
 

Abstract 

The Hats Simulator is a lightweight proxy for 
many intelligence analysis problems, and thus a 
test environment for analysts' tools.  It is a vir-
tual world in which many agents engage in indi-
vidual and collective activities.  Most agents are 
benign, some intend harm.  Agent activities are 
planned by a generative planner.  Playing against 
the simulator, the job of the analyst is to find 
harmful agents before they carry out attacks.  
The simulator maintains information about all 
agents.  However, information is hidden from 
the analyst and some is expensive.  After each 
game, the analyst is assessed a set of scores in-
cluding the cost of acquiring information about 
agents, the cost of falsely accusing benign 
agents, and the cost of failing to detect harmful 
agents.  The simulator is implemented and cur-
rently manages the activities of up to a hundred 
thousand agents. 

1. Introduction 
The Hats Simulator was designed originally to meet the 
needs of academic researchers who want to contribute tech-
nology to Homeland Security efforts but lack access to do-
main experts and classified problems. Most academic re-
searchers do not have security clearances and cannot work 
on real data, yet they want to develop tools to help analysts. 
In any case, real data sets are expensive: They cost a lot to 
develop from scratch or by “sanitizing” classified data. They 
also are domain-specific, yet much of the domain expertise 
is classified. Because data sets are expensive, many that 
have been made available to researchers are relatively small 
and the patterns to be detected within them are fixed, few, 
and known, so working with these data sets is a bit like 
solving a single “Where’s Waldo” puzzle. Sometimes there 
also is the problem that real data sets model “signal” (terror-
ist activities) not “noise” (everything else) yet extracting 

signal from noise is a great challenge. Data sets in general 
are static, whereas data become available to analysts over 
time. It would be helpful to have a data feed, something that 
generates data as events happen. To validate analysts’ tools, 
it would be helpful to have a generator of terrorist and non-
terrorist activities. The generator should be parameterized 
for experimental purposes (e.g., varying the distinctiveness 
of terrorist activities, to make them more or less easily rec-
ognizable); and it should come up with novel activities, re-
quiring analysts and their tools to both recognize known 
patterns and reason about suspicious patterns. 

Hats is home to hundreds of thousands of agents (hats) 
which travel to meetings. Some hats are covert terrorists and 
a very few hats are known terrorists. All hats are governed 
by plans generated by a planner. Terrorist plans end in the 
destruction of landmarks. The object of a game in the Hats 
simulator is to find terrorist task forces before they carry out 
their attacks. One pays for information about hats, and also 
for false arrests and destroyed landmarks. At the end of a 
game, one is given a score, which is the sum of these costs. 
The goal is to play Hats rationally, that is, to catch terrorist 
groups with the least combined cost of information, false 
arrests, and destroyed landmarks. Thus Hats serves as a test 
bed not only for analysts’ tools but also for new theories of 
rational intelligence analysis. Hats encourages players to ask 
only for the information they need, and to not accuse hats or 
issue alerts without justification. 

The Hats simulator is very lightweight: Agents have few 
attributes and engage in few elementary behaviors; how-
ever, the number of agents is enormous, and plans can in-
volve simultaneously many agents and a great many in-
stances of behaviors. The emphasis in Hats is not domain 
knowledge but managing enormous numbers of hypotheses 
based on scant, often inaccurate information. By simplifying 
agents and their elementary behaviors, we de-emphasize the 
domain knowledge required to identify terrorist threats and 
emphasize covertness, complex group behaviors over time, 
and the frighteningly low signal to noise ratio. 
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Figure 1 – Information Broker Interface to the Hats Simulator 

The Hats environment consists of the core simulator and 
an information broker. The information broker is responsi-
ble for handling requests for information about the state of 
the simulator and thus forms the interface between the simu-
lator and the analyst and her tools (see Figure 1). Some in-
formation has a cost, and the quality of information returned 
is a function of the “algorithmic dollars” spent. Analysts 
may also take actions: they may raise beacon alerts in an 
attempt to anticipate an attack on a beacon, and they may 
arrest agents believed to be planning an attack. Together, 
information requests and actions form the basis of scoring 
analyst performance in identifying terrorist threats and pre-
venting terrorist attacks. Scoring is assessed automatically 
and serves as the basis for analytic comparison between 
different analysts and tools. The simulator is implemented 
and manages the activities of up to a hundred thousand 
agents. 

