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ABSTRACT

Exploratory data analysis (EDA) plays an increasingly

important role in statistical analysis. EDA is di�cult,

however, even with the help of modern statistical soft-

ware. We have developed an assistant for data explo-

ration, based on AI planning techniques, that addresses

some of the strategic shortcomings of conventional soft-

ware. This paper illustrates the behavior of the system,

gives a high level description of its design, and discusses

its experimental evaluation.
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INTRODUCTION

Exploratory data analysis (EDA) has come to play an

increasingly important role in statistical analysis. Mod-

ern computer-based statistics packages contain a rich set

of operations, suitable for almost any EDA application.

These systems are nevertheless limited; they are almost

completely lacking in strategic ability. Imagine a statis-

tical system with both a set of basic exploratory opera-

tions and a set of strategies for applying them. A user

might say, \Generate a linear �t for this bivariate re-

lationship." The system then generates a least-squares

or perhaps a resistant �t, checks the residuals for in-

dications (e.g. curvature, outliers, unequal variance),

performs appropriate transformations, iteratively re�ts

the data if necessary, and reports all interesting results.

The user might say, \There are clusters in this rela-

tionship," prompting the system to search for potential

relationships between the clusters, to examine the be-

havior of the data internal to each cluster, to search

other variables and relationships for similar behavior,

and to present its �ndings. Further, the same system

might initially suggest one of these lines of analysis,

based on its own evaluation of the data. This sys-

tem, instead of being a repository of statistical tools

and techniques, comes closer to acting as an automated

statistical assistant.

Two properties let us call a system an assistant rather

than a sophisticated toolkit. First, an assistant is at

least partly autonomous. We can give an assistant gen-

eral instructions and let it make its own decisions about

how to carry them out. Second, an assistant responds

to guidance as it works. An automated system will in-

evitably make mistakes from time to time, so its rea-

soning process (past decisions as well as current ones)

must be available to the user for approval or modi�ca-

tion. A responsiveness to the guidance provided by hu-

man knowledge of context has been termed \accommo-

dation" [14]. An accommodating system takes advan-

tage of human knowledge to augment its own necessarily

limited view of the world. The combination of auton-

omy with accommodation lets the human data analyst

shift some of the routine or search-intensive aspects of

exploration to an automated system, without giving up

the ability to review and guide the entire process.
We have developed an assistant for intelligent data

exploration called Aide. Aide is a knowledge-based

planning system that incrementally explores a dataset,

guided by user directives and its own evaluation of the

data. Its plan library contains a set of strategies for

generating and interpreting indications in data, building

appropriate descriptions of data, and combining results

in a coherent whole. The system is mixed-initiative,

autonomously pursuing high- and low-level goals while

still allowing the user to inform or override its decisions.

This paper begins with an example of an exploratory

session, which describes the capabilities we expect of an

automated assistant|capabilities that Aide provides.

We then discuss the issues in Aide's mixed-initiative

design. The paper ends with a brief account of an ex-

perimental evaluation of the system.
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Figure 1: Patterns in FirelineBuilt and Trial Duration (with continuation on next page)

EXPLORING DATA

We can best understand Aide's behavior with an exam-

ple, which we take from an experiment with Phoenix, a

simulation of forest �res and �re-�ghting agents in Yel-

lowstone National Park [6]. The experiment involved

setting a �re at a �xed location and speci�ed time, then

observing the behavior of the �reboss (the planner) and

the bulldozers (the agents that put out the �re). Vari-

ability between trials is due to randomly changing wind

speed and direction, non-uniform terrain and elevation,

and the varying amounts of time agents take in execut-

ing primitive tasks. In this experiment forty variables

were collected over the course of some 340 Phoenix

trials, including measurements of the wind speed, the

outcome (success or failure), the type of plan used, and

the number of times the system needed to replan. We

became interested in the relationship between the time

it takes the planner to put out a �re (Duration) and the

amount of �reline built during the trial (FirelineBuilt).

Figure 1a shows a scatter plot of these two variables.

The dialog below shows how the user interacts with

Aide in exploring the dataset. For conciseness, the

exchange is presented as a natural conversation; the

dialog actually takes place within a statistical inter-

face, through menu selections, active object selection,

typed input, and graphical displays. The information

exchanged on the part of both conversants, however, is

accurately rendered.

