
Monitoring Progress with

Dynamic Programming Envelopes

Robert St. Amant, Yoshitaka Kuwata�, Paul R. Cohen

Computer Science Dept., LGRC

University of Massachusetts

Amherst, MA 01003-4610

stamant@cs.umass.edu, kuwata@rd.nttdata.jp, cohen@cs.umass.edu

Abstract

Envelopes are a form of decision rule for monitoring plan execution. We describe one type,

the DP envelope, that draws its decisions from a look-up table computed o�-line by dynamic

programming. Based on an abstract model of agent progress, DP envelopes let a developer

approach execution monitoring as a problem independent of issues in agent design. We discuss

the application of DP envelopes to a small transportation planning simulation, and discuss the

issues that arise in an empirical analysis of the results.

1 Introduction

An intelligent agent builds plans to achieve its goals. In a complex or uncertain environment, the

agent must alter these plans to meet unforeseen circumstances. Adjusting plans to respond to

environmental change is an issue addressed by research in reactive planning. There is currently no

widely accepted theory of how to generate reactive plans. One approach is suggested by [Beetz92]:

\: : :Most (reactive) plans will be made up of large canned segments retrieved from a library,

pasted together, and debugged." In some circumstances, however, one can apply a more principled

approach. We have developed a technique for building decision rules, called envelopes, that monitor

plan execution [Hart90, Cohen92, Hansen92]. In this paper we discuss the role of envelopes in

reactive planning, the advantages and disadvantages of their application, and conclusions we have

drawn from experimental evaluation.

An envelope monitors a task to determine if and when steps should be taken to improve progress

in the task. When we monitor a time-constrained plan, we have the option of waiting until a deadline

has been reached, and checking at that point whether a goal has been met; however, we gain a clear

advantage by detecting problems earlier. In their original formulation envelopes provided advance

warning of plan failure in the form of a simple continue/abort decision. If we extend the range of

the envelope's decision choices, we have a form of reactive plan.

One kind of envelope, called a DP envelope, treats execution monitoring as a sequential decision

problem [Hansen92]. Dynamic programming (DP) is used to approximate an optimal solution to

the problem of when to modify a plan or warn of impending plan failure. Hansen and Cohen have

also applied DP to the combined problem of when to monitor as well as modify a plan. In essence,

we build a model of the agent and its progress in the environment. Based on the interaction between

To appear in Proceedings of the Seventh International IEEE Conference on Tools with Arti�cial Intelligence.

1



environmental costs and the agent's actions, we can calculate o�-line the best action to take in any

situation. This set of actions is embodied in the envelope.

The general envelope concept is a useful tool for implementors of complex planning systems

in the following sense. An envelope provides important information to both planner and human

designers interested in measuring planner performance. Envelope design and operation can be

independent of planner architecture; changing the planner does not necessarily entail changing the

envelopes that monitor its behavior. Finally, envelopes can be added to a system and tuned with a

relatively small design e�ort. Thus envelopes can o�er an attractive alternative to the development

of a hand-built set of monitoring rules.

Much progress has been made in theoretical areas relevant to DP envelopes [Barto93]. Our

work aims toward an empirical evaluation of the bene�ts and limitations of DP envelopes, to some

extent in contrast with a heuristic approach. We attempted not only to design envelopes for di�erent

environments, but also to explain and if possible predict their behavior under di�erent conditions.

In short, our goal was to develop a detailed understanding of the DP envelope as an approach to

reactive planning. We posed three questions:

� How easily can we construct envelopes? We assess the design and implementation e�ort in

constructing envelopes. There are built-in limitations associated with almost all dynamic

programming approaches. Through a series of experiments we explore techniques by which

these limitations may practically be overcome.

� Can we explain the behavior of envelopes? We must be able to understand envelope behavior,

or we run the risk of producing incorrect rules and not realizing that they are 
awed. More

importantly, from a practical standpoint, we must be able to debug envelopes, which is not

possible without expectations and explanations. In the same series of experiments we make

predictions about envelope behavior and test them against our �ndings.

� How well do envelopes perform as reactive plans? It is often di�cult to de�ne optimal

performance, or even acceptable performance. We describe a method by which we can measure

the e�ectiveness of envelopes.

