
In Working Notes of the Symposium on Representing Mental States and Mechanisms, AAAI-95 Spring Symposium

Series, pp. 15-21.

A Representation

and Learning Mechanisms

for Mental States

Paul Cohen, Marc Atkin,

Tim Oates and Dawn Gregory

Computer Science Technical Report 95-53

Experimental Knowledge Systems Laboratory

Computer Science Department, Box 34610

Lederle Graduate Research Center

University of Massachusetts

Amherst, MA 01003-4610

Abstract

We want to build an agent that plans by imagining sequences of future states. Subjectively, these

states seem very rich and detailed. Providing an agent with su�ciently rich knowledge about its world

is an impediment to studying this kind of planning, so we have developed mechanisms for an agent to

learn about its world. One mechanism learns dependencies between synchronous \snapshots" of the

world; the other learns about processes and their relationships.

This research is supported by ARPA/Rome Laboratory under contract F30602-93-C-0100.

1 A Motivating Example

Imagine an old kitchen cabinet, recently removed

from a kitchen wall, six feet long, with doors but

no back, nails sticking out of odd places, splintered

where the crowbar did its work. This cabinet rests

on the basement
oor, but you want to attach it to

the basement wall. It weighs about 50 lbs and it's

very cumbersome. Your �rst thought is to attach a

batten to the back of the cabinet along its length,

then drill screw holes in the basement wall, then drill

through the batten at locations that correspond to

the holes in the wall. You intend to lift the cabinet

four feet o� the ground, register the batten holes

with the screw holes, and screw the cabinet to the

wall. Running through this plan in your mind, you

realize it won't work, because you cannot hold a 50

lb., six-foot, structurally unsound cabinet four feet

o� the ground with one hand, while you screw it to

the wall with the other. You need another person to

help you, or you must build some sort of sca�olding

to hold the cabinet in place. Suppose neither option

is feasible. After thinking about it for a while, you

suddenly come up with a new plan: Attach three

or four L-brackets to the basement wall, hoist the

cabinet onto the L-brackets, and then secure it to

the wall. As you run through this plan mentally you

recognize several hazards: the doors will swing and

get in the way; the nails are dangerous and must be

removed; you must not grasp the cabinet where the

wood is splintered. Subjectively, each hazard seems

to be \read" from a mental movie of sorts: You imag-

ine hoisting the cabinet, having it lean slightly to-

ward you, and a door swinging open and knocking

your spectacles o� your nose. You imagine holding

the cabinet against the wall with your shoulder (now

that its weight is supported by the L-brackets) leav-

ing two hands free to drive in the screws, but then

you realize that if you drop a screw, you can't bend

down to pick it up, so you modify your plan and put

a bunch of screws in your shirt pocket. Or if you

don't have a pocket, you hold them in your teeth.

You can almost feel the metal chinking against your

teeth.

The most striking thing about this example is

how much you think about, and how rich your men-

tal images seem. Another characteristic of the exam-

ple is the \functional plasticity" of its components:

Your shoulder becomes something to brace against

the cabinet; your mouth becomes something to hold

screws; the cabinet doors become something that hit

you in the face; the nails, which once functioned as

fasteners, now tear your
esh. A third character-

istic of the example is that once you have a skele-

tal plan (e.g., lift the cabinet onto the L-brackets

and attach it to the wall) you seem to �ll in the

details by imagining executing the plan, by visual-

ization and forward simulation. Indeed, this is how

you discovered that the original plan wouldn't work.

Perhaps crude plans can be generated by conven-

tional, propositional AI algorithms, but checking a

plan seems to require some ability to imagine or vi-

sualize oneself executing it.

Subjectively, the frame problem and problems of

relevance don't seem to arise (McCarthy and Hayes,

1969). Suppose that in an attempt to have the

screws near at hand, you place them on one of the

shelves of the cabinet before you lift it. Where are

the screws when the cabinet has been hoisted into

place? Subjectively, in your mind's eyes and ears,

you can see and hear the screws as they roll o� the

shelf and fall on the
oor. Similarly, the relevance

of swinging doors seems to emerge as you imagine

hoisting the cabinet. Subjectively it isn't di�cult to

envision future states, nor are we troubled by the im-

possibility of knowing precisely how the world will

look after an action. We know enough about pro-

cesses such as hoisting cabinets to support planning

by visualization. The focus of this paper is how we

learn about processes.