The following sections outline the Hats domain, including 
how we generate populations of hats and how the planner 
schedules hat meetings. We describe the information request 
framework, the actions the analyst may take, and scoring. 
We conclude with a discussion of the future of the Hats 
Simulator. 

2. The Hats Domain 
The Hats Simulator models a “society in a box” consist-
ing of many very simple agents, hereafter referred to as 
hats.  Hats get its name from the classic spaghetti west-
ern, in which heroes and villains are identifiable by the 
colors of their hats. The Hats society also has its heroes 
and villains, but the challenge is to identify which color 
hat they should be wearing, based on how they behave.  
Some hats are known terrorists; others are covert and 
must be identified and distinguished from the benign hats 
in the society.   

Hats is staged in a two-dimensional grid on which hats 
move around, go to meetings and trade capabilities.  The 
grid consists of two kinds of locations: those that have no 
value, and high-valued locations called beacons that ter-
rorists would like to attack.  All beacons have a set of 
attributes, or vulnerabilities, corresponding to the capa-
bilities which hats carry.  To destroy a beacon, a task 
force of terrorist hats must possess capabilities that 
match the beacon’s vulnerabilities, as a key matches a 
lock.  In general, these capabilities are not unique to ter-
rorists, so one cannot identify terrorist hats only on the 
basis of their capabilities. 

The Hats society is structured by organizations.  All 
hats belong to at least two organizations and some hats 

belong to many.  Terrorist organizations host only known 
and covert terrorist hats.  Benign organizations, on the 
other hand, may contain any kind of hat, including 
known and covert terrorists. 

2.1 Population Generation  
Hats populations may be built by hand or generated by 
the Hats Simulator.  Because the constitution of a popula-
tion affects the difficulty of identifying covert terrorists, 
population generation is parameterized.  There are four 
sets of population parameters.  The first set specifies the 
total number of known terrorists, covert terrorists and 
benign hats in the population.  Another set defines the 
number of benign and terrorist organizations.  Not all 
organizations have the same number of members, so a 
third set of parameters assigns the relative numbers of 
hats that are members of each organization, represented 
as a ratio among organizations.   For example, the ratio 
2:1:1 means that the first organization has twice as many 
members as the other two.  Finally, hats may be members 
of two or more organizations.  An overlap parameter de-
termines the percentage of hats in each organization that 
are members of two or more other organizations.  Since 
hat behaviors are governed by their organization mem-
bership, as we will see in the next section, organization 
overlap affects how difficult it is to identify covert terror-
ist hats.  To generate populations with hundreds of thou-
sands of hats and thousands of organizations, we use a 
randomized algorithm that estimates organization overlap 
percentage and membership ratios while matching the 
total number of organizations and hats in the population.  
When the population is generated, each hat is assigned a 
native capability that they will carry throughout the dura-
tion of the simulation, and a set of traded capabilities that 
are temporary, expiring after some number of ticks (e.g., 
within 40 ticks).  Hats are also assigned random locations 
in the Hats grid world.   

2.2 Meeting Generation 
Hats act individually and collectively, but always planfully.  
In fact, the actions of hats are planned by a generative plan-
ner.  Benign hats congregate at locations including beacons. 
Terrorist hats meet, acquire capabilities, form task forces, 
and attack beacons.  The purpose of the planner is to con-
struct an elaborate “shell game” in which capabilities are 
passed among hats in a potentially long sequence of meet-
ings, culminating in a final meeting at a target.  By moving 
capabilities among hats, the planner masks its intentions.  
Rather than directing half a dozen hats with capabilities 
required for an attack to march purposefully up to a beacon, 
instead hats with required capabilities pass them on to other 
hats, and eventually a capable task force appears at the bea-
con.  

Each organization has a generative planner that plans 
tasks for its members.  Hats that are currently participating 
in a task are reserved; hats not currently part of a task are 
free.  At each tick, each organization has a chance of begin-



ning a new task.  When a new task is started, the Hats meet-
ing planner creates a task force, a subset of hats selected 
from the free hats of the organization.  The size of a task-
force is controlled by a parameter.  The planner next selects 
a target location in the Hats world.  With some probability, 
that location may be a beacon, otherwise a random location 
is selected.  If a beacon is selected as the target, the goal of 
the task is to bring to that location the set of required capa-
bilities that match the vulnerabilities of the beacon.  If the 
location is not a beacon, a random set of required capabili-
ties is selected as the set to bring to the location. 

