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Abstract

We present a methodology for learning complex dependencies in data based on streams of

categorical, time series data. The streams representation is applicable in a variety of situations:

a program's execution trace may be thought of as a stream. The various monitor readings of an

intensive care unit may be thought of as concurrent streams. Our learning methodology, called

dependency detection, examines a stream or multiple streams to characterize recurring structure

with a set of dependency rules. These dependency rules are useful not only as a description of

how the data is structured, but as a means for predicting future stream states from those of the

present. Further, we describe a set of tools for program analysis that use dependency detection.

To appear in Proceedings of the Seventh International IEEE Conference on Tools with Arti�cial Intelligence.



1 Introduction

Many dynamic situations can be represented as streams or time series of tokens. In particular,

the behavior of a computer program over time might be encoded as an execution trace: a single

stream containing the program's current state. Similarly, an intensive care unit might be modelled

as many streams, each containing a particular life sign or monitor reading. Given a system that

can be represented by one or more such token streams, our aim is to learn rules that predict the

state of the system { the token values in all streams at a particular time { from the stream values

at earlier states. Such predictive rules can serve a variety of purposes, from providing insight into

program behavior to forming the basis of an automated intensive care monitor.

In this paper, we present a set of tools called dependency detection algorithms that address the

problem of predicting future states from prior ones. The �rst in the series of dependency detection

(DD) algorithms, is a technique for identifying situations that lead to failure in AI planning systems.

The procedure, termed failure recovery analysis (FRA), models a program as a single stream (the

execution trace), and uses a statistical test 1 to locate contributors to plan failure. [4] The bene�t

of using FRA as a debugging tool for planning systems is due largely to its generality. Basing its

diagnosis solely on observed patterns in execution traces allows the dependency detection algorithm

to operate with little domain knowledge and only a weak model of how the actual systemmay cause

its own failure.

Multi-stream Dependency Detection, or MSDD, extends dependency detection to characterize

structure across multiple, concurrent streams. [6] Like the DD component to FRA, MSDD uses

statistical testing 2 to identify patterns of stream values that predict patterns occurring in the

future. MSDD examines batches of time series data, searching in a focused manner for recurring

structure that it summarizes in the form of dependency rules. These dependency rules characterize

the regularity in the data they refer to and are general in the sense that stream values which play

no role in prediction are ignored. These rules can be used to make predictions in future data, as

well as describe the nature of the system which produces the data. We return to the discussion of

MSDD in section 3.1.

The latest development in the series of dependency detection algorithms is called IMSDD.

IMSDD extends MSDD to work in an incremental fashion. That is, IMSDD builds its set of multi-

stream dependency rules as the data is produced, without requiring o�-line batch processing time.

The result is not necessarily a faster or more accurate algorithm, but an algorithm that has the

capability to learn as data becomes available, making it viable as a concurrent, embedded learning

component in a much larger system.

The remainder of this paper is devoted to discussion of the multi-stream dependency detection

technique, its application, and the current state of its implementation as a research tool. After a

glossary of terms associated with dependency detection, we o�er a short description of MSDD and

an example application. Next, we consider IMSDD in detail, describing its search for dependencies

and its performance on that task. We follow with a discussion of the current integration of the

algorithms into CLIP/CLASP, [1] an environment for empirical studies, then conclude with a brief

summary of the value of dependency detection.

1A statistic that quanti�es statistical signi�cance from observed frequencies called the G Test was used.

2MSDD uses a simple contingency table statistic to determine signi�cance.
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2 De�nitions

Operating in the world of dependency detection requires a few de�nitions and representations to

keep the concepts clear. We will adopt the following terminology for the remainder of this paper.

� A stream is a source of categorical data values that change over time, such as a program's

execution trace. We denote a stream by its values over time, for example aabac.