Our purpose here is not to enter the debate

about the nature and implementation of mental im-

agery (Computational Intelligence, 1994). Nor are

we claiming that propositional AI planning is incom-

patible with the sort of imagining we just described.

Instead we are asking what it would take for an

AI planner to plan by forward simulation through

very rich mental states; we want to know whether it

would display functional plasticity, that is, whether

it could determine the relevance of objects de novo

as it imagines a plan unfolding. This paper does

not answer these questions|it doesn't even present

a planner|but it does describe how an agent can

learn representations of environment states and rules

to predict the \next" state given the \current" one.

2 Streams World

The �rst impediment to studying these questions

empirically is building an agent that has rich mental

states. To encode by hand everything that an agent

must know to solve the kitchen cabinet problem by

visualization would take months or years. Instead

we decided that the agent should learn everything it

needs to know about its environment through obser-

vation, freeing us from the task of constructing the

agent's knowledge base by hand.

1

The Streams World is an abstract environment in

which the sensory array can be arbitrarily large and

the dependencies that hold among sensed states can

be arbitrarily complex. The environment is a set of

time series of tokens, called streams. At each time

step, a new token is appended to the end of each

stream and is made accessible to the agent's sen-

sors. Previous tokens become inaccessible, although

the agent might have stored some of them. Suppose

we look at three streams:

Stream 1: G A B A G C D A A B G A C D B ...

Stream 2: X W A X X W Q W Q W Q A A A X ...

Stream 3: 1 2 2 2 4 2 4 3 5 7 7 8 9 3 2 ...

. . .

By convention, the leftmost column of tokens is the

state of the streams \now." A multitoken is a ver-

tical slice; for example, the \current" multitoken is

<G X 1> and the most recent previous multitoken is

<A W 2>. Multitokens can include wildcards; for ex-

ample, the multitoken <G X *> happens three times

in the history above.

We constructed the Streams World simulator so

that the value of a token in a stream (say, A in stream

1) can depend probabilistically on earlier tokens in

the stream and on tokens in other streams.

3 Learning Dependencies

among Multitokens

A large part of being able to visualize future states

is to construct temporally-ordered associations be-

tween states. Multitokens are representations of

states, or classes of states when the multitokens in-

clude wildcards. As a prelude to planning, then, our

agent must learn multitoken transition rules. Given

a multitoken or a remembered sequence of multi-

tokens, the agent must predict the next multitoken

or sequence of multitokens. More generally, as we

will see, the agent needs to learn about processes

that extend over time. Learning about multitoken

sequences is not su�cient, but is a good place to

begin.

We have developed two algorithms to learn such

rules. One runs incrementally, extending its rules

as new multitokens occur. The other stores a long

history of multitokens and replays it in batch mode

to learn rules. The former is more psychologically

plausible, but it is less well developed than the

batch algorithm, which we describe here. Both algo-

rithms learn dependencies between individual multi-

tokens, that is, neither learns dependencies between

sequences of multitokens. We will return to this is-

sue later.

The multi-stream dependency detection algo-

rithm (msdd) is an extension of Adele Howe's al-

gorithm for �nding dependencies between tokens in

a single stream (Oates, Gregory and Cohen, 1995;

Howe and Cohen, 1995). We will describe Howe's

algorithm �rst.

Let (p; s; �) denote a dependency. Each depen-

dency rule says that when the precursor token, p,

occurs at time step i in the stream, the successor to-

ken, s, will occur at time step i+� in the stream with

some probability. When this probability is high, the

dependency is strong.

Consider the stream acbabaccbaabacbbacba.

Of all 19 pairs of tokens at lag 1 (e.g. ac, cb, ba,

: : :) 7 pairs have b as the precursor; 6 of these have a

as the successor, and one has something other than

a (denoted a), as the successor. The following con-

tingency table represents this information:

Table(b,a,1) =

a a total

b 6 1 7

b 1 11 12

total 7 12 19

It appears that a depends strongly on b because

it almost always follows b and almost never follows

b. We can determine the signi�cance of each depen-

dency by computing a G statistic for its contingency

table. The table shown above has a G value of 12.38,

signi�cant at the .001 level, so we reject the null hy-

pothesis that a and b are independent and conclude

that (b,a,1) is a real dependency.