2 Example Domain

Drawing on a background of work in transportation planning [Kuwata92], we designed a simple

model of the shipment of cargo between sea ports. The task is to transfer a �xed amount of cargo

from a single source to a single destination. All cargo arrives at the source port on a particular

date, and must be delivered within a speci�c window of time, the endpoint being the deadline. A

limited number of ships can be allocated, each carrying one piece of cargo at a time. There are

no dock/ship or ship/cargo incompatibilities. The task for the envelope is to determine the best

number of ships to use at any time during execution of the task.

Though this model may seem overly simplistic, uncertainty in the environment makes the task

challenging. Ships travel at varying rates; cargo is loaded at varying rates. Simulation activities

incur daily costs, accumulating costs, and one-time costs. Following a predetermined ship allocation

scheme can lead to poor performance. The solution is to make decisions based on a measurement

of progress in the task.

We have built a simulation for this model, based on a more complex simulator called TransSim.

Our simulation represents individual ships and pieces of cargo moving between two ports. Costs

are recorded as follows: ship allocation cost (per ship), cargo storage cost (cumulative, per unit),

lateness penalty (�nish date vs deadline), earliness penalty (�nish date vs deadline), daily shipping

2



P
r
o
g
r
e
s
s
 
R
e
m
a
i
n
i
n
g

0

10

0 10 20 30 40 50 60 70 80 90 100
Time

Figure 1: A slack-time envelope

cost (cumulative, per ship in transit), and dock cost (cumulative, per dock in use). All ship and

cargo activities proceed autonomously; the key decision required from the envelope is whether to

allocate more or fewer ships on each simulated day.

3 Envelope Construction

Envelopes were originally developed in the Phoenix planning testbed as a means of monitoring

progress in a task [Cohen89, Hart90]. Imagine a plan that requires an agent to make 10 units of

progress (distance toward a goal, for example) in 100 time units. Figure 1 diagrams the progress of

the agent toward its goal. The agent begins with 10 units of progress remaining, and must reach 0

before 100 time units elapse. The curved line represents the distance between the agent and its goal

at each point in time. The boundary of the shaded region is an envelope, speci�cally a slack-time

envelope, for this task [Cohen92]. When the agent crosses this boundary, the envelope violates, or

signals a failure, which typically requires some modi�cation to a plan [Howe93, Howe95]. The slack-

time aspect of the envelope refers to an initial period of time during which no failure predictions

are made. The agent is thus allowed to fall slightly behind at �rst, under the assumption that it

can make up for lost time later.

The slack-time envelope is based on the determination of a single parameter, the amount of

slack, or equivalently the slope of the envelope boundary. The di�cult part about generating

slack-time envelopes is determining this value. The parameters contributing to this determination

are complex, and vary according to the task under consideration. We present, without further

explanation, one of the parameters necessary to measure progress in a Phoenix envelope:

DigTime =
Perim+ SpreadRate(Slack+ BDTravel)

BD

CutRate
RFactor

� SpreadRate(Ineff + 1)

The point is that calculation is easy|de�nition of the parameter (and the debugging required

for it) is complex. Modi�cation of the plan requires corresponding modi�cations of the envelope

parameters. As the complexity of envelope parameters increases, it becomes di�cult to predict the

e�ects of small parameter variations on the performance of the envelope. A more serious di�culty

is that we cannot generalize about the applicability of such an envelope to other environments.

Because hand-built envelopes are complex, hard to debug, and of unknown generality, we developed

an automatic procedure for generating envelopes.

3



3.1 Dynamic Programming Envelopes

Dynamic programming is a mathematical technique for solving problems that decompose into

related subproblems. Simple applications include matrix chain multiplication and longest common

subsequence search, i.e., problems that contain identical recurring subproblems. Monitoring can be

treated as a sequential decision problem[Hansen92], in that an optimal monitoring policy must take

into account the future rami�cations of each of its decisions. Dynamic programming is well-suited

to such problems.