� A token t is a datum in a stream. We assume the tokens in streams are from a relatively

small (discrete) alphabet, instead of real numbers. 3For example, a is the �rst token in the

stream aabac. The set of all possible tokens is our alphabet, which is of size k.

� A multitoken is a vector of all streams' values at a particular point in time. We represent a

multitoken as a list of tokens (t1t2 : : : tn) and denote the length of a multitoken by n. Suppose

we have streams adbc and caac. The second multitoken is (da).

� A rule is a pair of multitokens, one of which predicts the other. We denote a rule by precursor

! successor. For the purposes of this paper, all predictions are of lag 1. That is, the successor

occurs in the timestep directly following the precursor.

� A word is a rule presented as a single entity. We represent a word with the form ht1t2 : : : twi,

and denote the length of a word by nw .

� A wildcard is a token that indicates that a particular stream value is to be ignored. A wildcard

is denoted �.

3 Detecting Dependencies in Multiple Streams

Characterizing the structure present in multi-stream data can be thought of as a search problem.

Given a system that generates stream data and a space of possible rules to describe the dynamics of

the system, a dependency detection algorithm searches for rules which are supported in the stream

data. MSDD and IMSDD o�er two procedures for guiding this search.

3.1 The MSDD Approach

The MSDD algorithm takes a top-down approach to building a base of dependency rules. Starting

with the completely general rule (� � : : :�) ! (� � : : :�) as a root of a generalization hierarchy,

MSDD iteratively expands that hierarchy by instantiating a single wildcard of a leaf rule at a

time. Figure 1 shows an example MSDD generalization hierarchy. Each iteration of the search for

predictive rules extends the frontier of the tree a single level until a predetermined size limit has

been reached. At that point, MSDD concludes its training session.

MSDD accrues several bene�ts from this approach. Because it considers a large batch of data

simultaneously, any rule that MSDD proposes can be evaluated and either rejected or accepted

immediately. This allows MSDD to explore only fruitful paths in its search space, and results in

a succinct, powerful model for learning rules. In section 3.3, we will see why these bene�ts are

important and why an incremental approach lacks them.

3Continuous valued time-series data is appropriate to many domains and is discussed in [3, 2, 7].
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<* * C * D *><B * * * D *>

Figure 1: A simple MSDD generalization hierarchy.

3.2 MSDD as a Learning Component

The usefulness of the multi-stream representation was �rst tested in a simulated shipping network

called TransSim. TransSim is a system designed for the task of schedule maintenance in complex,

unpredictable environments. [5] The system comprises two main components: a pathology demon

and a schedule maintenance agent. The pathology demon monitors the simulation environment,

as it runs, in an e�ort to detect states that may lead to degradation of plan performance, or even

plan failure. When such a state is detected, the schedule maintenance agent devises a schedule

modi�cation to alleviate or avoid the possible pathology.

Our goal was to replace the pathology demon, along with its use of detailed domain knowledge,

with a set of rules generated by MSDD after examining batches of data produced in previous trials

of TransSim. We modelled the execution as a set of status streams for the TransSim ship ports:

the number of incoming ships, length of the docking queue, and so on. Our hope was that MSDD

could do automatically what a programmer or domain expert often takes many hours to do: devise

a set of rules that accurately describe situations of interest in a system.

The results, summarized in [6], indicate that MSDD's rules were capable of performance com-

parable to that of the hand crafted pathology demon using only high-level domain knowledge. In

fact, the MSDD system predicted less pathologies and made fewer schedule changes, while achieving

performance almost indistinguishable from the pathology demon's in all but one of the cost metrics

associated with the shipping simulation. 4

3.3 The IMSDD Approach

Developing an incremental version of the MSDD algorithm serves two purposes. First, an incre-

mental MSDD algorithm need do no o�-line processing and is not dependent on the existence or

quality of training data. Rather, the incremental algorithm does all processing as the data becomes

available, making it suited for real-time use as an embedded learning component. For example,

an incremental MSDD module could serve as a learning component in the pathology demon of

TransSim. Second, an incremental algorithm gains the ability to adapt its rule base to account for

structure that changes over time. Should the overall dynamics of how TransSim pathologies come

about change, for example, an incremental algorithm would be able to gradually adjust its rule

base to re
ect the change.

