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Abstract

Given a complex planner and or environment, it can be di�cult to determine why it behaves

as it does. Statistical causal modeling techniques allow us to develop models of behavior,

but they tend to be limited in what they can model: either continuing, repetitive in
uences

or causal in
uences without cycles, but not both as appear in most planning environments.

This paper describes how two statistical modelling techniques can be combined to suggest

speci�c hypotheses about how the environment and the planner's design causally in
uence

the planner's behavior over many examples of interacting in its environment and to construct

models of those in
uences. One technique, dependency detection, is designed to identify

relationships (dependencies) between particular failures, the methods that repair them and

the occurrence of failures downstream. Another method, path analysis, builds causal models

of correlational data. Dependency detection operates over a series of events, and path

analysis models within a temporal snapshot. We explain the integration of the techniques

and demonstrate it on data from the Phoenix planner.

�This research was supported by ARPA-AFOSR contract F30602-93-C-0100. The US Government is autho-

rized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation

hereon.
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1 Modelling Planner Behavior

After many years of research, the planning community has developed many algorithms,

techniques and strategies for planning. Unfortunately, for those trying to build a planner for a

speci�c environment, we do not know why and how our planning techniques work in particular

environments. We do not have models of a planners operating in its environment, but rather,

we need tools and techniques to help us construct them.

Because environments and planners do, these models will need to include continuous, nu-

merical factors and discrete, categorical events. They will need to be developed, at least in

part, from empirical data, and they will need to use data gathered over time as the planner

operates in its environment.

Our models are statistical, that is, they relate behavior to in
uences over many conditions.

With careful consideration of what is likely to in
uence behavior and how the in
uences and

behaviors can be measured and related, we can construct models that are su�cient to answer

speci�c questions about what makes a planner behave in particular ways. For example, we

may ask: What is the relationship between possible decision strategies and the amount of time

required to complete a plan? Does the in
uence, as measured in terms of the resources used

by the plan, of the e�ect of the agent's actions depend on the rate of environment change? Are

particular plan failures likely to be preceded by particular planner actions? These are the kinds

of questions that we ask routinely when we design and implement planners for speci�c environ-

ments and when we try to generalize planner designs across environments. Thus, these are the

kinds of questions that we should routinely be answering with methods of model construction.

This paper describes how two statistical modeling techniques can be combined to answer

questions about the in
uence of numerical and categorical factors over periods of time in which

situations and decisions are repeated. Each of the techniques are automated, generating models
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from empirical data without intervention. However, the two techniques, like other statistical

techniques, are designed to answer questions about either numerical factors without feedback

(e.g., from repetition) or categorical factors over many repetitions. Together, they are shown

to characterize behavior involving both.

2 Statistical Methods for Identifying In
uences on Behavior

Statistical methods are a promising approach to answering questions about in
uences on

behavior. These questions are frequently hypotheses about the interaction of independent

factors (in
uences) on dependent factors. We rarely have recourse to complete, well-de�ned

models of environment or planner and so rely on observations and experiments to build such

models. Additionally, environments often are characterized by pseudo-random events (the

environment may not be random, but the factors that produce changes may be too di�cult or

numerous to measure) and indeed sometimes the planners make random decisions, leading to

descriptive models based on summaries or classi�cations.

Statistical methods are designed to answer particular questions. In the course of our ex-

plorations with the Phoenix planner, we have developed two methods, one for characterizing

trends in a time series and the other for modelling a temporal snapshot. This section explains

how the two methods can be combined to answer questions about in
uences over varying time

spans as well as constructing models of increasing detail.

2.1 Combining Two Statistical Methods

It is relatively easy to detect speci�c, simple e�ects of one thing on another, but not e�ects

of combinations of factors. Both Dependency Detection and Path Analysis are techniques for

examining combinations.

Dependency Detection (DD) identi�es relationships between discrete events in a time series,
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execution traces of a planner operating in an environment [12]. DD tests whether the occurrence

of one event depends on the occurrence of other events prior to it (i.e., whether one set of events

appears to cause another event). For example, we have used DD to search for dependencies

between combinations of actions of a planner and plan failure.

Path Analysis (PA) is a technique for building causal models based on multiple linear regres-

sion [10,14,17,19,5], which is related to techniques for causal induction [15,9]. Our algorithm

for PA builds detailed models of the interaction of various causal factors on the value of an

ordinal variable. For example, we have constructed path models of environment and planner

factors that directly or indirectly in
uence the amount of time required to �nish a plan.