The basic purpose of a slack-time envelope and a dynamic programming (DP) envelope is the

same: to decide whether to take action to improve progress in a task. The di�erence is that slack-

time envelope decisions are based on an arbitrarily complex combination of relevant variables; DP

envelope decisions are based on an explicit model. There are three aspects of interest in the DP

envelope: the underlying model, how a policy of action is calculated from the model, and how the

policy is applied in an environment.

We represent the state of the system with just three variables: cargo remaining (C), ships in

use (S), and time remaining until deadline (T ): State = hC; S; Ti. Progress is measured by the

amount of cargo delivered. Transition from one state to another thus depends on ship arrivals at

the destination port. Since individual ships are not modeled explicitly, the ship arrival rate must

be approximated. We calculate the transition probabilities by assuming that ship arrivals follow a

binomial distribution, with p being the inverse of round trip travel time, and N = S, the number

of ships. For example, if the travel time is 10 days and 2 ships are in use, then the mean number

of ships to arrive on any given day, Np, is 0.2, with variance, Np(1� p) , of 0.16. Though a very

rough approximation, this turns out to behave well in practice. We can describe our model then

as follows:

Reachable(hC; S; T i) = nil if C = 0

hC; S; T � 1i S = 0 : : :MaxS

hC � c; S; T � 1i S = 0 : : :MaxS

When there is no cargo remaining, there are no states reachable from the current state. With

S ships and C units of cargo remaining, the system can move to other states in which the number

of ships may change, but no cargo is delivered, or the number of ships may change and c units of

cargo are delivered. Legal actions allow the number of ships to range from zero to MaxS, a �xed

parameter.

Legal(hC; S; T i) = 0 : : :MaxS

The system is charged a cost for each action it takes, including the 'null' action. In the case in

which the number of ships remains unchanged, the cost includes a storage cost for cargo, a shipping

and docking cost for active ships, and late or early costs determined by task completion. When the

number of ships changes from S to R, an additional cost is assessed for allocation or deallocation

of those ships.

Cost(hC; S; T i; S) = estimated incremental cargo cost +

estimated shipping cost

Cost(hC; S; T i; R) = estimated incremental cargo cost +

estimated shipping cost +

(de)allocation cost for R� S ships

Finally progress, in terms of the probability of moving from one state to the next, is de�ned as

a binomial function, as described earlier.

4



C
a
r
g
o

0

10

0 10 20 30 40 50 60 70 80 90 100 110 120
Days

Figure 2: Cross-section of a DP envelope for S = 5 ships

Pr(hC; S; T i; hC� c; S; T � 1i) = BinomialPDF (p; S):

Details concerning boundary conditions and cost parameters have been omitted for the sake of

presentation. The main points in the model are that on each day cargo is reduced with a particular

probability, and the costs incurred depend on the amount of cargo remaining and the number of

ships in use.

Given a model, the standard DP approach entails calculating a policy based on the model. For

each possible state and action, we compute the expected value of taking that action in that state

and store the result in a lookup table. Calculation proceeds from the deadline backward to the

start time. At any point during the calculation, all future actions from the current point to the

deadline have been calculated. The calculation at each point thus can account for all possible future

occurrences, and evaluate decisions based on this knowledge. We can use the completed lookup

table to implement a policy under which we take in each state the action with the lowest expected

cost.

The lookup table contains as many dimensions as the size of the state representation. Our

model, with its three state variables, takes the form of a three-dimensional vector space. For any

values of cargo remaining, ships in service, and time remaining, the lookup table provides a value

containing the proper number of ships to allocate or deallocate.

We can visualize the three-dimensional structure of a DP envelope through two-dimensional

slices. In this form a DP envelope shows a resemblance to the abstract slack-time envelope presented

earlier. Figure 2 shows a projection of the envelope for a small shipping scenario. The projection is

over cargo (16 units) and time (120 days), with the ship allocation level constant at 5. The plotted

points indicate those situations in which the recommended action is to change allocation from 5

ships to 6. The upper boundary of the points is where allocation should change from 5 to 7. A DP

envelope can be thought of as a stacked set of such boundaries, comparable to slack-time envelope

boundaries, which mark the points at which di�erent actions should be taken.

