
Segregating Planners and Their Environments

Scott D. Anderson

Paul R. Cohen

Experimental Knowledge Systems Laboratory

Computer Science Department, LGRC

University of Massachusetts

Amherst MA 01003-4610

fanderson,coheng@cs.umass.edu

To be published in the proceedings of the
Spring Symposium on Integrated Planning Applications

Abstract

By implementing agents and environ-

ments using a domain-independent, exten-

sible simulation substrate, described in this

paper, agents will have clean interfaces to

their environments. These makes it easier

for agents to be plugged into other environ-

ments that have been similarly de�ned. If

agents can interact with multiple environ-

ments, their behaviors and the associated

experimental results will be more general

and interesting.

1 Introduction

We argue against a tight integration of planners and

their environments. This is not because we think

integration is a bad thing, but because we think it's

important to run planners in a variety of environ-

ments. An AI Magazine article [6] describes a num-

ber of AI environment simulators, including costs

and bene�ts. By running an agent in a variety of

environments, we can hope to get the bene�ts of all

worlds.

To make it easier to mix and match planners and

environments, they must have compatible interfaces.

The worst case is illustrated in �gure 1(a), where

planners are tightly integrated with their environ-

ments, but completely unportable. The ideal case,

which AI should strive towards, is illustrated in �g-

ure 1(b), where both the planner and agent inter-

face to a domain-independent substrate. This paper

describes a domain-independent substrate that par-

tially addresses these concerns.

2 Discrete Event Simulation

All simulators for AI planning that we are aware of

use discrete event simulation. Therefore, planners

and environments can meet on the common ground

of a domain-independent discrete event simulator.

We are designing and implementing such a simula-

tor, calledMess: Multiple Event Stream Simulator.

Environments are implemented by de�ning event

types as classes in the Common Lisp Object System

(Clos). These classes all inherit from an abstract

class called event, and must provide methods to:

� report the time at which the event is to oc-

cur. This is so that the event can be properly

interleaved with other events.

� realize the event, that is, modify the state of

the world so that the event \happens."

� illustrate the event by executing whatever

graphics code is appropriate for the event.

(The illustration of an event is separate from

the realization because it's common to turn

o� graphics when running large experiments

in \batch mode.")



E1

P1

E2P2

(a)

P2

E1

E2

P1

E

P

(b)

Figure 1: On the left is pair of planners that are tightly integrated with their environments; they are also mu-

tually incompatible. On the right is an ideal case where planners and environments can easily be connected

by plugging them into a domain-independent substrate, shown in gray.

For example, in a domain like Phoenix, which sim-

ulates forest �res burning in Yellowstone National

Park [2,5], one type of event might be the burning of

a \�re cell" (a grid is laid over the continuous map to

discretely represent the �re). The realization of that

event would be to ignite that cell in the array repre-

senting the �re. The realization might also check the

state of the world to determine whether any agents

were in the cell, in order to signal their deaths, if

necessary. The illustration of the event might draw

a small square of red on the map window on the

user's screen. An example of a TileWorld event

might be the appearance or disappearance of a tile

or hole, or the moving of a tile by an agent [8, 13]

The simulation literature usually puts simulator

designs into one of the following two categories [1,

p. 13]:

event oriented

Each event determines what subsequent events

follow from it (that it \causes"). Thus, each

event type would have a function to produce

the successors of that event; those successor

events are scheduled for later realization.

process oriented

Each event is produced by a process, and that

process determines the subsequent events. The

process often describes the lifetime of a simu-

lation object, such as a customer.

Mess is process-oriented, because it is convenient to

view as processes things like �re, weather, and par-

ticularly an agent's thinking. The representations of

processes are called event streams.

A simulation in Mess is equivalent to a loop in

which an \engine" takes the next event from what-

ever event-stream has it, realizes it, illustrates it (if

desired), and loops. The next event is simply the

event that is the nearest in the future, as deter-

mined by timestamps. Since each event stream pro-

duces events in chronological order, the engine can

be viewed as merging those streams to yield a single

stream in chronological order. The engine is respon-

sible for breaking ties when two events are scheduled

for the same time; in addition, events may specify

protocols for handling conicts. The simulation ends

when all event streams are exhausted, or when a spe-

cial \end of simulation" event is realized. Figure 2

depicts the architecture of Mess.

Mess de�nes some classes of event streams that

can take a user's code and produce a stream of

events; the user can de�ne new kinds of event

streams if desired. A simple and general class is

a function event stream, where the user supplies a

function that generates successive events. Another

is a script event stream, where the user provides a

simple list of events that should happen at particular

times during the simulation. The most interesting

kind of event stream is one that takes agent code and

executes it, thereby allowing the agent to think and

act in the environment. The next section discusses

this kind of event stream.