Now we can generalize Howe's method to multi-

ple streams. For a set of n streams, all multitokens

will have the form < x1; : : : ; xn >, where xj indi-

cates the value in stream j. Consider the following

streams:

acBABAccbaabacBAcBAc

baCACAbacbababCAbCAb

The dependency (<b,c>,<a,a>,1) indicated in

boldface is signi�cant at the .01 level with a G value

of 7.21. The corresponding contingency table is:

Table(b,a,1) =

<a,a> <a,a> total

<b,c> 4 1 5

<b,c> 2 12 14

total 6 13 19

We now have both syntax and semantics for mul-

tistream dependencies. Syntactically, a dependency

2

is a triple containing two multitokens (a precursor

and a successor) and an integer (the lag). Depen-

dencies can also be expressed in the form x !� y

where x and y are events. Semantically, this says

the occurrence of x is indicative of or predicts the

occurrence of y, � time steps in the future.

The problem of �nding signi�cant two-item de-

pendencies is framed in terms of search. A node

in the search space consists of a precursor/successor

pair, a predictive rule. The goal is to �nd predic-

tive rules that are \good" in the sense that they

apply often and are accurate. The root of the search

space is a pair of multitokens with wildcards in all

n positions. The children of a node are generated

by replacing (instantiating) a single wildcard in the

parent, in either the precursor or successor, with a

token that may appear in the appropriate stream.

For example, the node < a,* >!< *,x > has both

< a,y >!< *,x > and < a,* >!< b,x > as chil-

dren.

The rule corresponding to a node is always more

speci�c than the rules of its ancestors and less spe-

ci�c than any of its descendants. This fact can be

exploited in the search process by noting that as we

move down any branch in the search space, the value

in the top left cell of the contingency table (n1) can

only remain the same or get smaller. This leads to

a powerful pruning heuristic. Since rules based on

infrequently co-occurring pairs of multitokens (those

with small n1) are likely to be spurious, we can es-

tablish a minimum size for n1 and prune the search

space at any node for which n1 falls below that cut-

o�. In practice, this heuristic dramatically reduces

the size of the search space that needs to be consid-

ered.

Our implementation of msdd is a best �rst search

with a heuristic evaluation function that strikes a

tunable balance between the expected number of

hits and false positives for the predictive rules when

they are applied to previously unseen data from the

same source. We de�ne aggressiveness as a param-

eter, 0 � a � 1, that speci�es the value assigned to

hits relative to the cost associated with false posi-

tives. For a given node (rule) and its contingency

table, let n1 be the size of the top left cell, let n2

be the size of the top right cell, and let tS be the

number of non-wildcards in the successor multito-

ken. The value assigned to each node in the search

space is S = tS(an1� (1� a)n2). High values of ag-

gressiveness favor large n1 and thus maximize hits

without regard to false positives. Low aggressive-

ness favors small n2 and thus minimizes false posi-

tives with a potential loss of hits. Since the size of

the search space is enormous, we typically impose a

limit on the number of nodes expanded. The output

of the search is simply a list of the nodes, and thus

predictive rules, generated.

4 Evaluating MSDD

Because Streams World is an abstract environment,

we can control the number of streams, the number of

token values in each stream, the number of unique

multitokens, and the complexity of the probabilis-

tic relationships among multitokens. Thus, we can

present an agent with an arbitrarily rich environ-

ment from which to construct rules governing mul-

titoken transitions.

In one experiment (Oates et al.,1995) we gener-

ated streams that were for the most part random

but contained a small number of probabilistic de-

pendencies between multitokens. Our independent

variables were the number of streams (5, 10, 20); the

length of streams (100, 1000, 5000); the number of

unique tokens in each stream (5, 10, 20). In each

condition, streams were seeded with dependencies.