3.2 Discussion

DP envelopes have a number of advantages over slack-time envelopes. Decisions are no longer

based on an arbitrarily complex combination of parameters, but rather on a �xed model. Adapting

an envelope to a speci�c environment is much simpli�ed. Rather than adjusting and testing a

5



possibly large number of parameters, we simply change the initial state variables and recalculate

the envelope. In addition the action recommended for each state is optimal.

If we view the design of a DP envelope from an abstract level, we �nd a strong similarity to

building a heuristic reactive plan. We begin with a domain model, design a knowledge base/DP

model, and iteratively re�ne it until evaluation shows its performance to be acceptable. One

di�culty we encountered can be attributed to this similarity between heuristic rule base and model

development. As we incrementally develop a model, it becomes di�cult to ensure that we introduce

no errors in the tuning process. For example, we found early in development that the envelopes

behaved plausibly under some conditions, but they were unreasonably sensitive to changes in the

round trip travel time between the two ports. We had di�culty explaining the behavior: we

weren't sure whether the behavior arose from the assumptions of the model or from an error in our

implementation. The behavior turned out to be due to an error in the calculation of the transition

probabilities. Though development of DP envelopes is more principled than a heuristic approach,

it is still a nontrivial procedure.

We encountered a further di�culty that is characteristic of dynamic programming applications.

Dynamic programming entails a relatively expensive form of search. If our state representation

requires s variables, each of which takes on v values, then the time complexity of a DP algorithm

may be as high as vs. As we improve our model, adding detail and precision, the cost of calculating

the policy grows steeply. This aspect of DP has come to be known as "the curse of dimensionality."

In our model this meant that we needed to abstract particular elements of the environment.

It is impractical, for example, to model the travel rates of independent ships, when the number

of ships may run into the hundreds or even thousands. In calculating accumulating costs, such as

cargo storage costs, we needed to estimate costs to be incurred and amortize them over the course

of the task. The bene�ts of adding details to a model must be weighed against the cost of increasing

the size of the model to an impractical level.

Practically speaking, calculation time for a DP envelope far exceeds application time. In our

implementation, simulating a single TransSim trial takes on the order of seconds, while the time to

calculate an envelope beforehand takes on the order of �fteen or twenty minutes. On the other hand,

once an envelope is calculated, it can be used and re-used in similar environments essentially for

free. When there is su�cient time to pre-calculate a DP envelope, and when the agent/environment

can be modeled succinctly, then we can use DP envelopes.

4 Measuring Envelope Performance

Deciding on an objective performance measure is a di�cult problem. A DP envelope uses an optimal

policy; however, the policy is based on a model that can only approximate the actual environment.

During informal testing we found that the DP envelope matched or exceeded the performance of

heuristic rules designed for speci�c scenarios. It is always possible, though, to devote further e�ort

toward improving a heuristic rule base so that the reverse would hold. Here we present a more

robust way to demonstrate the e�ectiveness of DP envelopes, relative to heuristic rules.

We begin by drawing a parallel between a heuristic knowledge base and a DP envelope. An

envelope contains a policy decision for every state. Such a policy is e�ectively a (large) rule base,

for which each possible state corresponds to the left hand side of a rule, with the policy decision

the right hand side. Each envelope rule is extremely simple:

IF cargo remaining = C

AND ships in use = S

AND time remaining = T

6



THEN Allocate/Deallocate N ships.

A DP envelope is then a rule base consisting of a di�erent rule for each di�erent set of conditions.

A rule base can be constructed using techniques other than dynamic programming. We can easily

map a set of higher-level heuristic rules into this representation, for example. Because the rule base

can then be used in the same way as a DP envelope, we will call the result of any such mapping

an envelope as well.

Often a small set of heuristic rules can provide good performance for a small range of parameter

values. Experience has shown us, however, that building a robust set of rules is a di�cult undertak-

ing. A DP envelope ordinarily outperforms heuristic rules and shows greater robustness. We would

like to show that a DP envelope calculated for a particular environment provides the best decisions

for that environment. (For convenience we call the DP envelope for a particular environment the

true envelope for that environment.) While a DP envelope should converge to the optimal strategy,

the abstractions required in modeling the environment may cause this not to be the case. We wish

to show empirically that the true envelope has the best performance by comparing its performance

against that of other envelopes (DP or otherwise) in the environment. For many reasons a direct

comparison between the DP and heuristic approach is impractical, but we can o�er evidence with

the following experiment.