 

Figure 2 – Example of a generated meeting tree.  Each box repre-
sents a meeting and contains a list of participating hats.  Arrows 
indicate the temporal order of meetings. 

 Task force members may or may not already possess the 
required capabilities; usually they don’t.  The planner cre-
ates a set of meetings designed to ensure that the task force 
acquires all of the required capabilities before it reaches the 
target location.  This is accomplished by constructing a 
meeting tree that specifies meetings and their temporal or-
der.  Figure 2 shows an example meeting tree, where boxes 
represent planned meetings among hats and arrows repre-
sent the planned temporal partial order of meetings.  The 
tree is “inverted” in the sense that the arrows point from 
leaves inward toward the root of the tree.  Parent meetings, 
where arrows originate, are executed first.  When all of the 
parent meetings of a child meeting have completed, then the 
child meeting happens.  This ensures that none of the hats 
that participate in the child meeting are busy in other meet-
ings.  Meeting execution means that the hats participating in 
the meeting begin moving toward the meeting location.  The 
final, root meeting takes place at the task target location and 
includes all of the task force hats.  The locations of the other 
meetings in the tree are selected randomly. 
 Initially, the meeting tree is skeletal, containing meetings 
whose only participants are the task force members them-
selves.  From the organization’s remaining free hats, the 
planner selects a second group of resource hats that carry 
required capabilities not currently carried by the task force.  
Resource hats are randomly assigned to existing meetings, 
and trades of required capabilities are scheduled to take 
place during the meeting.  The planner finishes tree con-
struction by adding decoy meetings, spurious trades and 
additional free hats not already involved in moving required 
capabilities to the goal.  A constraint maintained throughout 
tree construction is that at least one hat from a parent meet-

ing will go on to meet in a child meeting.  These hats will 
either be task force members, resource hats carrying re-
quired capabilities to trade in the next meeting, or will be 
decoy hats arriving from decoy meetings. 
 Completed meeting trees are added to a queue of pending 
tasks.  At each tick, the simulator engine searches the task 
queue for meetings with no currently executing parent meet-
ings.  These meetings are then assigned to a queue of cur-
rently executing meetings and the participant hats are in-
crementally moved toward the meeting location.  When all 
of the participants have arrived at the meeting location, the 
meeting itself lasts for two ticks, after which all hats not 
participating in more meetings are set “free” and become 
available to participate in new meetings. 
 Meeting trees typically have a depth of 2 to 7.  The fre-
quency of new tasks depends on both the probability of 
starting a new task as well as the number of hats in each 
organization. 

3. The Information Broker 
We are currently developing a human interface to Hats to 
enable human analysts to play the Hats game.  As an ana-
lyst playing the game, your job is to protect the Hats so-
ciety from terrorist attacks.  You need to identify terrorist 
task forces before they attack beacons, but you also need 
to avoid falsely accusing innocent hats.  The only way to 
do this successfully is to gather information about hats, 
identify meetings, track capability trades and form hy-
potheses about the intentions of groups of hats.  The in-
formation broker provides information about the state of 
the Hats world.  The information broker will respond to 
questions such as Where is Hat27 right now? It will also 
provide information by subscription to analysts’ tools, 
which in turn make information broker requests.  For 
example, a tool might process requests like, Identify eve-
ryone Hat27 meets in the next 100 ticks, or, Tell me if 
Hat27 approaches a beacon with capabilities c1, c7 or c29. 
 Some information is free, but information about states 
of the simulator that change over time is costly.  The 
quality of the information obtained is determined by the 
amount paid. The following two sections describe the 
two central components of the request framework: the 
cost of information and noise. Together, these compo-
nents make the Hats simulator an experimental environ-
ment for studying the economics of information value in 
the context of intelligence analysis. 