Aide: (FirelineBuilt, Duration) has these indications:

high correlation (r = 0:93); outliers in both Fire-

lineBuilt and Duration; clustering. Suggested

courses of action are (1) generating a linear �t

and (2) exploring clusters.

User: Why the linear �t?

Aide: A linear �t can be appropriate for relationships

with high correlation.

User: Why the given ordering of actions?

Aide: When there is a high correlation and no evi-

dence of extreme outliers, we �t a line before try-

ing other possibilities.

User: Okay.

Aide: (Generates linear �t, as shown in Figure 1b.) A

three-group resistant line is appropriate; its inter-

cept is �0:96, its slope 0:0017. There are outliers

in the residuals, as well as evidence of clustering.

User: Show recent decisions.

Aide: (1) With the goal of exploring (FirelineB-

uilt, Duration), we decided to �t a line. The ac-

tive alternative is to explore clusters. (2) With the

goal of �tting a line, I decided without consulta-

tion on a resistant �t. Alternative is a regression

�t.

User: Back up a step.

Aide: In �tting a line to the relationship, the possi-

bilities are a resistant �t, which is in progress, or

a regression �t, which has not started.

User: Execute the regression �t.

Aide: (Generates regression �t, as shown in Fig-

ure 2c.) The regression line has an intercept of

�2:73 and a slope of 0:0019; r
2 = 0:57. There

are outliers in the residuals, as well as evidence of

clustering. The slope of the regression line is 1.13

times the slope of the resistant line.

User: Make a note: I am con�dent that the relation-

ship (FirelineBuilt, Duration) is linear, despite in-

dications of outliers and clustering. I prefer the

regression �t.

Aide: (Accepts note.)

User: Okay.

Aide: (Considers linear �t phase to be complete.)

The possibilities remaining to explore (FirelineB-

uilt, Duration) are (1) the linear �t, which is in

progress, and (2) cluster exploration, which has
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Figure 2: Patterns in FirelineBuilt and Trial Duration (continued)

not started.

User: Okay.

Aide: (Begins cluster exploration.) There are sev-

eral di�erent ways (FirelineBuilt, Duration) can

be broken into clusters. (Displays identi�ers for

potential clustering criteria: single-linkage clus-

ters in FirelineBuilt, regions of constant values

in FirelineBuilt, etc. Also displays similarity be-

tween resulting clusters.)

User: Show constant FirelineBuilt clusters.

Aide: (Displays clusters, as shown in Figure 2d.)

User: Explore clusters.

Aide: (Isolates clusters, as shown in Figure 2e.) . . .

By searching for related behavior in other variables, the

analysis eventually determines that the clusters are an

e�ect of not having to replan; that is, observations fall

into clusters in FirelineBuilt only in cases where the

variable #Replans takes on a value of 0. A better view

of the general pattern of clustering is given by each clus-

ter's central location, its median FirelineBuilt and Du-

ration value. Once the clusters have been reduced to

a set of representative values, they can be described in

turn. These points also follow a linear pattern, with a

slope slightly less than that of the line �tting the entire

partition. Associating each cluster with a unique iden-

ti�er leads to the additional �nding that the discrete

variables WindSpeed and PlanType together strongly

predict cluster membership; a scatter plot of the clus-

ters, colored by wind speed, is shown in Figure 2f.

The exploration continues, but this should be enough

to give the avor of the interaction. (The analysis and

Aide's participation are described in more detail else-

where [5, 17].)

MIXED-INITIATIVE ASSISTANCE

Aide's design exploits a striking similarity between in-

teractive data exploration and planning [18, 19], espe-

cially partial hierarchical planning [9]. Briey, a partial

hierarchical planner has these properties:

A plan library: A great deal of procedural knowledge



is not generated from scratch when required, but

rather retrieved from memory of past experience.

A partial hierarchical planner maintains a library

of general-purpose and speci�c plans.

Hierarchical plans: Plans in the library are not nec-

essarily elaborated down to the level of primitive

operators; they often specify behavior in terms of

subgoals. A plan to build a house, for example,

might contain two high-level goals: \Lay the foun-

dation" and \Erect the walls."

Explicit control: A plan may establish an explicit pro-

cedural speci�cation for the way its component

subgoals are to be satis�ed, or actions to be ex-

ecuted. Control may be sequential, conditional,

iterative, or some more specialized combination.