The move to incremental processing is not without consequence to the algorithm. First and

foremost, IMSDD is forced to abandon the generalization hierarchy exploited by MSDD. The loss

of the training batch (and thus the ability to recount) makes it impossible to start with general

4The metric was SD, simulated days. The MSDD version took more simulated days to complete its shipping

quota.
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rules and work towards more speci�c rules; doing so would result in a disastrous, contextless search

in IMSDD's O(kn) 5 generalization space. As a result, IMSDD must take a data-driven, bottom-up

approach to forming rules. As IMSDD receives input, it stores multitoken pairs as fully instantiated

words. Tokens in streams that exhibit no contingent structure are generalized as a move towards

representing the data's true structure. Such noisy streams in generalized rules are given wildcards

for their values to indicate that they should be ignored.

The basic operation of IMSDD follows a predict ! verify ! generalize ! update loop.

Based on the current input (multitoken), IMSDD predicts what the next multitoken will contain,

evaluates that prediction, uses the input to form new generalizations, and then updates its internal

data structures.

At this point it is worth considering the worst-case complexities of the predict, verify, generalize,

update loop. For a given word w of length nw , there are 2nw possible generalizations. Without

intelligent control, we can expect a worst case of O(2nw) for each of the phases except verify6.

In i timesteps, a naive algorithm may approach O(i2nw) and generate the entire search space of

O((k + 1)nw).7 The focal point of the IMSDD algorithm is reducing the expected complexity of

this search.

4 IMSDD in Detail

The actual process of guiding a dependency detection algorithm through its exponential search

space is worth examining in detail. We next describe the individual components to the youngest

of the algorithms, IMSDD, and it's predict, verify, generalize, update cycle. Further, we add a

pruning step to the cycle and evaluate the algorithm's performance in initial experiments.

4.1 The IMSDD Memory Structure

The �rst step to combating the combinatorics of the dependency detection algorithm is de�ning

a memory structure that facilitates e�cient storage and retrieval of rules. With an O((k + 1)nw)

search space, a dependency detection algorithm needs a data structure that inherently limits focus

to at most the 2nw generalizations that are actually relevant to any given input (and ideally, far

fewer). IMSDD makes use of a structure that resembles a parse tree for the precursor of a rule,

aptly named the precursor tree. Figure 2 shows an illustrative parsing of the precursor portion of

habaci, (ab). Starting with the token a at the root, IMSDD parses the precursor by moving down

the branch that corresponds to the current token, and moves on to the next token, which in the

example is b. By the time IMSDD reaches a leaf in the structure, IMSDD has fully parsed the

precursor multitoken of a rule. Information about what the precursor predicts is stored in the leaf

as a successor table. Each row of a successor table represents a stream in the successor, and keeps

a history of token frequencies in each of the successor streams. For example, in �gure 2, row one

of the successor table has recorded that an a in stream one has followed (ab) twelve times.

This structure narrows IMSDD's focus for a given precursor to 2n rules by storing precursor

information as paths in a tree and recording the successors as tables that require a simple O(n)

operation to query. It also provides a simple means for keeping successor counts current with

5A multitoken may take on k values over each of n streams.

6Which is a simple O(n) comparison.

7The complexity derivations are quite simple. The 2nw cases involve all possible wildcard combinations with a
fully instantiated word, and (k + 1)nw is the full set of nw length words with k possible tokens plus the wildcard

token.
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Successor Counts

1
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(a 12)   (b 2)

(a 3)   (b 4)   (c 3)   (d 4)

a

b

Figure 2: An IMSDD precursor tree and the parsing of habaci.

respect to a particular precursor, which will become important in the prediction phase. We now

turn to the procedures of the algorithm to see how the focus can be tightened further.