3 Real-time Agents

An agent interacts with the environment by produc-

ing events, just like any other event stream. For ex-

ample, in a gridworld simulator likeMice [3,10,11],

an agent might produce movement events such as

2



MESS

Engine

script ES

function ES

function ES

interpreter ES

interpreter ES

scenario script

�re-simulation function

weather-simulation function

�reboss thinking

bulldozer thinking

domain-independent simulation substrate environment

agents

Figure 2: The design of Mess: the central engine realizes events from instances of di�erent kinds of event

stream (ES). The arrows starting at the ES boxes indicate events owing into the engine to be realized.

Arrows pointing to the ES boxes indicate the mapping from domain-dependent agents and environment

processes to the domain-independent Mess substrate. An agent's thinking is modelled by an event stream

that runs the agent's code to produce events.

\up" or \left." The agent might also produce sen-

sor events, which will return information about the

state of the world (possibly after a time delay).

Between the times that the agent produces these

sensor and e�ector events, it thinks and plans. Does

simulation time pass while the agent thinks? If so,

the world processes, such as �res burning or tiles

disappearing, continue relentlessly. The agent then

faces a tradeo� between thinking time and plan qual-

ity: how much time should it spend thinking and

what is the expected quality of the resulting plan?

When an agent faces time pressure on its thinking,

we call it a real-time agent. We use \real-time" in

the sense that the usefulness of a result depends not

only on its intrinsic attributes but also on its time-

liness [7, 14, 15].

Mess is designed to support real-time agents. It

does this by requiring agents to be written in a gen-

eral agent language, which is essentially Lisp except

that there is a database of duration models. A dura-

tion model tells how much time passes while execut-

ing some part of the agent's code. Duration models

can be tied to Lisp primitives, so that the simulation

clock is advanced depending on how much Lisp ex-

ecutes, or they can be tied to higher level functions

of the agent, abstracting away from implementation

details and substituting a di�erent duration.

The Mess approach to supporting real-time

agents di�ers from majority of real-time AI testbeds,

which employ CPU time to measure the amount of

agent code executed. For example, the Phoenix

testbed uses CPU time, transforming those units

into simulation time units via a constant called the

real-time knob. Modifying the setting of the knob

varies the amount of time-pressure on the agent by

altering its thinking speed relative to the rate of

change of the world. In experiments with Phoenix,

we found that CPU time is di�cult to measure pre-

cisely and repeatably, and it di�ers between com-

puters, even those of the same CPU type. Con-

sequently, our experiments su�ered from unwanted

sources of variance. These experiences were shared

by the users of TileWorld [13], which is why they,

too, switched to a platform-independent way of ad-

vancing time in agent code [8]. Their solution, how-

ever, requires committing to the IRMA agent archi-

tecture. Our solution only requires using Lisp.

Mess di�ers from commercial simulation soft-

ware primarily in allowing the execution of arbitrary

code to determine how much time passes in a pro-

cess. Commercial software usually requires describ-

ing the events in a process and the delays between

each event, where the delays are given as explicit

constants. In aMess agent, the delay is determined

by the amount of computation, or thinking, that the

agent does, where the thinking is implemented by or-

3



dinary Lisp code. Thus, Mess gives the researcher

a great deal of exibility in how to implement an

agent, while maintaining a realistic measure of its

computation time.

Figure 2 shows two agents implemented using

Mess. The code that de�nes the agents is domain-

dependent, but the ability to execute that code is

provided by Mess via an event stream that inter-

prets agent code. For e�ciency, the agent code is

compiled as much as possible. The interpreter event

stream executes the agent code, saving state as nec-

essary to allow the execution of other event streams

to be interleaved. Thus, all event streams progress

concurrently.

The duration database also allows introspection

by the agent, so that it can be aware of the compu-

tation time of its thinking activities and take that

into account when planning and scheduling. The

database thereby supports research in deliberation

scheduling.

4 Status

Mess is currently under development. An initial

implementation will be available by early spring of

1995. In addition, the Phoenix testbed will be re-

implemented atop the Mess substrate. This port is

being done for several reasons:

� to take advantage of the reduction in variance,

the improvement in experimental control and

the ability of the agent to introspect about its

computation time;

� to work out the details of how agents and en-

vironments interface to the substrate

� to provide an initial library of classes of events,

event streams, and other objects

� to make the Phoenix testbed available on

stock hardware, both for those who want to

work with it directly and as a starting point for

those wanting to build similar environments.

The re-implementation of Phoenix will probably be

available in late spring of 1995.

5 Conclusion

We have described a domain-independent substrate

for real-time AI simulators. Environments are de-

�ned using event types and event streams supplied

by Mess or by extending the existing set of types

via object-oriented programming. This ability to ex-

tend and specialize existing environment implemen-

tations will allow greater sharing of environments

among researchers. (TheMice testbed also uses this

idea, although at a higher level, since it commits to a

four-connected gridworld: agents can only move up,

down, left and right.) Agents are de�ned by writ-

ing Lisp code that implements thinking, sensing and

acting, with the latter two abilities implemented by

generating events. The duration of thinking code is

entirely machine-independent (hence noiseless and

repeatable) and entirely under the control of the

user.