For example, the house-building plan would prob-

ably specify, \First lay the foundation, and then

erect the walls."

Interleaved generation and execution: The planner

may execute a plan that has not yet been com-

pletely elaborated to the operator level; for exam-

ple, one might want to complete the foundation

before deciding where to put walls.

Meta-level reasoning: When more than one plan can

potentially satisfy a single goal, this results in

a focus point, at which the planner must choose

among the applicable plans to continue with the

exploration. As plans execute, a network of such

focus points is created. The planner may oppor-

tunistically revisit and modify focus point deci-

sions in order to follow the most promising path

to a solution.

This kind of planning is well-suited to exploration. EDA

makes use of abstraction, problem decomposition, and

procedural knowledge, three de�ning characteristics of

planning [13]. Further, EDA is reactive. One cannot an-

ticipate every pattern that might possibly appear in the

data; rather, the analysis is driven by the data, which

argues for integrating the generation and execution of

procedures. In addition, exploratory procedures often

need explicit control. Some common EDA techniques,

like resistant line generation, smoothing, and lowess,

are iterative, while other techniques need sequencing,

conditionals, mapping, and other kinds of control. Fi-

nally, exploration is constructive. An exploratory result

is not simply a graph or a statistical summary, but also

includes a set of supporting decisions, which give the

context for results to be interpreted appropriately.

Aide's library contains about a hundred plans, at dif-

ferent levels of detail. At the primitive level, these plans

call a set of heavily parameterized operations for com-

puting reductions of multidimensional arrays to scalar

values (e.g. summary statistics), transformations (e.g.

power transforms), and decompositions (e.g., isolation

of clusters). Primitive operations for special-purpose

modeling procedures are also available. Higher-level

plans based on these primitives are intended to cap-

ture elements of common statistical practice, such as

the examination of residuals after �tting a function to

a relationship, the search for re�nements and predic-

tive factors when observing clustering, the reduction of

complex patterns to simpler ones, and so forth. The

plans lack a human-level knowledge of subject-matter

context|what the data actually mean|but they are

sensitive to the procedural context in which they are

applied.

Aide plans as follows. When a dataset or relationship is

presented to the system, a goal is established for its ex-

ploration. The planner searches through its library for

an appropriate plan and expands it, that is, establishes

a set of new subgoals to be satis�ed. These subgoals

are satis�ed in turn by plans from the library. Goals

can also be satis�ed directly by primitive actions, which

execute code directly rather than establishing new sub-

goals. This process is more complex than it might ini-

tially appear: often, several plans in the library can

satisfy a single goal, and there may be an unlimited

number of ways to bind a given plan's internal variables

to di�erent values. For each decision, or focus point,

the planner relies on a set of control rules to decide

which plan or variable binding to select. As planning

continues, the planner may sometimes backtrack to one

of these focus points to make a di�erent selection. The

process continues until the goal at the top level has been

satis�ed. Thus we cast exploration as a problem of con-

structing and navigating through a network of decisions,

represented by focus points. Execution of each primitive

action generates one or more new results; the network

combines all the �ndings.

Let's return to our notions of autonomy and accom-

modation, to see how they are supported by this pro-

cess. As might be expected, autonomy is provided by

the focus point network and the library of plans. At any

point in the exploration Aide considers one decision to

be its current focus of attention. The system acts au-

tonomously by making this decision without consulting

the user. Because plans reect common statistical prac-

tice, this behavior often has the e�ect of anticipating the

user's actions. Not all decisions are handled this way;

for some types of more di�cult decisions, the default

behavior is to stop and ask the user how to proceed.

In these cases Aide will present its own advice as well,

but it will not proceed without an acknowledgment or

an explicit directive from the user.

As to accommodation, Aide can be used as a conven-

tional menu-based statistics package. Menu choices let

the user load a dataset, compose variables into relation-

ships, compute summary statistics, generate linear mod-

els, partition data, run statistical tests, and so forth.