The primary strengths of dependency detection are capturing transitions through states

and the behavior of the system over long periods of time, and discovering hypotheses about

behavior. The primary strengths of path analysis are modelling the interaction of multiple

continuous in
uences at a particular point or within a short interval of time, and constructing

detailed models of interactions of in
uences. These strengths complement each other naturally

in the framework of building causal models. Three requirements are commonly posited for x

to cause y [18]: x must precede y in time; x and y must covary; and causes of y other than x

must be controlled. By �nding in
uences between events, DD concentrates on precedence and

control. Through application of regression, PA captures covariance and control. In combination,

the two approaches cover all three requirements.

We apply dependency detection and path analysis sequentially to answer speci�c questions

about behavior such as \What previous events and environment factors cause a particular failure

to occur?". Dependency detection can suggest a hypothesis about a speci�c interval of interest,

the interval between particular precursor events and a particular target event. Path analysis

can then characterize in detail how the one event in conjunction with other factors in
uences

the occurrence of the second. Combining the two methods creates a natural progression from
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a descriptive to a predictive and possibly explanatory model1.

2.2 Over a Time Series: Dependency Detection

Dependencies are detected statistically by analyzing execution traces. An execution trace is

simply a sequence of interesting events that occurred during some period of observing the plan-

ner. Execution traces can be viewed as transitions between events, which can be analyzed for

dependencies. Some of the events are designated as in
uences (called precursors in dependency

detection) and others as the behaviors of interest (called target events). One event, Tt, is said

to be dependent on another, Pa, if Tt is observed to occur more often following Pa than after

any other event. In its simplest form, the observed execution traces include precursor events

interleaved with target events, as illustrated in the following example:

Pa ! Tt ! Pb ! Tu ! Pa ! Tt

where! indicates temporal order. The statistical analysis requires two steps. Combinations of

in
uencing events are �rst tested for whether they are more or less likely to be followed by each

of the target events. Then the signi�cant combinations are compared to remove overlapping

combinations.

To determine whether particular target events are more or less likely after particular precur-

sors, we construct contingency tables of the incidence of the target Tt after the precursor Pa by

counting: 1) instances of Tt that follow instances of Pa, 2) instances of Tt that follow instances

of all precursors other than Pa (abbreviated Pa), 3) target events other than Tt (abbreviated

T
t
) that follow Pa and 4) target events T

t
that follow Pa. These four frequencies are arranged

in a 2x2 contingency table:

1While a PA model can be explanatory as well, in our combination of the methods, the explanatory model is

developed by a knowledge based, as opposed to statistical, technique called Failure Recovery Analysis[11].
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Tt T
t

Pa 15 10

Pa 30 50

For this table, we see a strong dependence between the precursor, Pa, and the target event, Tt:

15 cases of Tt following Pa out of 25 cases of Pa. But while Pa leads most frequently to target

event Tt, precursors other than Pa lead to Tt relatively infrequently (30 instances in 80). A

G-Test on this table will detect a dependency between the target event and its precursor [17]; in

this case, G = 5:174; p < :023, which means that the two events are unlikely to be independent

and conclude that Tt depends on Pa (abbreviated as [Pa; Tt]).

The precursors can be single events or combinations of events. For example, we may wish

some events to be counted both as in
uences and as target events (and so ask whether one

target event in
uences the occurrence of others). Given the above notation, we then build

contingency tables for three classes of precursors: in
uences that are not also targets, targets

that are also in
uences, and combinations of targets and in
uences. A statistical technique

based on the G-Test di�erentiates the three types of precursors by comparing the sum of the

e�ects due to the combinations (e.g., TuPa for all possible Tts) to the e�ect due to just the

grouped e�ect (e.g., Tu or Pa). The intuition behind the test is that if the combinations do

not add much information about the e�ect then they can be disregarded; conversely, if the

grouped e�ect, Tu or Pa, masks di�erences between the pairs, then the grouped e�ect should

be disregarded as misleading. For example, by comparing the example dependency, [Pa; Tt] to

ones that name the target that preceded Pa as well (e.g., [TuPa; Tt], [TvPa; Tt], etc), we may �nd

that [TuPa; Tt] adds little information over knowing [Pa; Tt], so the precursor that includes the

preceding target can be disregarded. Similar comparisons can be done for longer combinations

of in
uences as well.