3.1 The Cost of Information 
Some information from the broker is free.  This includes 
information about the population (who the known terror-
ists are), the simulator world (world-map dimensions), 
and some event bookkeeping (locations of attacks, a list 
of currently arrested hats).  Other types of information 
require payment and the amount paid sets a base prob-
ability that is used to determine the accuracy of the in-
formation.  Use of this base probability is explained in 
the next section.  In the current implementation, increas-



ing accuracy requires exponentially more “algorithmic 
dollars.”  The function in Equation 1 maps payment to 
probability.   
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The same function is applied to every payment-based 
request.  This particular function was chosen because of 
its desirable rate of exponential growth, but other func-
tions may be used. 

3.2 Making Requested Information Noisy 
Modeling noise is a topic suitable for an entire research 
program.  There are many issues to consider, including 
whether one can request the same information multiple 
times, and if so, how information quality changes; 
whether one can get accurate information about events 
that occurred in the past; whether one can tell which in-
formation sources are reliable by asking several times the 
same question; and so on. We have started simply, im-
posing the constraint that the analyst may request a par-
ticular piece of information only once.  This means that 
they must select the level of payment for the information 
at the time of the request and there is no going back once 
the request is made.  Information that updates from one 
tick to the next, such as the current location of a hat, may 
be asked again at the next tick.  However, information 
that is fixed in time, such as when or where a meeting 
took place, can be requested only once.  This model al-
lows us to avoid, for now, the thorny issue of how to 
“noise up” multiple requests for the same information. 

Using the payment function described in the previous 
section, a payment amount is mapped to a “base” prob-
ability p.  With probability p, the information requested 
is returned in its entirety; with probability 1-p it is sub-
ject to noise. 

There are eight basic information requests that may be 
made: the hats at the location, if any, participants in a 
meeting, capabilities carried by a hat, capability trades, 
meeting times, hat death time, meeting locations and hat 
locations.  The first five requests return lists of things, 
such as hats, capabilities, times, etc.  The latter three re-
turn single elements.  How we add noise to responses to 
these requests depends on the type of thing requested as 
well as whether they involve single elements or lists of 
elements.   

For locations and times, adding noise is treated as 
sampling from a normal distribution, where the mean is 
the location or time of the requested item, and the vari-
ance is a function of the size of the Hats world (for loca-
tions) or the amount of time since beginning the simula-
tion (for times).  Tests ensure that noisy locations are not 
off the Hats world map and that noisy times are not re-
ported as having happened in the future.  Adding noise to 
reports about a hat or capability requires sampling from 
the original set of hat and capability ids defined for the 
scenario. 

 Information about lists of elements is made noisy in 
two stages.  First, the list itself is modified by discarding 
or adding elements. Then, with probability 1-p, each 
element of the resulting list is replaced by an element 
sampled uniformly from the relevant domain (e.g., re-
placing a true hat id by one selected at random from 
among all hat ids). 

Information that is requested about events or entities 
that do not exist are also subject to noise. If noise is not 
applied, then a query accurately responds that the re-
quested information does not exist.  If, however, the an-
swer is to be made noisy, then random information of the 
same type requested is returned. 

3.3 Exporting Data 
The Hats Simulator and Information Broker are designed 
to provide an online data feed and allow for interaction 
between the analyst and simulation.  However, we also 
have implemented facilities to export batch data from the 
Information Broker.  Hats data can be exported as perfect 
information (ground truth) or noisy data sets.  Applica-
tion of noise works differently because there is no analog 
of online requests with payment levels.  Noise is applied 
to exported data in three ways: exclusion of perfect in-
formation, inclusion of false information and corruption 
of perfect information.  The level and type of noise is 
parameterized.  Exported Hats data has been used in sev-
eral projects, including an EAGLE Program mini-TIE 
and controlled experiments with social network analysis 
tools.  

4. Actions 
In addition to requesting information, the analyst playing 
the Hats game can also change a beacon’s alert level and 
arrest hats.  Both actions affect an analyst’s performance 
score (discussed in Section 5).  

4.1 Raising Alerts 
We may not be able to stop an attack, but if we know it is 
coming, we can prepare and minimize loss.  This is the 
inspiration behind modeling alerts.  Each beacon can be 
in one of three alert levels: off (default), low or high.  
These correspond to the conditions of no threat, a chance 
of an attack, and attack likely.  The analyst decides which 
the level of each beacon alert, but the Hats Simulator 
keeps track of alert states over time and whether an ac-
tual attack occurs while the state is elevated.  The simula-
tor keeps statistics including counts of hits (occurrences 
of attacks during elevated alerts) and false positives (ele-
vated alerts that begin and end with no beacon attack 
occurring).  The goal of the analyst is to minimize the 
time beacon alerts are elevated.  High alerts are more 
costly than low ones.  On the other hand, if an attack 
does occur on a beacon, a high alert is better than a low 
alert, and a low alert is better than none. 