The probability that any predecessor would appear

was .1, .2 or .3, and the probability that the succes-

sor would follow the predecessor was .1, .5 or .9. Pre-

decessor and successor multitokens could contain 1,

3, or 5 non-wildcard tokens, although these param-

eters were varied factorially, so sometimes a highly

speci�c predecessor predicted a general successor, or

vice versa. We ran msdd under all these conditions,

collected the predictive rules it generated, and used

them to predict multitokens in new streams that had

the same probabilistic dependency structure as the

training streams. In general, every multitoken in the

test streams was matched by more than one predic-

tive rule, so we also tested a number of heuristics for

selecting rules, that is, deciding which prediction to

make.

In general, the only limitation on msdd's accu-

racy is the probability that a successor follows a pre-

decessor. In particular, the probability of seeing a

predecessor and the degree of speci�city of the prede-

cessor and successor mutitokens do not a�ect accu-

racy. msdd's performance actually improves as the

number of unique tokens in streams increases. The

length of streams has very little impact on msdd's

accuracy. Although msdd generates many predic-

tive rules, most of which are spurious, it is easy to

separate good rules from bad. In the previous exper-

iments, we discarded those with n1 < 5 and sorted

the remaining rules by their G statistics. The fol-

lowing experiment used a slightly di�erent criterion.

Because msdd rules contain pairs of multitokens,

3

we decided to apply msdd to classi�cation problems

in which the \precursor" is a feature vector and the

\successor" is a classi�cation. We ran the algorithm

on a dozen datasets from the Irvine Machine Learn-

ing repository. Most of these datasets were chosen

from a set of 13 identi�ed by Zheng (1994) as a mini-

mal representative set. We compared msdd's perfor-

mance with other published results for each dataset.

On ten datasets for which multiple results have been

published, msdd performance exceeds that of half

the reported results on six datasets. In only one case

did it perform badly (the soybean dataset), and of-

ten it performed extremely well (Oates, Gregory and

Cohen, 1995).

5 Fluents vs. Multitokens

With multitoken transition rules for the abstract

Streams World environment, an agent can imagine

possible future multitokens by chaining through its

rules. But when we consider how real environments

might be encoded in streams we run into a prob-

lem. In real environments, states persist for di�erent

amounts of time, or change over time. Suppose an

environment includes a fancy electronic rattle that

emits a pair of tones, high-low-high-low, when it's

shaken. We want an agent to learn that the rat-

tle makes noise when shaken. The natural way to

think of this is that a process, shaking, is associ-

ated with another process, noise. It doesn't matter

how long the agent shakes the rattle; what matters

is the relationship between the onset of shaking and

the onset of noise, and, at the other end, the ter-

minations of shaking and noise. If you observe that

Y starts shortly after X starts, and ends shortly af-

ter X ends, then you'd have no trouble associating

the two events. msdd has trouble because it's busy

searching for associations between multitokens at

each time step|exactly the wrong approach if you

want to learn associations between persistent phe-

nomena. Suppose aaabbb in stream 1, below, rep-

resents the high-low tone of the rattle; po in stream

2 represents a forward arm motion followed by a

backward one; and r in stream 3 represents grasping

the rattle. We want the agent to learn that waving

(popo...) while grasping the rattle (r...) results

in noise (aaabbbaaabbb...). Instead, msdd will

learn a lot of rules such as < a,p,r >!< a,o,r >

and < a,*,* >!< a,*,* >. It will not learn that

aaabbb in stream 1 is a single instance of a re-

peating process, or that (aaabbb)+ represents an

unchanging pattern. (The plus sign denotes repeti-

tion.)

Stream 1: A A A B B B A A A B B B C D B C ...

Stream 2: P O P O P O P O P O P O P O V X ...

Stream 3: R R R R R R R R R R R R R R R R ...

Borrowing from McCarthy and Hayes (1969), we

call such patterns
uents. Informally, a
uent is

something that doesn't change over time. The com-

ponents of the (aaabbb)+
uent change, but their

pattern does not. Fluents are analogous to the Gib-

sonian notion of perceptual invariant|something

that remains constant amidst change, like the deriva-

tive of a function (Gibson, 1979). The durations of

uents vary, whereas the duration of a multitoken

is just one time step. We want agents to learn to

characterize the current state by the
uents that are

currently active, not by the current multitoken. Al-

though the current state in the example, above, is

the multitoken a,p,r, we want an agent to charac-

terize it as \noise, waving, grasping," if these are the

active
uents.