The output of dependency detection is a list of dependencies found to be signi�cant in the
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execution traces and that describe the in
uences without redundancy. The interpretation of

this output depends entirely on what events were being monitored. Dependency detection was

designed to detect sources of plan failure in the Phoenix planner [11]. For that application,

the events of interest are failures and recovery actions, and it discovers dependencies between

particular failures, the recovery methods that repair them and the occurrence of other failures

downstream. We designed it to answer the question: \Does a failure depend on some action

or event that preceded it?" with the intent that we would use the information to identify bugs

in the planner. For our explorations with the Phoenix planner, we have collected almost 1000

execution traces (50-120 traces in each of nine di�erent experiment scenarios) in which we have

detected hundreds of dependencies with precursors of many lengths. These dependency sets

have been used in isolation to motivate debugging e�orts and in comparisons to determine the

sensitivity of particular dependencies to the planner's implementation and to the environment's

rate of change.

2.3 Snapshots of In
uences: Path Analysis

Historically, path analysis was a method for estimating the strengths of causal in
uence,

given a causal model and correlational data. It was up to the data analyst to propose a causal

model in the �rst place. Recently, researchers have developed algorithms to propose causal

models, given conditional information relationships in data, but these algorithms don't handle

estimation, relying instead on statistical packages (notably EQS or LISREL [1,13]) to estimate

strengths of causal in
uence. We have recently developed an algorithm that uses these strengths

to guide its search in the space of causal models; in other words, it infers causal models and

estimates their parameters at the same time. We have used our algorithm, called FBD, to

estimate the causal in
uence of aspects of the Phoenix environment, such as wind speed and

�re perimeter, on variables such as the time until the next plan failure.
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FBD is described in detail in [4]; we will just sketch it here. Before analysis begins, we assume

that our data are standardized to eliminate the e�ect of di�erences due to measurement scale.

Standardization transforms a distribution of data, such as the distribution of �re perimeters,

so its mean is zero and its standard deviation is one. Standardized variables are denoted

by uppercase letters and created by the transformation Xi = (xi � x)=s. Ordinary multiple

linear regression builds causal models that predict the value of a performance variable Y given

predictors X1; X2; : : :Xk. In standardized form, a regression model looks like this:

Ŷi = �X1
X1i

+ �X2
X2i

+ � � �+ �X
k
Xki

If one were to draw a picture of this model, it would have each predictor variable pointing

directly to the performance variable and correlated with every other predictor variable.

� coe�cients have a causal interpretation. This is possible because they are partial: each

represents the in
uence of one predictor variable on Y when the in
uences of all the other

predictor variables are held constant. As such, these coe�cients o�er a statistical version of the

experimental control that we need to assert cause. To show that X1, say, causes Y we have to

show that its correlation with Y is not due to some shared relationship with another variable,

say, X2. Most causal induction algorithms do this by showing that the relationship between X1

and Y does not disappear when X2 is held constant. Partial correlation coe�cients are used

for the purpose, but partial regression coe�cients|� coe�cients|will serve as well. Thus, if

X1 and Y have a high correlation but �X1
is close to zero, we suspect that X1's in
uence on

Y is actually due to another variable. Moreover, because � coe�cients are in the same units,

if �X1
= k�X3

we can say predictor X1 has k times the causal in
uence of X3.

Unfortunately, multiple regression models are just one \level" deep, which means that all

in
uences are modelled as exerting a direct in
uence on the dependent variable. The FBD

algorithm solves this problem as follows: it �nds good predictors of the performance variable Y
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and then, recursively, treats each predictor as a performance variable and �nds good predictors

for it. The trick is to decide which predictors to use at a particular level, and which to hold

back. FBD applies four tests to select a set of predictors at each level. First, it won't allow

a variable to be a predictor if doing so creates a cycle in the resulting causal model (e.g., A

causes B and B causes A). Second, it calculates the score

!i =
rY;Xi

� �Xi

rY;Xi

and throws out any predictor for which !i < T!, a threshold. !i represents the proportion of

Xi's total in
uence on Y , measured by the correlation rY;Xi
that is not due to its direct in
uence

on Y , measured by �Xi
. Said di�erently, !i represents the proportion of Xi's in
uence on Y

that is due to its relationships with other predictors. It should be as low as possible. The third

test is that �Xi
> T�, because a predictor can pass the second test but still have very little

direct in
uence on Y . The fourth test is more complex and is stated here without elaboration:

FBD will select from the predictors that passed the �rst tests those that form the largest set

of predictors such that none is conditionally independent of the performance variable given the

others (see [4] for explanation).