These menu operations are tied internally to the focus

point network, so that if the user tells Aide to run a

regression of y on x, the system will search through the

network to �nd a decision point associated with select-

ing relationships, �nd or create an appropriate branch

for (x; y), and then incrementally select a sequence of

plans that run the regression, explore the residuals, eval-

uate the results, and so forth. All this remains invisible

to the user, who sees only the result. At this point the

user can select another relationship or statistical proce-

dure and proceed. The important aspect of this interac-

tion is that the user is not constrained to consider only

those decisions Aide considers relevant, but can pursue

his or her own goals in the exploration.

Beyond providing access to conventional statistical op-

erations, Aide gives the user an explicit representation,

through the focus point network, of the decision-making

process. This kind of explicit, structured justi�cation

for decisions and results is an important aspect of ex-

ploration [12]. Further, the network lets the user explic-

itly direct Aide's actions. When Aide reaches a focus

point, its decision at that point can be reviewed and

potentially modi�ed by the user. In fact, all decisions

made by the user or the system are available for review

and possible revision. The explicit network of decisions

provides the basis for our metaphor of exploration as

navigation.

Aide's partial hierarchical design is an e�ective frame-

work for mixed-initiative planning. James Allen has

identi�ed three distinguishing characteristics of mixed-

initiative planning, by analogy to dialog behavior.

Mixed-initiative planners support exible, opportunis-

tic control of initiative, the ability to change focus of

attention, and mechanisms for maintaining shared, im-

plicit knowledge [1]. We can adapt these criteria to our

design as follows. The plan library provides the planner

its representation of shared knowledge about reasonable

courses of action, while the network of focus points gives

the current state of the exploration. Changing focus of

attention means deciding which focus point should next

be under consideration to extend the exploration. Flex-

ible control of initiative is a matter of deciding whether

the system or the user should make the next move in

selecting a new focus point or making a decision at the

current one.

EVALUATION

Evaluation focused on a simple hypothesis:

Exploration is more e�ective

with Aide than without.

The experiment involved testing subjects under two

conditions. In the User+Aide condition, subjects ex-

plored a dataset with Aide's help, while in the User-

Alone condition, subjects explored a dataset in a sim-

ilar statistical computing environment, but without ac-

tive interaction with Aide. Aide's e�ectiveness was

then determined by measuring di�erences in perfor-

mance between the two conditions.

Several factors can potentially counfound an experiment

like this: di�erent subjects may have di�erent facility

with EDA techniques; user interaction may be di�erent

under the two conditions; the datasets to be explored

may contain di�erent types of structure and patterns;

and the order in which conditions are presented to sub-

jects may make a di�erence.

To control for these and other e�ects, we set up the

experiment as follows.

All subjects explored the same two datasets, one in

the User+Aide condition and the other in the User-

Alone condition. The interface was identical in both

cases, lacking only Aide functionality in the User-

Alone condition. The datasets contained arti�cial

data, generated by similar but not identical means, to

provide equivalent problems to be solved in both condi-

tions. The dataset/condition assignment was random-

ized, as was the order in which the datasets were ex-

plored. Because of the time and e�ort involved in over-

seeing individual trials, which lasted on the order of four

hours per subject, the experiment was limited to eight

subjects.

The generation of a dataset followed roughly this pro-

cedure. Start with a directed acyclic graph of twenty

nodes. Each node corresponds to a variable. Associate

with each node a simple function of the arcs from its in-

coming variables; for example, if a node c has arcs from

a and b, the function might be c = a� b� b+ �, where

� is normally-distributed noise. Nodes with no incom-

ing arcs, or exogenous nodes, are associated with spe-

ci�c distributions. A row of the dataset is computed by

sampling from each exogenous node's distribution, and

\pushing" these values through the rest of the graph.

By repeating this process many times, we can collect

as many rows as we need. The two datasets for the

experiment were generated from graphs almost identi-

cal in structure and with comparable distributions and

functions attached to the nodes and arcs. In the exper-

iment, subjects were instructed to identify the direct

relationships in the data and to describe them (i.e., as

linear relationships, clusters, power relationships, and

so forth.)

