

Abstract

The Hats Simulator is a lightweight proxy for
many intelligence analysis problems, and thus a
test environment for analysts' tools. It is a vir-
tual world in which many agents engage in indi-
vidual and collective activities. Most agents are
benign, some intend harm. Agent activities are
planned by a generative planner. Playing against
the simulator, the job of the analyst is to find
harmful agents before they carry out attacks.
The simulator maintains information about all
agents. However, information is hidden from
the analyst and some is expensive. After each
game, the analyst is assessed a set of scores in-
cluding the cost of acquiring information about
agents, the cost of falsely accusing benign
agents, and the cost of failing to detect harmful
agents. The simulator is implemented and cur-
rently manages the activities of up to a hundred
thousand agents.

1. Introduction
The Hats Simulator was designed originally to meet the
needs of academic researchers who want to contribute tech-
nology to Homeland Security efforts but lack access to do-
main experts and classified problems. Most academic re-
searchers do not have security clearances and cannot work
on real data, yet they want to develop tools to help analysts.
In any case, real data sets are expensive: They cost a lot to
develop from scratch or by “sanitizing” classified data. They
also are domain-specific, yet much of the domain expertise
is classified. Because data sets are expensive, many that
have been made available to researchers are relatively small
and the patterns to be detected within them are fixed, few,
and known, so working with these data sets is a bit like
solving a single “Where’s Waldo” puzzle. Sometimes there
also is the problem that real data sets model “signal” (terror-
ist activities) not “noise” (everything else) yet extracting

signal from noise is a great challenge. Data sets in general
are static, whereas data become available to analysts over
time. It would be helpful to have a data feed, something that
generates data as events happen. To validate analysts’ tools,
it would be helpful to have a generator of terrorist and non-
terrorist activities. The generator should be parameterized
for experimental purposes (e.g., varying the distinctiveness
of terrorist activities, to make them more or less easily rec-
ognizable); and it should come up with novel activities, re-
quiring analysts and their tools to both recognize known
patterns and reason about suspicious patterns.

Hats is home to hundreds of thousands of agents (hats)
which travel to meetings. Some hats are covert terrorists and
a very few hats are known terrorists. All hats are governed
by plans generated by a planner. Terrorist plans end in the
destruction of landmarks. The object of a game in the Hats
simulator is to find terrorist task forces before they carry out
their attacks. One pays for information about hats, and also
for false arrests and destroyed landmarks. At the end of a
game, one is given a score, which is the sum of these costs.
The goal is to play Hats rationally, that is, to catch terrorist
groups with the least combined cost of information, false
arrests, and destroyed landmarks. Thus Hats serves as a test
bed not only for analysts’ tools but also for new theories of
rational intelligence analysis. Hats encourages players to ask
only for the information they need, and to not accuse hats or
issue alerts without justification.

The Hats simulator is very lightweight: Agents have few
attributes and engage in few elementary behaviors; how-
ever, the number of agents is enormous, and plans can in-
volve simultaneously many agents and a great many in-
stances of behaviors. The emphasis in Hats is not domain
knowledge but managing enormous numbers of hypotheses
based on scant, often inaccurate information. By simplifying
agents and their elementary behaviors, we de-emphasize the
domain knowledge required to identify terrorist threats and
emphasize covertness, complex group behaviors over time,
and the frighteningly low signal to noise ratio.

Simulating Terrorist Threat in The Hats Simulator

Clayton T. Morrison1, Paul R. Cohen1, Gary W. King2, Joshua Moody1 and Andrew Hannon2

Keywords: Effects Based Nodal Analysis, Multiple Competing Hypotheses, Terrorism, Simulation

USC Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292, USA
{clayton,cohen,moody}@isi.edu

University of Massachusetts
140 Governors Drive

Amherst, MA 01003, USA
{gwking,hannon}@isi.edu

1 2

Figure 1 – Information Broker Interface to the Hats Simulator

The Hats environment consists of the core simulator and
an information broker. The information broker is responsi-
ble for handling requests for information about the state of
the simulator and thus forms the interface between the simu-
lator and the analyst and her tools (see Figure 1). Some in-
formation has a cost, and the quality of information returned
is a function of the “algorithmic dollars” spent. Analysts
may also take actions: they may raise beacon alerts in an
attempt to anticipate an attack on a beacon, and they may
arrest agents believed to be planning an attack. Together,
information requests and actions form the basis of scoring
analyst performance in identifying terrorist threats and pre-
venting terrorist attacks. Scoring is assessed automatically
and serves as the basis for analytic comparison between
different analysts and tools. The simulator is implemented
and manages the activities of up to a hundred thousand
agents.