In this experiment we held all environmental parameters constant except the one-way travel

time between ports. We let travel time range from 6, 8, 10, 12, 14, 16, to 18 days. We thus had 7

di�erent environments. For each of these environments we generated an envelope. We then tested

each envelope in all the di�erent environments, that is, in its own environment as well as all the

others.

The results for total cost are displayed in Figure 3. The marker in each portion of the �gure

represents the performance of the true envelope in its own environment. The dotted line marks

the performance of other envelopes in the same environment. We see that each envelope performs

best, or nearly best, in its own environment.

This shows that the true envelope is about as good as or better than other envelopes, and

that the magnitude of di�erence in performance depends on the particular environment of the true

envelope. We can take the analysis further. In a single environment we see a small di�erence

between the performance of the true envelope and the performance of other envelopes designed for

similar environments. For example, in the �rst environment, with travel time of 6, the envelope

that most closely matches the true envelope in performance is the second envelope, built for a travel

time of 8. We notice that the greater the di�erence in the environmental parameters, the greater

the di�erence in performance. We can account for this relationship by a comparison of the internal

structure of envelopes.

We can measure structure similarity between envelopes very simply, by comparing the policy for

each state in an envelope against that of another envelope (or equivalently, the 'rules' of one against

the 'rules' of another) and summarize the di�erences. If under the same conditions envelope E1

recommends a speci�c action while E2 recommends a di�erent action, we count this as a di�erent

rule. Suppose we choose a measure such as the sum of squared di�erences between two envelope

policies, formalized as

Structural Di�erence(E1; E2) � SSD(E1; E2) =
X
c;s;t

(P1(c; s; t)� P2(c; s; t))
2

where E1 and E2 are envelopes and Pi denotes the policy of envelope Ei.

7



To
ta

l C
os

t

100K

200K

Environment

Envelope

1 2 3 4 5 6 7

1234567 1234567 1234567 1234567 1234567 1234567 1234567

Figure 3: Results of the cross environment experiment: The performance of eight envelopes in eight

di�erent environments was measured. The best (lowest) performance in a speci�c environment is

most often associated with the envelope designed speci�cally for that environment.

Besides measuring the di�erence between the structure of two envelopes, we can also measure

the di�erence between their performances. For any environment Vi we can calculate a 'best' per-

formance by its true envelope Ei. The performance of any other envelope Ej in environment Vi
can be measured in terms of the degradation from the best performance. Thus for any pair of

environments, we can calculate two performance degradation values. We call these values �.

� :

(
�(E1; E2jV1) = jCost(E2; V1)� Cost(E1; V1)j

�(E1; E2jV2) = jCost(E1; V2)� Cost(E2; V2)j

Given these two measures, we can analyze the relationship between the structural similarity of

two envelopes and the similarity of their performance. In Figure 4 we see a graph of structural

di�erence versus performance di�erence for a pairwise comparison of the envelopes in the experiment

above. Along the x-axis we see a log transform of the structural di�erence between every pair of

envelopes E1 and E2. Along the y-axis, for each pair of envelopes we see the two symmetrical

values.

We interpret this graph as follows: For a given environment V and an envelope E calculated

for V , the greater the structural di�erence between E and another envelope F , the poorer the

performance of F in environment V . In simpler terms, if we use an envelope in an inappropriate

environment it is possible that it will perform much worse than the appropriate envelope. We

noticed earlier that the performance di�erence between two envelopes depends to some extent on

the environment in which they are used. Thus two structurally di�erent envelopes may perform

similarly in a speci�c environment; however, in general greater structural di�erences correspond to

greater performance di�erences.

To summarize, we have shown evidence that a DP envelope, in the environment for which it was

8



∆

0

50K

100K

150K

8 9 10 11 12

Log(StructuralDifference)

Figure 4: Performance di�erence versus structural di�erence: As the di�erence in policy between

two envelopes increases, the di�erence in performance in a given environment increases as well.

designed, performs as well as or better than other envelopes in that environment. The di�erence

in performance is proportional to the internal di�erences between the envelopes. This internal

di�erence can be measured by the di�erences in policy between the envelopes.