The question of how
uents become active, in-

deed, what \active" means, must be addressed in a

discussion of mental states. The scope of a
uent is

the set of streams in which activity can trigger a
u-

ent; for instance, stream 1 is the scope of the
uent

(aaabbb)+ . When a
uent is triggered, it starts to

make predictions about the contents of the streams

in its scope, and if these predictions are correct for a

number of time steps, then the
uent becomes active.

Conversely, an active
uent that makes bad predic-

tions for some period will become inactive. Some

but not all active
uents are attended. The distinc-

tion arises because we want an agent to not attend to

something (e.g., the lighting in a room) but still no-

tice when it changes. Attended means available for

mental work; in particular, the system we describe

below learns associations only among attended
u-

ents. We call attended and active
uents, but not

triggered
uents, the constituents of mental state.

This activation scheme has many variants, none

of which are implemented, currently. First, it seems

plausible that active
uents should in
uence which

uents become active. This might be done by

\boosting" triggered
uents that are associated with

currently active ones. An even simpler scheme in-

volves activating composite
uents and their con-

stituents whenever one constituent becomes active.

For example, if the
uent a+ becomes active, so will

(aaabbb)+ and consequently, b+. Second, some
u-

ents are more important than others because they

are associated with extraordinary pain or pleasure.

It seems plausible that they might become active as

soon as they are triggered. Third, some events hap-

pen very quickly, so there isn't time for a triggered

uent to prove itself by making accurate predictions

4

for several time steps. If the phone rings while you

are reading this paper, it becomes part of your men-

tal state very quickly; you don't require the triggered

phone-ringing
uent to predict several rings before

you activate the
uent. Fourth, the ambiguity of

sensory experience is such that several
uents with

identical or overlapping scope might be triggered.

We require some methods to assess which of these

alternative interpretations of the world should be-

come active.

Note that mental states correspond to external

world states in the sense that
uents are triggered

by perceived world states and become (and remain)

active if they can predict world states. Fluents are

interpretations of sensory data in streams, but they

remain closely associated with sensory data. Thus

the
uent (aaabbb)+ tells the agent that two sen-

sory experiences follow each other repeatedly. In

this sense,
uents provide the sort of abstraction of

sensory information that Jean Mandler argues is es-

sential for infant conceptual and language develop-

ment (Mandler, 1992). According to Mandler, the

basis for conceptual development is sensory regular-

ities; for example, babies can distinguish animate

and inanimate motion very early, so they have a

perceptual basis for organizing their worlds into two

classes|things that move in an up-and-down, loping

way, and things that move in a straight line. These

classes become re�ned and abstract, and infants

eventually learn names for them, but their genesis is

in a distinction made at a perceptual level. Similarly,

if an agent distinguishes at a perceptual level the

alternating pattern (aaabbb)+ from the repeating

pattern (ccc)+, then the alternating/repeating dis-

tinction is a basis for classi�cation. It might not be

a very helpful basis; the class of things that present

alternating sequences of, say, sounds or colors might

not be a basic class (in the sense Rosch uses the

term). Whether of not the alternating/repeating

distinction is helpful, it ought to be possible to build

an agent to detect regularities in
uents (and rela-

tionships between
uents) that do provide a percep-

tual basis for basic categories.

Fluents predict themselves (as you would ex-

pect from a structure that persists over time) and

they also are associated with other
uents. Thus

(aaabbb)+ , (po)+ and r+ might be associated.

One is tempted to view
uents as \concepts" in a

\semantic network," but they di�er in one impor-

tant respect: the links between
uents do not carry

meaning, as the links between nodes do in a semantic

network. Links between
uents indicate association,

only. The semantics of
uents are provided by their

grounding in streams; in particular, we describe an

agent with a�ective streams in the following section.

For this agent, the meaning of a
uent is the interest,

pleasure or pain associated with the
uent.