At every stage of the development of a model, the candidate predictors for a performance

variable are all those but the original performance variable and the current one, but the candi-

dates are quickly whittled down to a smaller set, typically less than �ve or six. Each of these

predictors then becomes a performance variable and the process repeats until we run out of

variables that need to be predicted.

FBD has been thoroughly tested and its performance compared with Pearl and Verma's

IC algorithm [15]. As expected, the algorithm performed well using measures such as R2

and di�erences in estimated correlation. Additionally, it compared favorably using conditional

independence measures.
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3 An Example with Phoenix

The Phoenix �reboss planner coordinates the e�orts of other agents to contain forest �res

within a simulation of �res in Yellowstone National Park [6]. Within the simulation, �res burn

somewhat unpredictably, and the weather can be controlled during experimentation to change

at variable intervals and by variable amounts. The �reboss is forced to deal with challenging

conditions: limited resources and a changing environment. As a consequence, the �reboss's

plans often fail.

Failure due to environment may be unavoidable; failure due to poor decisions on the part of

the planner is unacceptable. In this example, we wish to combine dependency detection with

path analysis to identify factors relevant to a major decision the planner must make: which of

several possible skeletal plans to use to �ght a particular �re.

First, we collected 102 execution traces of the Phoenix �reboss planner in a scenario in

which three �res were started at intervals of about 12 hours and the wind speed was allowed

to vary by �3 kph and the wind direction by �15 degrees every 30 minutes. (Wind speed and

wind direction strongly in
uence the spread of the �re.)

The execution traces included failures and the recovery methods applied to repair them. For

example, the following is a fragment of a trace from the set: Fcfp ! Rrm ! Fner ! Rspa !

Fip ! Raab. FX denotes the occurrence of a plan failure of type X ; RY denotes the successful

use of a recovery method of type Y . The data includes 10 types of plan failure and 8 types of

recovery methods. It is impossible to tell much from just this fragment; for example, Fner may

depend on Rrm but we have only one example of it. We analyzed the traces with dependency

detection and identi�ed 23 dependencies: 3 with precursors of FR, 7 with precursors of F , and

13 with precursors of R. The target events were failures.

At the conclusion of the DD phase, the experimenter must select a dependency for further
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modeling with PA. The output of DD is a set of dependencies; the starting point for PA should

be a single dependency that demarcates an interval. Many criteria can be used to select a

dependency for attention. We picked a dependency that was highly signi�cant, was based on a

fair amount of data (no cell in the contingency table was less than 5), and included as a target

event a failure with costly recovery. The dependency [Rrm; Fner] ranked best on these criteria.

Its contingency table is:

Fner Fner
Rrm 18 62

Rrm 20 314

A G-test on this table yields G = 23:7; p < :0001, which is highly signi�cant.

Now, we wish to know why Rrm seems to cause Fner . Rrm is an expensive replanning method

that results in recalculation of the entire plan to �ght a �re. The Fner failure results when not

enough resources are available to complete the plan that was selected. We used dependency

detection to identify this relationship; we now apply path analysis to explore the relationship

in more detail.

What we need from path analysis is a model of the factors that in
uence the occurrence

of the Fner failure. Once we understand these factors, we can redesign the decision procedure

about which plan to use during replanning. Based on some knowledge of how the environment

in
uences �re spread and how other plans in
uence available resources, we identi�ed a candidate

set of variables to be collected during another experiment and considered as part of a path

model. It is unrealistic to monitor everything in a planner and environment, and so collecting

additional data requires some knowledge on the part of the experimenter as to which factors

are likely to be salient. Those in
uences are collected at the time of replanning and are:

� wind speed,

� �re size,
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� number of active bulldozers (working on other �res or waiting for assignment),

� number of �res being fought,

� distance from center of �re to base,

� wind speed changes over last two hours,

� wind direction changes over last two hours.

Because the dependent factor for PA should be a continuous variable, we replaced the event

Fner with the variable Interval, a measure of the time between the start of the replan and

the conclusion of the new plan (either by successful completion or by occurrence of a failure).