Our measurements in the experiment mainly concerned

accuracy. In each condition c a subject s makes some

number of observations: Ocs = ocs1; : : : ; ocsk. We can

classify each observation as correct or incorrect. By

\correctness" we mean that the subject has associated

an appropriate description with one of the direct rela-

tionships in the model that generated the data. The

�rst measure, p, is the mean number of correct observa-



p kp i ki

Aide Alone Aide Alone Aide Alone Aide Alone

Subject 1 0.29 0.34 4.0 5.5 0.538 0.455 7 5

Subject 2 0.39 0.29 3.5 3.5 0.667 0.417 6 5

Subject 3 0.50 0.21 3.0 1.5 0.875 0.285 7 2

Subject 4 0.56 0.37 10.0 7.0 0.632 0.579 12 11

Subject 5 0.44 0.29 4.0 2.0 0.556 0.500 5 3

Subject 6 0.34 0.50 4.5 5.5 0.571 0.583 8 7

Subject 7 0.50 0.07 3.0 1.0 0.500 0.429 3 6

Subject 8 0.59 0.36 6.5 1.5 0.667 0.500 8 2

Table 1: Average correct (p, i) and total correct (ki, ki) observations per subject

tions made,

p =

P
k

i=1
Correct?(ocsi)

k
;

where k is the number of observations the subject makes

in a condition and Correct? is a function that returns

1 if an observation is correct, 0 otherwise. Informally, p

for a given subject gives the probability that one of his

or her observations is correct.

The p performance measure takes both correct and in-

correct judgments into account, which may sometimes

be deceptive. We would like to distinguish, for example,

between a subject with a p of 0.5 for a large number of

observations and another subject with the same p score

for many fewer observations. Another measure, which

we call kp for consistency, considers number of correct

observations alone:

kp =

kX

i=1

Correct?(ocsi):

We'll also consider a re�nement of these two measures.

Performance contains two components: identifying a

signi�cant variable or relationship and correctly describ-

ing it. We thus considered two further measures, i and

ki, which are comparable to p and kp but call an obser-

vation \correct" simply if a direct relationship is identi-

�ed, ignoring its descriptive form (linear, cluster, non-

linear, etc.)

Subject performance is shown in Table 1. A matched-

pair, one-tailed t-test tells us that p and kp are signi�-

cantly higher for subjects in the User+Aide condition:

t = 2:217 and 1:808, with p-values around 0:03 and 0:05,

respectively. (We use a one-tailed test because we are

interested in whether performance in the User+Aide

condition is better than in the UserAlone condition,

rather than simply seeing a di�erence in either direc-

tion.) A similar result holds true for i and ki.

This comparison tells us that Aide contributes sig-

ni�cantly to the correctness of a given user's obser-

vations, on average, and that Aide contributes to a

higher total number of correct observations as well. To

put this in perspective, we can dismiss a few plausible

but trivial explanations for better performance in the

User+Aide condition. First, subjects entered roughly

the same number of observations in both conditions,

with a median di�erence of 0.5 between the two condi-

tions. For all subjects, the mean number of observations

in the User+Aide condition was 14.1, in the User-

Alone condition 13.0. Improved performance thus de-

pends not only on making more correct observations,

but also on making fewer incorrect observations. Fur-

ther, subjects directly examined about the same num-

ber of variables and relationships in both conditions:

73 for User+Aide, 66 for UserAlone on average per

subject. The di�erence between conditions is not signi�-

cant, so better performance is not due to subjects simply

seeing more of the data in the User+Aide condition.

It is also not the case that subjects in the UserAlone

condition never happen upon the relationships and pat-

terns suggested by Aide in the User+Aide condition.

Of all the correct suggestions Aide made about each

dataset, only one was not also tried by subjects in the

UserAlone condition.

Now, the simple fact of the performance di�erence is

not entirely satisfying. We are really most interested

in understanding why Aide works. For a better view

of Aide's contribution, we divided subject actions in

the User+Aide condition into three categories: Data-

Manipulations, or the execution of a statistical test or

procedure; Local-Decisions, or deciding between local

alternatives, such as between a clustering description

and a linear �t; and Navigation, or moving from one fo-

cus point decision to another. Perhaps surprisingly, we

found that data manipulation was the smallest category

of actions. Navigation was responsible for almost half

(44%, on average, per subject) of the operations, with

local decisions accounting for another 38%. Only 13%

of the operations actually manipulated the data.

These summaries give us a rough idea of how subjects

went about exploring a dataset. Much of the e�ort, in

terms of the number of operations applied, involved ex-

amining the data from di�erent angles and evaluating



ways of building descriptions. Subjects showed a good

deal of mobility, not just in moving from one data struc-

ture to the next, but also in moving from one point in

the network of exploratory plans and actions to another.