6 Learning Fluents in Baby

World

The Streams World o�ers
exibility and control, but

it does not model any environment in particular. We

have implemented another environment according to

the same principles|tokens in streams are depen-

dent and change over time|but this one is slightly

more realistic. A simulated \baby" can see, hear,

turn its head, wave its arms and perform other ac-

tions in an environment that includes rattles, a mo-

bile, a bottle, another agent (\Mommy") and, most

cruelly, a knife. Baby has access to external streams

that represent sights, sounds and haptic sensations;

and it has internal streams that register pleasure,

pain, interest, hunger, and somatic sensations.1 De-

pendencies between tokens and streams are encoded

into the simulator; for example, when the mobile

spins, Baby's pleasure and interest streams change,

and when Baby grasps the knife, the pain stream

changes. If Baby howls for a while, then Mommy

will probably enter its �eld of view and Baby's plea-

sure stream will change. We await the day that Baby

howls in order to bring Mommy and experience plea-

sure. Even this rudimentary planning is currently

beyond Baby's grasp.

We have implemented a
uent-learning mecha-

nism for Baby. It has not been evaluated, but we

will describe how it works and show some examples

of
uents it has learned.

Fluent learning has three aspects. First, to learn

individual
uents, an agent must learn regularity in

a subset of streams, that is, the agent must learn a

uent's scope, and what happens in the streams in

the scope. Second, the agent must learn associations

between
uents. Third,
uents (particularly scopes)

might be revised. We have implemented the �rst and

second type of
uent learning; the third depends on

more sophisticated attentional mechanisms, as de-

scribed below.

Because Baby is embedded in an ongoing envi-

ronment, and has essentially unlimited opportunities

to learn, it needn't extract all the structure from its

1We thank Matt Schmill for building the CLIM interface to Baby World. To obtain Baby World for your own use, send mail

to dhart@cs.umass.edu.

5

streams. Instead, it can sample the streams, detect-

ing snippets of structure, over time. Thus, the �rst

kind of
uent learning involves repeated sampling of

just one or two streams, at random, for a few time

steps, looking for regularities. Suppose Baby sam-

ples stream 1, above. It will observe three a tones,

followed by three b's. When something is repeated

in a stream, a
uent is formed. Thus, Baby learns

a+ and b+, two
uents, each with stream 1 as the

scope. In stream 2, the pattern po is repeated, so

Baby learns po+. Baby also learns that a+ precedes

b+, and the pattern a+b+ repeats, so it can form a

larger
uent (a+b+)+.

Baby doesn't require every occurrence of a
uent

to last exactly the same number of time steps; for

example, aaab... and aaaaaaab... are both oc-

currences of a+ (terminating with b). Interestingly,

Baby can easily learn the average length of a
uent

by examining its contingency table. Suppose stream

1 contains

A A A A A B B B A A B B B A A A A A A B B.

This yields a contingency table for testing the sig-

ni�cance of the
uent a+:

Table(a,a,1) =

a a total

a 10 3 13

a 2 5 7

total 12 8 20

For this table G = 4:5, a signi�cant value, so we

conclude that a follows a more than we'd expect by

chance if occurrences of a were independent. Notice

that the ratio of the �rst row total and the top-right

cell, 13=3 = 4:33, is the average length of the
u-

ent a+. Thus Baby learns a
uent and its temporal

extent. Given a
uent's duration, it's easy to imag-

ine Baby testing the hypothesis that a particularly

long or short version of the
uent di�ers signi�cantly

from the average (a t test would do it), and perhaps

forming a subclass of \long a+ ." (We have not yet

implemented this idea.)

These simple
uents can now be associated. Ob-

viously the space of combinations of
uents is very

large, so Baby learns associations only between at-

tended
uents, and only when they start or end at

roughly the same time, or when one ends and an-

other begins. Here are two examples:

START (& (+ TIREDNESS TIRED)(+ VOICE QUIET))

(+ HUNGER SOMEWHAT-HUNGRY)

PREDICT (+ TIREDNESS TIRED)

(+ VOICE CRYING)

In the �rst example, three
uents are associ-

ated. The TIREDNESS TIRED and VOICE QUIET
u-

ents have already been associated to form the con-

junctive
uent (& (+ TIREDNESS TIRED)(+ VOICE

QUIET)) and now the conjunction is associated with

(+ HUNGER SOMEWHAT-HUNGRY) because they start

at roughly the same time. That is, Baby notices

a change of state in the scope of the conjunctive

uent (i.e., the TIREDNESS and VOICE streams) at

about the same time it observes a change in the

HUNGER stream. In the second example, Baby no-

tices that TIREDNESS TIRED precedes and thus pre-

dicts (+ VOICE CRYING).