4.2 Predicting and Verifying

Predict and verify are perhaps the simplest phases of the IMSDD cycle. Given a multitoken,

IMSDD's goal is to predict the next multitoken, based on the contents of the relevant successor

tables in the precursor tree. Once a prediction has been made, its prediction is veri�ed against the

observed successor. Since the veri�cation process is a trivial token-by-token comparison, we turn

to a closer examination of the prediction scheme.

Suppose IMSDD observes the multitoken p (e.g. p =(ab) as in �gure 2). To predict its successor,

IMSDD parses p through the parse tree to generate the set of all leaves whose path matches p.8

We call this set S, and observe that it contains all of the possible successor tables for p supported

by data we have already seen. Each successor table in S suggests a unique successor s based on the

frequency information it contains. This is accomplished by choosing the \best" token t from each

of the rows in the successor table as rated by the function S:

S(t) = �(NHits(t))� (1� �)(NFP (t))

where � is the aggressiveness coe�cient of the algorithm, or the extent to which it values hits versus

false positives, NHits is the number of times t has occurred in the successor table row, and NFP is

the number of times t did not occur in the successor table row. For each row j of the successor table,

IMSDD suggests a token tj which maximizes S. The result is the complete successor multitoken

s. As an example, given the precursor (ab) in �gure 2, IMSDD would suggest either (ab) or (ad),

since a clearly dominates row one, while b and d have matching counts in row two.

It is now possible to think of S as a set of suggested successors to p. Next IMSDD will need to

rate each complete successor in S to decide which is the best to apply. For this purpose, we de�ne

Stotal on successor multitoken s :

8At �rst, it may seem that this set would contain a single leaf. This would be the case were it not for precursor

generalizations, which are considered in section 4.3.2.
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Stotal = �

jsjX

i=0

(NHits(ti))� (1� �)
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i=0

(NFP (ti))

All that remains is to choose the successor in S that maximizes Stotal.

4.3 Making Generalizations

Intelligent control when forming generalizations (deciding that a stream should be ignored in a rule)

is perhaps the single most important aspect of the IMSDD problem. Because the generalization

space is exponential, the brunt of our e�ort in developing IMSDD was devoted to addressing

this problem. As in the counting scheme, precursors and successors are treated di�erently in the

generalization scheme. We will look �rst at the simpler case of forming generalizations in the

successor portion of a rule.

4.3.1 Successor Generalizations

The impetus for successor generalization is successor data that provides little predictive power.

IMSDD uses the layout of the successor table to decide when generalization is bene�cial. Based

solely on the distribution of token frequencies in the rows of a successor table, IMSDD can decide

whether it is best to make a prediction or abstain from making one (i.e., predict a wildcard).

Upon startup, IMSDD assigns a constant S value, � , to the wildcard token. This value is

based on the aggressiveness of the algorithm, �, and the probability of correctly guessing a token

by chance. Each time IMSDD attempts to predict a stream value, it considers a wildcard token

along with all those tokens that were actually observed to occur. Should no token's S value be

high enough (greater than �) for IMSDD to believe it did not occur by chance, the algorithm will

suggest a wildcard for that stream.

The result of this simple scheme is a substantial saving in time and space requirements. However,

it relies on an important assumption. By storing only token frequencies in the rows of a table rather

than complete multitokens, IMSDD assumes that streams within a successor are independent, or

because they are dependent, the dependent stream values will always occur together, and thus

either all of them will dominate the successor table, or none will. The bene�ts of this assumption

are a succinct means of recording successor frequency, and a generalization mechanism that requires

little extra time and space of the algorithm.