Now we return to the equivalence we described earlier between the construction of an envelope

policy and a knowledge base. Suppose we build a heuristic knowledge base for a particular envi-

ronment. We build a DP model for this environment as well. We test the performance of both

approaches, and redesign until we are satis�ed with the performance. Now we change the environ-

ment. To adjust the DP envelope we simply recompile it. Adjusting the heuristic knowledge base

may be much more expensive.

We also note that a single rule may subsume a great number of policy decisions in the envelope.

However, while the e�ort required to adjust the DP envelope is constant, we can make no guarantees

about the e�ort to change the knowledge base. It may be small, but it may also be very large.

Using an envelope in a situation where costs may change can be attractive for this reason.

5 Related Work

This work has been most strongly in
uenced by the results of Hansen and Cohen [Hansen92],

who showed that the envelope problem was amenable to dynamic programming. In further work

[Hansen93], they showed that envelopes can be learned using reinforcement learning.

Reactive planning has been considered in many other contexts as well. Dean and Wellman

[Dean91] outline a relationship between reactive planning and control theory. Dynamic program-

ming is described in the context of stochastic control of dynamical systems. Dean has also recently

outlined a scheme for using a related notion of envelopes for planning in uncertain environments

[Dean93].

Barto and others [Barto93] address the area of learning reactive plans automatically. A machine

9



Heuristic Reactive Plan DP Envelope

Building rules From experience By modeling

Debugging Trial and error Parameter adjustment

Changing behavior Redesign rules Change parameters or redesign model

Accuracy Depends on rules Guaranteed within the model

Scalability Depends on rules Limited

Calculation Execution time Pre-compiled

Parameters Input by hand Input by hand (or learned)

Explanation of Rules Easy Hard

Table 1: Comparing heuristic reactive plans and DP envelopes

learning approach can solve many of the problems in constructing envelopes. It is possible, for

example, to explore the search space selectively, which allows us to increase the complexity of the

model. We can also learn a policy without an explicit model [Barto93, Watkins92]. These and

other variations require that we change the basic approach and address other issues.

The DP envelopes approach to reactive planning can also be compared to Schopper's universal

plans. Tradeo�s between deliberation at runtime and universal plans have been discussed elsewhere,

in particular in [Ginsberg89a, Chapman89, Ginsberg89b]. A DP envelope is not a universal plan,

however, in that envelopes may not be solely responsible for the decisions they make, but may act

in a larger context.

6 Conclusion

We return now to our three questions. First, the initial design of an envelope is no more di�cult

than the design of a heuristic reactive plan. Modi�cation of an existing design can be much easier.

Experimentation showed us that the computational expense of the dynamic programming approach

can be alleviated, with some possible degradation in performance. More importantly, the cost of

recalculating an envelope is directly and easily measurable. The cost of re�ning a good heuristic

plan, on the other hand, remains to a large extent hidden, even unmeasured, in the modi�cation

of the knowledge base.

Second, envelopes behave predictably. In the experiments we were able to both predict and

explain changes in envelope behavior due to changes in envelope structure and environment pa-

rameter values. This was a concern because of the relative di�culty in interpreting a DP model in

comparison to heuristic rules.

Finally, envelopes perform well as reactive plans. In examining their performance we found a

way to measure the cost of applying an incorrect reactive plan in an environment. This kind of

evaluation is especially useful for environments with probabilistic parameters or parameters that

change value frequently. Producing a robust reactive plan by hand, using heuristic rules perhaps,

can be di�cult. An alternative, producing a less robust heuristic reactive plan and modifying the

knowledge base whenever an evaluation measure changes, is both time consuming and di�cult. If

we rely on a DP envelope, on the other hand, we can adapt to new environment parameters simply

by recalculating the envelope. While we cannot claim in general that one approach is better than

the other, we can argue that in many cases it is much simpler to adjust a DP model than to modify

a knowledge base. In the table below we summarize our comparison.

10



Acknowledgments

This work was supported by ARPA/Rome Laboratory Contract F30602-93-C-0100, and by NTT

Data Communication Systems Corp. The U.S. government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any copyright notation hereon.