The mechanics of association are by now famil-

iar: We build a contingency table for each type of

association between
uents X and Y. For instance,

to test whether X and Y start at roughly the same

time, we count the number of times X and Y start

within 10 time steps of each other, and the num-

ber of times X is roughly coincident with something

other than Y, and the coincidences of X and Y, and

X and Y . If the resulting G statistic is signi�cant,

we say X and Y start together (within 10 time steps)

to a signi�cant extent. The procedure is the same

for other types of association, which include:

Stop. When X ends, Y ends.

Terminate. When X begins, Y ends.

Predict. When X ends, Y begins.

All these relationships are \rough" in the sense that

X and Y must co-occur not exactly, but within a

window of several time steps duration.

A third type of
uent learning corresponds to

what Piaget called accommodation|the incremen-

tal modi�cation of
uents through experience. We

haven't implemented accommodation because it re-

quires more sophisticated attentional mechanisms

than Baby has now.

Attention and learning are tightly coupled in our

scheme, because Baby learns only what it attends to,

and its attention will be directed in part by what it

knows. Currently, Baby attends to all active
u-

ents, because we haven't implemented any means

of focusing attention. It would be relatively easy

to cobble something together and call it an atten-

tional mechanism, but we are reluctant to do this

because we think attention is important to learning,

autonomous behavior and consciousness.

For starters, attention is related to one's task or

goals, but Baby has neither. Although Baby expe-

riences pleasure and pain (in the sense that tokens

6

appear in a�ect streams) it does not currently act

to achieve pleasure or avoid pain. In fact, Baby's

actions are either random|swinging its arms, turn-

ing its head|or probabilistic reactions to tokens in

its streams; for example, it will probably cry if the

HUNGER stream contains MODERATELY-HUNGRY. Baby

has no goals and thus no basis for focusing attention

on streams that are relevant to its aims. Although

Baby might learn associations between hunger, cry-

ing, Mommy and comfort, it is constitutionally inca-

pable of recognizing comfort as a goal or planning to

cry to bring Mommy and achieve comfort. It would

be simple to impose a planner on Baby. We could

give it means-ends analysis, and it could attempt

to reduce the di�erence between the current state

(moderately hungry) and a goal state (comfort) by

taking some action. But this presumes Baby knows

what an action is and does, and we are very unwilling

to impose this ontological primitive on Baby if there

is any chance Baby might learn it by interacting with

its environment. Similarly, we don't want to impose

a planner on Baby if Baby might learn associations

that, when triggered, activated and attended, give

rise to actions that avoid pain and achieve pleasure.

In sum, Baby lacks the most rudimentary notions of

goal and action, and it remains to be seen whether

they can be learned. Until then, we cannot rely on

goals to focus attention.

Some other attentional mechanisms are closer at

hand. We are currently implementing habituation

and a \do it again" heuristic. Habituation means

Baby is less likely to attend to an attended
uent as

time goes on. The \do it again" heuristic says if an

attended
uent includes a positive a�ect stream and

a somatic stream in its scope, then repeat the action

in the somatic stream. For example, a
uent might

include streams for grasping, waving, the sight and

sound of a rattle, and interest (which is a positive

a�ect). As long as Baby waves the rattle and it

makes noise, this
uent will be active. Because it is

associated with positive a�ect, Baby will repeat the

somatic component of the
uent (waving). Eventu-

ally, Baby will cease to attend to this
uent because

of habituation, but in the meantime, it will wave

the rattle a lot. The parallels to Piagetian circular

reactions are intriguing.

Because the \do it again" heuristic keeps a
u-

ent attended for a relatively long time (relative to

Baby's current, random, activities, that is), it pro-

vides the opportunity to learn associations between

the attended
uent and others. It also helps Baby

to learn associations with events that would other-

wise be very rare. This is how Piaget's notion of

accommodation might emerge: an attended
uent is

associated with others, forming larger
uents. Be-

cause the attended
uent persists (thanks to the \do

it again" heuristic), Baby is apt to learn new
uents

that are elaborations of it, rather than something

completely unrelated.