4.3.2 Precursor Generalizations

Generalizations in the precursor of a rule come at a somewhat higher cost. The reason is that

successor tables are only valid for a single precursor, and so when IMSDD generalizes, it must

have a unique successor table for the new, generalized precursor. The result is a procedure that

generates precursor generalizations opportunistically, and creates a new path in the precursor tree

to represent the generalized precursor. Figure 3 shows the path (�b) in an illustrative precursor

tree, along with a successor table that is the composition of two successor tables whose precursors

match the new generalization.

The greatest challenge in generating precursor generalizations is deciding when to make a gen-

eralization, because there are O(2n) possibilities and no easy answers as there are with successor

generalizations. To control the explosiveness of the generalization routine, IMSDD constrains pre-

cursor generalizations in the following ways :
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Figure 3: Forming a precursor generalization (�b) from (cb) and (bb).

� A precursor path must exist in the precursor tree which di�ers from the current precursor in

exactly one stream (any token matches a wildcard).

� The successors to the nearly-matching precursors must also match or nearly match.

The �rst of these constraints is implemented in the search for matching precursors. A mechanism

called the wrong turn procedure locates all matches to a precursor that are o� by one token. The

wrong turn procedure parses the new precursor into the precursor tree, and at each level of the

parse, considers what would result if the token at that level was parsed incorrectly. When the

algorithm is left to run its course, it will return precisely those leaves in the tree whose paths di�er

from the new precursor by exactly one stream value.

In addition, IMSDD o�ers another speedup option. Instead of considering all wrong turns at

each level of the parse, IMSDD samples randomly some proportion of the possible wrong turns.

Here, IMSDD operates under the assumption that a uniform distribution of stream values (which

indicate that a generalization is going to be useful) will ensure that all important matches will be

manifest at least once through random sampling.

Once the matching precursors have been found, IMSDD has a set of plausible generalizations

and the actual precursors which support them. A generalization will be accepted as good if all

those precursors which match it suggest similar successors. The new generalization will then be

recorded as a path in the precursor tree. At the end of the path, as in �gure 3, a new successor

table is formed, and the supporting precursors' successor tables are combined to �ll in the token

frequencies.

As the number of streams presented to IMSDD increases, it becomes increasingly unlikely that

two successor tables will be similar, especially if some of the streams are noisy. This causes precursor

generalizations to fail on the matching-successor constraint. Consequently, IMSDD could run for

many timesteps before having the opportunity to make a single good generalization. IMSDD o�ers

as a satis�cing solution a mechanism that resembles simulated annealing. When IMSDD is �ltering
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the possible generalizations, it will with some probability 
, which diminishes with time, trivially

accept each one whether it meets the constraints or not. In e�ect, this property overcomes the

bootstrapping problem by agitating the rule base early on until there are some good generalizations.

These good generalizations will have higher counts in the successor that can enable noisy streams

to be identi�ed, and the bad generalizations can be removed by the pruning mechanism, discussed

in section 4.5.

4.4 Updating

Counting successor frequencies is vital to correctly quantifying the predictive accuracy of a rule.

When IMSDD observes a word, it parses the precursor portion in its precursor tree, �nding all

paths that the precursor matches. For example, the precursor (bb) would match (�b) and (bb) in

the tree of �gure 3. In each path's successor table, the token count for each row is incremented

according its corresponding stream value. Using the same example, if precursor (bb) was followed

by successor (ad), the counts in the (�b) successor table frequencies would change to (a 18) in row

one and (d 5) in row two.

4.5 Pruning

The �nal component to the IMSDD algorithm is the pruning component. By pruning, IMSDD

attempts to bound the search space to contain only those rules that have occurred recently or

have proven useful. Rules are selected for pruning during the prediction phase. During IMSDD's

selection process to �nd the best successor to predict, the pruning component selects a �xed number

of the worst rated rules. These rules, unless used under di�erent circumstances within a certain

period of time, will be pruned.