Our approach does not solve all compatibility

issues, since agents necessarily think in terms of

the environment they intend to operate in. Con-

sider just the agent's and environment's model of

space. There are gridworlds, such as Mice and

TileWorld, graphworlds, such as Trains [9] and

Truckworld [6, 12], and worlds with continuous

space, such as Phoenix or Ars Magna [4]. A

Phoenix agent cannot be put into TileWorld

and work, because its movement commands are all

wrong. Nevertheless, we believe that our approach

will eliminate many of the problems in running an

agent in a di�erent environment.

It's important to test agents in di�erent environ-

ments because only then can we know how general

our results are: Is an agent e�ective only in certain

kinds of environments? Which ones? What features

of the environments help or hinder the agent's per-

formance? We believe agents should be well inte-

grated into their environments, but let's also keep

them somewhat segregated.

Acknowledgements

This work is supported by ARPA/Rome Laboratory

under contracts F30602-91-C-0076 and F30602-93-

C-0100. The U. S. Government is authorized to

reproduce and distribute reprints for governmental

purposes notwithstanding any copyright notice con-

tained hereon. The authors are also grateful to one

of the anonymous reviewers for their helpful com-

ments.

References

[1] Paul Bratley, Bennett L. Fox, and Linus E.

Schrage. A Guide to Simulation. Springer-

Verlag, 1983.

4



[2] Paul R. Cohen, Michael L. Greenberg,

David M. Hart, and Adele E. Howe. Trial by

�re: Understanding the design requirements for

agents in complex environments. AI Magazine,

10(3):32{48, Fall 1989.

[3] Edmund H. Durfee and T. A. Montgomery.

MICE: A exible testbed for intelligent coor-

dination experiments. In L. Erman, editor, In-

telligent Real-Time Problem Solving: Workshop

Report, Palo Alto, CA, 1990. Cimex Teknowl-

edge Corp.

[4] Sean P. Engelson and Niklas Bertani. Ars

Magna: The abstract robot simulator manual,

version 1.0. Technical Report 928, Yale Univer-

sity, New Haven, CT, October 1992.

[5] Michael Greenberg and David L. Westbrook.

The Phoenix testbed. Technical Report COINS

TR 90{19, Computer and Information Science,

University of Massachusetts at Amherst, 1990.

[6] Steve Hanks, Martha E. Pollack, and Paul R.

Cohen. Benchmarks, testbeds, controlled ex-

perimentation, and the design of agent archi-

tectures. AI Magazine, 13(4):17{42, 1993.

[7] Eric J. Horvitz, Gregory F. Cooper, and

David E. Heckerman. Reection and action

under scarce resources: Theoretical principles

and empirical study. In Proceedings of the

Eleventh International Joint Conference on Ar-

ti�cial Itelligence, pages 1121{1127, 1989. De-

troit, Michigan.

[8] David Joslin, Arthur Nunes, and Martha E.

Pollack. TileWorld user's manual. Technical

Report 93-12, Department of Computer Sci-

ence, University of Pittsburgh, 1993. Contact

tileworld-request@cs.pitt.edu.

[9] Nathaniel G. Martin and Gregory J. Mitchell.

A transportation domain simulation for debug-

ging plans. Obtained from the author, martin@

cs.rochester.edu, 1994.

[10] Thomas A. Montgomery and Edmund H. Dur-

fee. Using MICE to study intelligent dynamic

coordination. In Second International Confer-

ence on Tools for Arti�cial Intelligence, pages

438{444. IEEE, 1990.

[11] Thomas A. Montgomery, Jaeho Lee, David J.

Musliner, Edmund H. Durfee, Daniel Damouth,

Young-pa So, and the rest of the University of

Michigan Distributed Intelligent Agents Group.

MICE users guide. Technical report, Depart-

ment of Electrical Engineering and Computer

Science, University of Michigan, March 1994.

[12] D. Nguyen, Steve Hanks, and C. Thomas.

The TRUCKWORLD manual. Technical Re-

port 93-09-08, University of Washington, De-

partment of Computer Science and Engineer-

ing, 1993. Contact truckworld-request@cs.

washington.edu.

[13] Martha E. Pollack and Marc Ringuette. Intro-

ducing the Tileworld: Experimentally evaluat-

ing agent architectures. In Proceedings of the

Eighth National Conference on Arti�cial Intel-

ligence, pages 183{189. American Association

for Arti�cial Intelligence, MIT Press, 1990.

[14] Stuart J. Russell and Eric H. Wefald. Princi-

ples of metareasoning. Arti�cial Intelligence,

49:361{395, 1991.

[15] John A. Stankovic. Misconceptions about real-

time computing: A serious problem for next-

generation systems. Computer, 21(10):10{19,

October 1988.

5