7 Conclusion

Let us step back from the speculations of the pre-

vious section to assess what we have actually ac-

complished. The msdd algorithm learns predic-

tive relationships among multitokens that comprise

streams or features, for the purpose of categorization

and anticipating successor multitokens. Our
uent-

learning algorithm learns simple
uents and four

kinds of temporal associations between them. We

have generalized the msdd algorithm, which learns a

generalization hierarchy of associations between fea-

ture vectors. The
uent-learning algorithm learns a

generalization hierarchy of associations between
u-

ents, so for the �rst time, we can learn relationships

between processes, activities, experiences with tem-

poral extent. We think these relationships provide

the mental raw material for planning by imagina-

tion, as described in section 1. An optimistic view,

then, is that Baby lacks only the notions of goals

and actions, and given these, it will be able to plan

by imagination. In this view, Baby's rules di�er in

complexity but not in kind from our knowledge that

when we hoist a rickety kitchen cabinet, its doors

can swing out an hit us on the nose.

In fact, we don't know whether relationships be-

tween
uents are di�erent in kind from the knowl-

edge we use to imagine activities. The structure

of
uents (and relationships among them) seems

minimal compared with the rich structures in, say,

the case-based planning literature (e.g., Hammond,

1986). We do not yet know how Baby \carves up" its

experiences. We tend to think of processes in terms

of a beginning, middle, and end, and there's consid-

erable consensus about which activities are which.

We \just know" that hunger leads to crying, which

brings Mommy and results in comfort. Baby might

learn instead that eating leads to hunger, which we

\just know is wrong," even though it is highly pre-

dictive regularity. It remains to be seen how Baby

will carve up its world.

Baby is not a tabula rasa, of course, and its prior

structure will in
uence what it learns. One source of

bias is Baby's perceptual system, which places \in-

terpretation" tokens in streams. For example, when

a green rattle is within Baby's �eld of view, the to-

7

ken GREEN is placed in the SIGHT-COLOR stream and

RATTLE-SHAPE goes in the SIGHT-SHAPE stream. Ob-

jects can share properties, such as greenness, and

some non-rattles have a RATTLE-SHAPE, so percep-

tion is not without ambiguity, but the fact remains

that Baby perceives the world according to a set of

streams and token values that we designed. Another

source of bias is Baby's attentional mechanism. We

have already described how the \do it again" heuris-

tic is expected to result in elaborating
uents, that

is, learning new
uents by modifying old ones. Per-

haps the most important source of bias is something

Baby currently lacks: the ability to group
uents

into classes based on sensory features. As we noted

earlier, this ability is essential in Mandler's theory

of conceptual development, but completely absent

from Baby.

8 References

Computational Intelligence. 1994. The Imagery De-

bate Revisited. Special issue of Computational In-

telligence, Vol. 9, No. 4.

Gibson, J .J. 1979. The Ecological Approach to Vi-

sual Perception. Boston: Houghton-Mi�in.

Hammond., K. 1986. CHEF: A Model of Case-based

Planning. Proceedings of the Fifth National Confer-

ence on Arti�cial Intelligence. pp. 261-271.

A. E. Howe and P. R. Cohen. Understanding Plan-

ner Behavior. To appear in AI Journal, 1995.

J. M. Mandler. How to Build a Baby: II. Concep-

tual Primitives. Psychological Review, 1992, Vol. 99,

No. 4, pp. 587-604.

J. McCarthy and P. J. Hayes. 1969. Some Philo-

sophical Problems from the Standpoint of Arti�cial

Intelligence. In B. Meltzer and D. Michie, Machine

Intelligence IV. Elsevier.

T. Oates, D. E. Gregory and P. R. Cohen. Detect-

ing Complex Dependencies in Data. To appear in

Proceedings of the Fifth International Workshop on

AI and Statistics, 1995.

Z. Zheng. A benchmark for classi�er learning. Tech-

nical Report from Basser Department of Computer

Science, University of Sydney, NSW. 1994.

9 Acknowledgments

We thank two anonymous reviewers for their insight-

ful and encouraging comments. The work on msdd

was supported by arpa/rl Contract F30602-93-C-

0100.

8