4.6 Empirical Evaluation

Because of the potential complexity of dependency detection, IMSDD was under constant evaluation

to determine the impact of design decisions on its performance. For the purposes of testing, a system

for creating arti�cially structured datasets was developed. For a given number of streams, ASG,

the arti�cial data generator, produces a set of general rules, and generates a series of multitokens,

some containing noise, and some containing actual structure. We de�ne the metrics adjusted hit

rate (ahr) to be the number of correct token predictions divided by the number of tokens seeded

in the dataset,9 and fp-rate (fpr) to be the number of incorrectly predicted tokens divided by the

total number of tokens.

Figure 4 shows IMSDD's learning curves for ahr and fpr on IMSDD experiments with varying

parameters. The curves were produced by recording IMSDD's performance on a �xed test batch

every 100 timesteps during the learning process.

The �rst mechanisms we examined were the pruning strategy and the sampling policy for

precursor generalization. We recorded the learning curves generated by IMSDD as we varied the

sampling rate and turned pruning on and o�. Figure 4 a suggests that both pruning and sampling

have small e�ects. The e�ects of pruning and sampling on false positive rate (not pictured) were

somewhat surprising; both sampling and pruning led to slower increase rates and lower peaks in

the curves10, while the steady state of each curve was similar.

9Since IMSDD may correctly predict tokens that occur by chance, the ahr metric often exceeds 1.0.

10Some of the fpr curves rose sharply and then dropped.
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Figure 4: (a) E�ects of sampling and pruning on learning curves. (b) Learning curves for n =

(5; 7; 9).

We next explored the e�ects of increasing n, the number of streams. Figure 4b shows the e�ect

of increasing n from 5 to 9. First note that the overall slope of the learning curve is similar for

all three values of n. Second, the onset of the learning curve and the point at which IMSDD can

account for 100% of the structure di�er are delayed as n increases. The �rst result suggests that the

learning algorithm, when scaled up might exhibit the same facility for learning rules and accounting

for structure. The second result implies that due to the larger stream size, there is some degree of

di�culty learning good initial generalizations given the added dimensions in search space size.

While these results were encouraging, it remained to test IMSDD against its tried and true

predecessor MSDD. Using identical data, we ran the 5 stream dataset through MSDD, varying the

size of its training batch, to see how IMSDD compared. Examination of the ahr curve showed that

MSDD was quicker to account for 100% of the present structure, but that IMSDD was not far

behind. The fpr curve suggested that MSDD's false positive rate was somewhat lower at 0.23, and

constant, while IMSDD's fpr curve appeared similar to its learning curve, scaled down to peak at

0:3.

5 Implementation

Both MSDD and IMSDD have been integrated into a single system for the empirical analysis of AI

programs called CLIP/CLASP. CLASP, the Common Lisp Analytical Statistics Package, o�ers an

environment suited for the analysis of experiment data. CLIP, the Common Lisp Instrumentation

Package, provides a means for designing and instrumenting experiments. With the addition of

a \layer" of dependency detection tools, the CLIP/CLASP environment o�ers tools to 1) design

and instrument an experiment, 2) run the experiment, collecting data as the program executes, 3)

analyze the data, and 4) apply the dependency detection algorithms to form predictive rules about

the program's behavior. The interface to CLASP and the dependency detection tools is pictured

in �gure 5.

The graphical interface to the dependency detection o�ers an easy facility to generate and
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Figure 5: An excerpt from a dependency detection session in the CLIP/CLASP environment.

At the front is the DD frame, currently evaluating the rules generated by an IMSDD session on

arti�cially generated streams. Behind the DD frame is the CLASP interface, along with a graph

of hit accuracy and false positive rate during the IMSDD session. At the top of the DD frame

is a menu of commands for accessing the dependency detection algorithms. The top, left pane of

the DD frame displays the currently loaded time series and the bottom left pane displays various

results of the current session. The large pane in the DD frame displays output from the dependency

detection commands.

analyze dependency rules for datasets. For example, using CLIP, a trial of TransSim is recorded

into a CLASP dataset with measurements of port status, docking queue lengths, and the like. This

data is then submitted to the DD frame, pictured as TS-5-6 G7619 in the �gure. After specifying

parameters such as aggressiveness and search-length, MSDD is then run by choosing the \Rule

Only Session" command from the MSDD menu. The resulting rules, shown as \DD-RESULT-2" in

�gure 5, are then viewed or exported to a �le and used to supplant TransSim's pathology demon.

