex-
ity. Given Q, V*, or V, who needs planning? Who
needs reasoning of any kind? Compilation plus hill-
climbing constitutes conditioning, and for some tasks,
conditioning is enough.

When is compilation not enough? It takes time to
learn a policy for an activity, so if an agent must learn
many activities or if the state space or reward function
for an activity changes, then planning is a more agile
way to produce rewarding actions. In our work here,
we tried to tackle the first problem — many activities
— by parameterizing the agent’s goal so that Q is com-
piled with respect to a parameterized goal instead of
the customary fixed goal. However, this is really just
another compilation. This adds to the complexity of
the Q or V function, which places an increased bur-
den on the function approximator. In retrospect, this
effort has been misguided because it is an attempt to
compile even more information, attempting to be free

of the need to search and plan in real time.

The state vector for Q-learning comprises a fixed
set of components, corresponding to the available sen-
sors and effector settings. This defines statically the
state space in which the agent operates. Imagine for
a moment an activity in which the agent moves from
one (z,y) location to another, without obstruction.
Through experience, the agent learns how to move to
a goal location when unobstructed. Now suppose that
an obstruction is placed between the agent and its goal
location. How does this affect the state space?

There are two basic alternatives. In the first, the ob-
struction is not part of the state space, and the agent
simply compiles a Q or V in terms of extra cost when
trying to move through the obstruction. To those who
equate learning a policy with planning, we say this is at
best lethargic replanning because the agent must slowly
revise its compiled policy by revising its Q or V func-
tion through experience and learning. We note that a
planner would also be powerless if it could not repre-
sent the obstruction. In the second, the obstruction is
part of the state space, and the agent learns its Q or
V with the location of the obstruction as part of the
state space. The agent needs to recondition itself to
avoid the obstacle, and reconditioning is not reasoning.
In contrast, a planner could reason about the obstruc-
tion, searching for a way to achieve its goal given the
obstruction.

Including the object that constitutes the obstruction
in the state vector makes the approximation of Q or
V still more complex, but more importantly, it assumes
the state space has a static structure. What if there are
no obstructions, or two obstructions? There is a strong
mismatch in attempting to use a statically structured
representation for a space that is dynamically struc-
tured. One might choose a representation with slots
for objects that may or may not be present, but this
is really just a doomed attempt to get beyond a more
fundamental mismatch. It is not practical to assume a
state space with a fixed constituency, at least for au-
tonomous agents in dynamic spaces. It can be practi-
cal for fixed-constituency spaces such as backgammon
(Tesauro, 1992). Of course, the present theory of rein-
forcement learning is not tied to a vector representation
of state, though most function approximators are. One
does however need constancy at some level of abstrac-
tion in order to compile, and our doubts about the de-
sirability of compiling as a method of action selection
remain.

Finally, activities represented by plans generally have
explicit, declarative structures, so an agent can rea-
son about what it is doing, whereas activities are only
implicit in policies and are not available to reasoning.
Three kinds of reasoning about activities are partic-
ularly important to agents in dynamic environments.
We have already discussed dynamic plan modification
or replanning, and noted that policies are not easily
modified, whereas plans are. A second kind of reason-
ing is reasoning about roles. We want agents to learn

activities because we have an interactionist theory of
category learning; briefly, categories of objects corre-
spond to the roles the objects play in activities. Thus
the Pioneer 1 robot might be expected to learn cate-
gories of things that move when pushed, things that
stall the wheels, and so on. To learn that an object
belongs to one category rather than another, one must
observe the role of the object in activities. Policies are
not explicit representations of activities and state vec-
tors do not necessarily represent objects. It is easier to
identify roles of things in explicit plans.

With respect to learning activities, our experience
has convinced us that Q learning will do the job if we
devote sufficient resources to tinkering with the speci-
fications, if the algorithm is given sufficient time, and
if the state space has a static structure. The result
will be compromised when the state space changes in
any way not anticipated in our state vector and func-
tion approximator. Also, the activity will be implicit in
the Q function, and not available to reasoning such as
replanning. We started this project with considerable
optimism about reinforcement learning. Our troubles
in applying it as broadly as we had intended seem to be
rooted in a fundamental mismatch between our prob-
lem and the technology we selected. If it were a matter
of our needing to work more diligently to find that elu-
sive activity-independent specification, we would con-
tinue in that direction, but the fundamental problems
we have encountered tell us that we made a bad ini-
tial choice. We now believe agents will learn activities
more efficiently if the activities are generated by plan-
ning, evaluated in execution, modified by replanning,
and generalized by well-understood inductive methods.

We are reworking the control architecture for our
autonomous agent. Wherever a reinforcement learn-
ing method is applicable, we shall use it. However,
the class of problems for which reinforcement learning
would seem to be the method of choice is smaller than
we thought when we selected it initially. We expect
that a simple planner will form the backbone of the
system, rather than a hierarchy of activities in which
each policy is learned to the point of compilation. Rea-
soning via planning is good, and there is no need to
drive decision making by compilation alone. It was our
own mistake to anticipate that this would work well.
Our state representation will not be a state vector, but
will instead be a list of state elements that grows and
shrinks depending on the complexity and constitution
of the present environment, and the extent of the ab-
stractions that can be applied dynamically.

Acknowledgements This research is supported by
DARPA /Air Force Research laboratory under contract
No. F30602-97-1-0289. The U.S. Government is au-
thorized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright no-
tation hereon. The views and conclusions contained
herein are those of the authors and should not be in-
terpreted as necessarily representing the official poli-

cies or endorsements either expressed or implied, of
DARPA/AFRL or the U.S. Government.

References

Dietterich, T. G. (1997). Machine learning research. AT
Magazine (pp. 97-136).

Kaelbling, L. P. (1993). Hierarchical learning in stochas-
tic domains: Preliminary results. Proceedings of the
Tenth International Conference on Machine Learn-
ing (pp. 167-173). Morgan Kaufmann.

Mataric, M. J. (1994). Reward functions for acceler-
ated learning. Machine Learning: Proceedings of
the Eleventh International Conference (pp. 181-
189). New Brunswick, NJ: Morgan Kaufmann.

Nilsson, N. J. (1965). Learning machines. New York:
McGraw-Hill.

Sutton, R. S., & Barto, A. G. (in press). Reinforcement
learning: An introduction. MIT Press.

Tadepalli, P., & Dietterich, T. G. (1997). Hierarchical
explanation-based reinforcement learning. Machine
Learning: Proceedings of the Fourteenth Interna-
tional Conference (pp. 358-366). Nashville, TN:
Morgan Kaufmann.

Tesauro, G. (1992). Practical issues in temporal differ-
ence learning. Machine Learning, 8, 257-277.

Thrun, S., & Schwartz, A. (1995). Finding structure
in reinforcement learning. In Tesauro, Touretzky &
Leen (Eds.), Advances in Neural Information Pro-
cessing Systems. San Mateo, CA: Morgan Kauf-
man.

Tsitsiklis, J. N. , & Van Roy, B. (1996). An analysis of
temporal-difference learning with function approz-
imation, (Technical report LIDS-P-2322), Cam-
bridge, MA: MIT.

Watkins, C.J.C.H., & Dayan, P. (1992). Q-Learning.
Machine Learning, 8, 279-292.