4.2 Arresting Hats 
Analysts can also issue arrest warrants for hats in order 
to prevent beacon attacks.  Arrests are successful only 
when the targeted hat is currently a member of a terrorist 
task force.  Attempted arrests under any other conditions, 
including hats that are terrorists but not currently part of 
a terrorist task force, result in a false arrest (a false posi-
tive).  Under this model, a hat can be a terrorist but not 
be guilty of any crime.  Unless terrorist hats are engaged 
in ongoing terrorist activities, their arrest incurs penal-
ties.  While this is a simple model, it places realistic con-
straints on the analyst’s choice of actions. 
 Successful arrests do not guarantee saving beacons.  A 
beacon is only attacked when some subset of members 
from a terrorist task force successfully carry the capabili-
ties matching the target beacon’s vulnerabilities to a final 
meeting at on that beacon.  It is possible to successfully 
arrest a terrorist task force member but the other terrorist 
taskforce members still have the capabilities required to 
attack the beacon.  However, if the analyst successfully 
arrests a terrorist task force member carrying required 
capabilities that no other task force member has, then the 
final meeting of the task force will take place but it will 
not be attacked.  This is counted as a beacon save. 

5. Scoring Analyst Performance 
The Hats Simulator and Information Broker together pro-
vide an environment for testing analyst tools.  The object 
of the game is to identify terrorist task forces before they 
attack beacons.  Three kinds of costs are accrued: 

1 The cost of acquiring and processing information 
about a hat.  This is the “government in the bed-
room” or intrusiveness cost. 

2 The cost of falsely arresting benign hats. 
3 The cost of harm done by terrorists. 

The skill of analysts and the value of analysis tools can 
be measured in terms of these costs, and the Hats envi-
ronment tracks them automatically as analysts play.  At 
the end of a game, a final report is generated that in-
cludes the following four categories: 

1 Costs: the total amount of “algorithmic dollars” 
spent on information. 

2 Beacon Attacks: including the total number of 
attacks that succeeded and the total number of at-
tacks that were stopped by successful arrests 

3 Arrests: the number of successful arrests and the 
number of false arrests (false positives) 

4 Beacon Alerts: the number of low and high alert 
hits and false positives. 

6. Conclusion 
Intelligence analysts tell us that Hats has many attributes of 
“the real thing.” Some say in the same breath that Hats 
ought to have other attributes, for instance, telephone com-
munications, rapid transportation of hats around the board, 
different kinds of beacons, and so on. We resist these efforts 

to make Hats more “realistic” because for us, the purpose of 
Hats is to provide an enormously difficult detection problem 
without the overhead of building rich (and probably classi-
fied) models of real domains. No doubt Hats will change 
over time, but we will strive to keep it simple. The other 
goal that guides our development of Hats is what we might 
call the “missing science” of intelligence analysis. To the 
best of our knowledge, in the current climate, analysts pe-
nalize misses more than false positives.  This sort of utility 
function has consequences – raised national alert levels, 
lines at airports, and so on.  Hats is intended to be a simu-
lated world in which analysts can experiment with different 
utility functions. It is a laboratory in which scientific models 
of intelligence gathering, filtering, and use – models based 
on utility and information theory – can be tested and com-
pared. 

To meet these goals, we will continue development of 
Hats along these lines: (1) increasing the scale and effi-
ciency of the simulator to accommodate hundreds of 
thousands of hats running in reasonable time to conduct 
experiments and play in real-time; (2) building WebHats, 
a web-based interface to Hats, enabling any researcher 
with access to the web to make immediate use of Hats as 
a data source; (3) providing league tables of analyst/tool 
performance scores from playing the Hats game, promot-
ing public competition to better intelligence analysis 
technology; and (4) developing a user-friendly interface 
to Hats, including more complex information querying 
and visual aids so that human analysts can play the Hats 
game more naturally.  
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