Likewise, the entire TransSim system could be loaded in alongside CLASP, and its output

relayed directly to IMSDD using the \Operate on System" command in the IMSDD menu. This

command allows the user to specify where IMSDD will get its data (i.e. from a TransSim function)

and how to communicate its predictions (i.e. via a global variable). The result of these actions

would essentially be the integration of IMSDD into the pathology demon of TransSim as alluded

to in section 3.3.

Finally, because the CLASP environment facilitates the free exchange of information, the results

of the TransSim trials could be analyzed using the statistical and analytical functionality of CLASP.
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6 Conclusions

We have presented a methodology for detecting and characterizing complex dependencies in time

series data. Based on single and multi-stream representations, the DD, MSDD, and IMSDD al-

gorithms are implementations of this methodology. The strength of the algorithms lie in their

generality of representation. The structure they derive is independent of domain, but re
ects the

observed behavior of the data they monitor. We described one such application of these general

methods as a pathology demon in the shipping simulation TransSim, and noted that MSDD, using

only high level information gathered from execution traces, was able to produce results comparable

to the pathology demon that was built from domain speci�c knowledge and control strategies.

IMSDD, the newest of the dependency detection algorithms, was described in detail, as a

representative of the dependency detection process. We showed how the transition from batch

processing, in MSDD, to incremental processing, in IMSDD, was handled, and how the complexity

of the search for predictive dependency rules was managed. Our discussion of IMSDD concluded

with an empirical evaluation of IMSDD, showing that IMSDD was capable of quickly accounting

for structure in data and could produce accuracy comparable to MSDD while o�ering the bene�t

of incremental operation.

Finally, we described the current implementation of the dependency detection algorithms as a

module in the CLIP/CLASP empirical analysis package, and revisited the TransSim experiment in

the context of this environment. Taken as a whole, CLIP/CLASP and the dependency detection

layer o�er tools for analyzing the behavior of computer programs, and in particular, provides a

general method for building predictive rules about the way our programs behave.

Acknowledgments

This work was supported by ARPA/Rome Laboratory under contract number F30602-93-C-0010

and NTT Data Communication Systems Corp. The U.S. government is authorized to reproduce

and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

References

[1] Scott D. Anderson, Adam Carlson, David L. Westbrook, David M. Hart, and Paul R. Cohen.

Tools for experiments in planning. In Proceedings of the Sixth International Conference on Tools

with Arti�cial Intelligence., pages 615{623, 1994.

[2] Donald J. Berndt and James Cli�ord. Using dynamic time warping to �nd patterns in time

series. In Proceedings of the AAAI-94 Workshop on Knowledge Discovery in Databases, pages

359{370, 1994.

[3] John Fox and J. Scott Long. Modern Methods of Data Analysis. Sage, 1990.

[4] Adele E. Howe and Paul R. Cohen. Understanding planner behavior. To appear in AI Journal,

Winter 1995.

[5] Tim Oates and Paul R. Cohen. Toward a plan steering agent: experiments with schedule

maintenance. In Proceedings of the Second International Conference on Arti�cial Intelligence

Planning Systems, pages 134{139, 1994.

11



[6] Tim Oates, Dawn E. Gregory, and Paul R. Cohen. Detecting complex dependencies in categor-

ical data. In Preliminary Papers of the Fifth International Workshop on Arti�cial Intelligence

and Statistics., pages 417{423, 1995.

[7] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

12