This point was also emphasized by most subjects in post

mortem assessments: a common theme was the impor-

tance of being able to navigate through the exploration

process. The summaries also show that data manipula-

tion was secondary to other activities; we might think

of navigation and local evaluation of decisions as setting

the stage for data manipulation.

In examining how these factors are related, we �nd

that Data-Manipulation and Local-Decisions are weakly

correlated to begin with (r = 0:29), and if we hold

Navigation constant the correlation drops to 0:12. We

thus have a chain going from Data-Manipulation to

Navigation to Local-Decisions|or vice versa; the or-

dering is ambiguous. Our tentative interpretation is

that data manipulation operations generate new data,

which can then be explored; thus the number of Data-

Manipulation operations inuences Navigation. In-

creased navigation leads in turn to the generation of

new focus points, which requires more local decision-

making, which means that Navigation inuences Local-

Decisions. This is only a tentative model of these re-

lationships, because we have relatively few data points,

but it is plausible and suggestive. We have planned fur-

ther tests to examine the issue in more detail.

RELATED WORK

This work draws on a number of di�erent sources. The

clearest relationship is to early work in developing con-

cepts of statistical strategy, or the formal descriptions

of actions and decisions involved in applying statistical

tools to a problem [11]. Gale and Pregibon's Rex sys-

tem, for example, implemented a strategy for linear re-

gression [8]. Oldford and Peters implemented a complex

strategy for collinearity analysis [15]. The goals of Aide

bear a resemblance to those of Lubinsky and Pregibon's

Tess [14], which supports analysis by accommodating

user knowledge of context in a search good descriptions

of data.

Aide has also been inuenced by work examining hu-

man interaction with systems for data exploration.

Aide's representation of primitive EDA operations, for

example, is very similar to that of Ides, the Interactive

Data Exploration System, a component of SageTools

[10, 16]. Ides and SageTools are the descendants of

research in automatic presentation systems, which are

intended to relieve users of the need for graphical de-

sign and display knowledge. Aide concentrates on a

di�erent aspect of the same problem, on representing

the process of exploration.

The knowledge discovery in databases literature also de-

scribes systems comparable toAide, for example Brach-

man et al.'s Imacs, which is aimed at the task of \data

archaeology" [3]. Data archaeology is distinct from data

mining, in which an autonomous statistical or machine

learning algorithm searches a large database for implicit

patterns. Data archaeology recognizes that results do

not emerge in a single pass over the data, but rather

evolve in an iterative process that requires constant hu-

man interaction. We hold this same view, in contrast to

many who hope to build completely autonomous knowl-

edge discovery systems.

Our goals forAide are similar to those adopted by other

researchers interested in the use of planning in intelli-

gent user interfaces. Bonar and Li�ck, for example, use

planning to support novice users without unduly con-

straining experts, and vice versa [2]. Planning is an

integral part of many agent-based user interfaces [4, 7].

As an integration of reactive planning methods and user

interface technology, Aide is an example of the poten-

tial bene�ts of this approach.

Finally, Aide can also be viewed in some ways as a

collaborative system, where collaboration is a process

in which two or more agents work together to achieve

shared goals. Loren Terveen has identi�ed a set of issues

that must be addressed by any system that collaborates

in an intelligent way with its users [20]: reasoning about

shared goals; planning, allocation, and coordination in

achieving these goals; awareness of shared context; com-

munication about goals, coordination, and evaluation of

progress; and adaptation and learning. Of these, Aide

concentrates on planning and coordination. Other as-

pects of collaboration are not addressed in the current

implementation, but are a part of our plans for future

work.

ACKNOWLEDGMENTS

We are grateful for the helpful comments of an

anonymous reviewer. This research is supported by

ARPA/Rome Laboratory under contract #F30602-93-

0100 and by the Dept. of the Army, Army Research

O�ce, under contract #DAAH04-95-1-0466. The U.S.

Government is authorized to reproduce and distribute

reprints for governmental purposes not withstanding

any copyright notation hereon. The views and con-

clusions contained herein are those of the authors and

should not be interpreted as necessarily representing the

o�cial policies or endorsements either expressed or im-

plied, of the Advanced Research Projects Agency, Rome

Laboratory, or the U.S. Government.