We seek to maximize the delay between plan start and plan failure because the longer the plan

executes, the more likely it is to have passed the critical point of producing a Fner failure (which

occurs, if at all, relatively early in a �re�ghting plan).

We ran 60 trials of the same scenario in which we collected the above information. We used

path analysis to generate the model shown in Figure 1. The model accurately identi�es change

in wind speed and wind direction as independent variables, and captures several expected

relationships: as variability in wind direction increases, the size of the �re grows; a greater

number of �res causes replanning to happen sooner, reducing Interval. The strongest factor

a�ecting Interval is Fires, and then Wind Speed and Fire Size. The greater the number of �res,

the shorter Interval is likely to be, and thus the more likely Fner is to occur.

Using the model we can then approach the task of improving Rrm. One bene�t of the model

is that it helps us distinguish between many possible in
uences on a variable and concentrate

on the ones that have the strongest in
uence in terms of individual contribution and predictive

power. The replanning method can make a better informed decision by �rst considering the

number of �res, then �re size and wind speed. At present, it considers only the number of

bulldozers available and the wind speed. Indirect in
uences, such as change in wind direction,

are of secondary interest. The particular plan selected by Rrm, of which there are several
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Interval

Fire SizeWind Direction Change

Bulldozers

Fires Wind Speed

Fire Distance
Wind Speed Change

0.42

-0.36

-0.70

-0.16

-0.17

-0.25

-0.05

0.11

-0.28

-0.13

-0.14

-0.15

0.13

Figure 1: Path analysis model of factors in
uencing Interval

possible, will perform better if it accounts for the more direct in
uences. The information

provided by the model can help us build improved plans as well.

The path analysis model can thus provide detailed solutions to \questions" posed by depen-

dency detection. The reverse is also true. One di�cult area for path analysis modeling is the

general problem of distinguishing cause from e�ect based on predictive criteria. As mentioned,

the model built by PA is not perfect; for example, if number of �res is a good predictor of the

number of bulldozers, then the reverse is likely to hold as well and, in fact, does hold in our

model.

To handle this di�culty, we might allow the user to specify variables as independent. This

simple approach has limitations. In non-experimental studies, in which variables are not ma-

nipulated explicitly, it is not always apparent whether a variable is independent. A potentially

better approach is to use dependency detection to �nd the proper causal direction between two

variables. In our model, for example, the relationship Bulldozers ! Fires is plausible, given

the data, but we believe that the causality could be reversed. We can explore this question

by associating the continuous variable Bulldozers with the discrete event BulldozerDeath and

the variable Fires with the event FireSet. If a dependency is detected from FireSet to Bulldoz-

erDeath, we take this as evidence that the causal in
uence is from Fires to Bulldozers in the
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path analysis model as well. Not all relationships can be examined in this way, but there are

many natural candidates.

4 Conclusion

The results of combining DD and PA are a dependency and a path model of the in
uences

related to that dependency. The next step is interpretation, which requires domain knowledge.

We use the path model and the dependency to identify factors that produce early plan failure,

and we use domain knowledge to prune out implausible candidates and to determine how those

factors might be considered by the planner during replanning.

The model may uncover relationships that are expected but needed to be con�rmed, unex-

pected but plausible, or implausible and likely due to sampling bias. For example, we expected

that Wind Speed in
uenced Interval but not to what degree; we did not expect Bulldozers to

indirectly in
uence Interval but upon re
ection and some checking, we can construct a domain

explanation of why; and we experimentally varied the Fires and know it is not possible that

the number of bulldozers can have a strong negative e�ect on it2.

Together these results of DD and PA answer the question of how a previous event (a recovery

action) and environment factors (such as wind speed and number of �res) in
uence how and

when a particular failure occurs. For now, by combining DD and PA, we can answer questions

about what events and in
uences cause subsequent events, as well as how short horizon factors

in
uence performance at the target event. For the future, we are designing methods to answer

other questions about planner behavior and to interpret the results of those methods.

2We collect data only when Rrm occurs. As bulldozers are destroyed by �re, replanning increases. As more

�res are set, replanning increases as well. Each instance of replanning makes the occurrence of Rrm more

probable; thus, our data are biased towards situations with a high correlation between the number of bulldozers

and the number of �res.
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