References

[Barto89] Barto A. G., Sutton R.S. and Watkins C.J.C.H, 1989. Learning and Sequential

Decision Making, Dept. of Computer Science Technical Report 89-95, University of

Massachusetts, Amherst.

[Barto93] Barto, A.G., Bradtke, S.J., Singh, S.P., 1993. Learning to Act using Real- Time Dy-

namic Programming. Dept. of Computer Science Technical Report 93-02. University

of Massachusetts, Amherst.

[Beetz92] Beetz, and McDermott, D., 1992. Declarative Goals in Reactive Plans. In Arti�cial

Intelligence Planning Systems. Morgan Kaufmann. 3-12.

[Bertsekas87] Bertsekas, 1987. Dynamic Programming: Deterministic and Stochastic Models.

Prentice-Hall.

[Boddy91] Boddy, M., 1991. Any Time Problem Solving Using Dynamic Programming. In

Proceedings AAAI-91. AAAI.

[Chapman89] Chapman D., 1989. Penguins Can Make Cake. AI Magazine, Winter 1989, 45-50.

[Cohen89] Cohen, P.R.; Greenberg, M.L.; Hart, D.M.; and Howe, A.E., 1989. Trial by Fire:

Understanding the Design Requirements for Agents in Complex Environments. AI

Magazine, 10(3):32-48.

[Cohen92] Cohen, P.R.; St. Amant, R. and Hart, D.M., 1992. Early warnings of plan fail-

ure, false positives and envelopes: Experiments and a model. In Proceedings of the

Fourteenth Annual Conference of the Cognitive Science Society. Lawrence Erlbaum

Associates. 773-778.

[Cormen90] Cormen, Leiserson, and Rivest, 1990. Introduction to Algorithms. Morgan Kauf-

mann.

[Dean91] Dean, T.L., and Wellman, M.P., 1991. Planning and Control. Morgan Kaufmann.

[Dean93] Dean, T.L., Kaelbling, L.P., Kirman, J., and Nicholson, A., 1993. Planning With

Deadlines in Stochastic Domains. In Proceedings AAAI-93. AAAI.

[Ginsberg89a] Ginsberg M.L., 1989a. Universal Planning: An (Almost) Universal Bad Idea. AI

Magazine, Winter 1989. 40-44.

[Ginsberg89b] Ginsberg M.L., 1989b. Ginsberg Replies to Chapman and Schoppers Universal

Planning Research: A Good or Bad Idea ? AI Magazine, Winter 1989. 61-62.

[Hansen92] Hansen, E.A. and Cohen, P.R., 1992. Learning a decision rule for monitoring tasks

with deadlines. Dept. of Computer Science Technical Report 92-80, University of

Massachusetts, Amherst.

11



[Hansen93] Hansen, E. and Cohen, P.R., 1993. Learning Monitoring Strategies to Compensate

for Model Uncertainty.Working Notes of the AAAI-93 Workshop on Learning Action

Models. AAAI.

[Hart90] Hart, D.M.; Anderson, S.D.; and Cohen, P.R., 1990. Envelopes as a Vehicle for

Improving the E�ciency of Plan Execution. In Proceedings of the Workshop on In-

novative Approaches to Planning, Scheduling, and Control. K. Sycara (Ed.). Morgan

Kaufmann. 71-76.

[Howe93] Howe, Adele E., 1993. Accepting the Inevitable: The Role of Failure Recovery

in the Design of Planners. PhD thesis, Dept. of Computer Science, University of

Massachusetts, Amherst.

[Howe95] Howe, Adele E. and Cohen, P.R., 1995. Understanding Planner Behavior. AI Jour-

nal. To appear.

[Kuwata92] Kuwata, Y., Hart, D.M. and Cohen, P.R., 1992. Steering the Execution of a

Large-Scale Planning and Scheduling System. Working Notes of the AAAI-92 SIG-

MAN Workshop on Knowledge-Based Production Planning, Scheduling, and Con-

trol. AAAI. 62-72.

[Watkins92] Watkins, C.J.C.H. and Dayan, P., 1992. Q-learning. Machine Learning 8, 279-292.

12