REFERENCES

[1] James F. Allen. Mixed initiative plan-

ning: Position paper. [WWW docu-

ment]. Presented at the ARPA/Rome

Labs Planning Initiative Workshop. URL

http://www.cs.rochester.edu/research/trains/mip/,

1994.



[2] Je�ery Bonar and Blaise W. Li�ck. Communicat-

ing with high-level plans. In Joseph W. Sullivan

and Sherman W. Tyler, editors, Intelligent User

Interfaces. ACM Press, 1991.

[3] Ronald J. Brachman, Peter G. Selfridge, Loren G.

Terveen, Boris Altman, Alex Borgida, Fern Halper,

Thomas Kirk, Alan Lazar, Deborah L. McGuin-

ness, and Lori Alperin Resnick. Integrated sup-

port for data archaeology. International Journal of

Intelligent and Cooperative Information Systems,

1993.

[4] David N. Chin. Intelligent interfaces as agents. In

JosephW. Sullivan and Sherman W. Tyler, editors,

Intelligent User Interfaces. ACM Press, 1991.

[5] Paul R. Cohen. Empirical Methods for Arti�cial

Intelligence. MIT Press, 1995.

[6] Paul R. Cohen, Michael L. Greenberg, David M.

Hart, and Adele E. Howe. Trial by �re: Under-

standing the design requirements for agents in com-

plex environments. AI Magazine, 10(3):32{48, Fall

1989.

[7] Oren Etzioni and Dan Weld. Intelligent agents on

the internet: Fact, �ction, and forecast. IEEE Ex-

pert, 8(4):44{49, August 1993.

[8] W. A. Gale. REX review. In W. A. Gale, edi-

tor, Arti�cial Intelligence and Statistics I. Addison-

Wesley Publishing Company, 1986.

[9] Michael P. George� and Amy L. Lansky. Proce-

dural knowledge. Proceedings of the IEEE Special

Issue on Knowledge Representation, 74(10):1383{

1398, 1986.

[10] J. Goldstein and S.F. Roth. Using aggregation and

dynamic queries for exploring large data sets. In

Proceedings of the CHI'94 Conference, pages 23{

29. Association for Computing Machinery, 1994.

[11] D.J. Hand. Patterns in statistical strategy. In W.A.

Gale, editor, Arti�cial Intelligence and Statistics I,

pages 355{387. Addison-Wesley Publishing Com-

pany, 1986.

[12] Peter J. Huber. Languages for statistics and data

analysis. In Peter Dirschedl and Ruediger Oster-

mann, editors, Computational Statistics. Springer-

Verlag, 1994.

[13] Richard E. Korf. Planning as search: A quanti-

tative approach. Arti�cial Intelligence, 33:65{88,

1987.

[14] David Lubinsky and Daryl Pregibon. Data analy-

sis as search. Journal of Econometrics, 38:247{268,

1988.

[15] R. Wayne Oldford and Stephen C. Peters. Im-

plementation and study of statistical strategy.

In W.A. Gale, editor, Arti�cial Intelligence and

Statistics I, pages 335{349. Addison-Wesley Pub-

lishing Company, 1986.

[16] S.F. Roth, J. Kolojejchick, J. Mattis, and J. Gold-

stein. Interactive graphic design using automatic

presentation knowledge. In Proceedings of the

CHI'94 Conference, pages 112{117. Association for

Computing Machinery, 1994.

[17] Robert St. Amant. A Mixed-Initiative Planning

Approach to Exploratory Data Analysis. PhD the-

sis, University of Massachusetts, Amherst, 1996.

Also available as technical report CMPSCI-96-33.

[18] Robert St. Amant and Paul R. Cohen. Control rep-

resentation in an EDA assistant. In Douglas Fisher

and Hans Lenz, editors, Learning from Data: AI

and Statistics V, pages 353{362. Springer-Verlag,

1996.

[19] Robert St. Amant and Paul R. Cohen. A plan-

ner for exploratory data analysis. In Proceedings of

the Third International Conference on Arti�cial In-

telligence Planning Systems, pages 205{212. AAAI

Press, 1996.

[20] L. G. Terveen. Intelligent systems as cooperative

systems. International Journal of Intelligent Sys-

tems, 3(2{4):217{250, 1993.