The following sections outline the Hats domain, including
how we generate populations of hats and how the planner
schedules hat meetings. We describe the information request
framework, the actions the analyst may take, and scoring.
We conclude with a discussion of the future of the Hats
Simulator.

2. The Hats Domain
The Hats Simulator models a “society in a box” consist-
ing of many very simple agents, hereafter referred to as
hats. Hats get its name from the classic spaghetti west-
ern, in which heroes and villains are identifiable by the
colors of their hats. The Hats society also has its heroes
and villains, but the challenge is to identify which color
hat they should be wearing, based on how they behave.
Some hats are known terrorists; others are covert and
must be identified and distinguished from the benign hats
in the society.

Hats is staged in a two-dimensional grid on which hats
move around, go to meetings and trade capabilities. The
grid consists of two kinds of locations: those that have no
value, and high-valued locations called beacons that ter-
rorists would like to attack. All beacons have a set of
attributes, or vulnerabilities, corresponding to the capa-
bilities which hats carry. To destroy a beacon, a task
force of terrorist hats must possess capabilities that
match the beacon’s vulnerabilities, as a key matches a
lock. In general, these capabilities are not unique to ter-
rorists, so one cannot identify terrorist hats only on the
basis of their capabilities.

The Hats society is structured by organizations. All
hats belong to at least two organizations and some hats

belong to many. Terrorist organizations host only known
and covert terrorist hats. Benign organizations, on the
other hand, may contain any kind of hat, including
known and covert terrorists.

2.1 Population Generation
Hats populations may be built by hand or generated by
the Hats Simulator. Because the constitution of a popula-
tion affects the difficulty of identifying covert terrorists,
population generation is parameterized. There are four
sets of population parameters. The first set specifies the
total number of known terrorists, covert terrorists and
benign hats in the population. Another set defines the
number of benign and terrorist organizations. Not all
organizations have the same number of members, so a
third set of parameters assigns the relative numbers of
hats that are members of each organization, represented
as a ratio among organizations. For example, the ratio
2:1:1 means that the first organization has twice as many
members as the other two. Finally, hats may be members
of two or more organizations. An overlap parameter de-
termines the percentage of hats in each organization that
are members of two or more other organizations. Since
hat behaviors are governed by their organization mem-
bership, as we will see in the next section, organization
overlap affects how difficult it is to identify covert terror-
ist hats. To generate populations with hundreds of thou-
sands of hats and thousands of organizations, we use a
randomized algorithm that estimates organization overlap
percentage and membership ratios while matching the
total number of organizations and hats in the population.
When the population is generated, each hat is assigned a
native capability that they will carry throughout the dura-
tion of the simulation, and a set of traded capabilities that
are temporary, expiring after some number of ticks (e.g.,
within 40 ticks). Hats are also assigned random locations
in the Hats grid world.

2.2 Meeting Generation
Hats act individually and collectively, but always planfully.
In fact, the actions of hats are planned by a generative plan-
ner. Benign hats congregate at locations including beacons.
Terrorist hats meet, acquire capabilities, form task forces,
and attack beacons. The purpose of the planner is to con-
struct an elaborate “shell game” in which capabilities are
passed among hats in a potentially long sequence of meet-
ings, culminating in a final meeting at a target. By moving
capabilities among hats, the planner masks its intentions.
Rather than directing half a dozen hats with capabilities
required for an attack to march purposefully up to a beacon,
instead hats with required capabilities pass them on to other
hats, and eventually a capable task force appears at the bea-
con.

Each organization has a generative planner that plans
tasks for its members. Hats that are currently participating
in a task are reserved; hats not currently part of a task are
free. At each tick, each organization has a chance of begin-

ning a new task. When a new task is started, the Hats meet-
ing planner creates a task force, a subset of hats selected
from the free hats of the organization. The size of a task-
force is controlled by a parameter. The planner next selects
a target location in the Hats world. With some probability,
that location may be a beacon, otherwise a random location
is selected. If a beacon is selected as the target, the goal of
the task is to bring to that location the set of required capa-
bilities that match the vulnerabilities of the beacon. If the
location is not a beacon, a random set of required capabili-
ties is selected as the set to bring to the location.

Figure 2 – Example of a generated meeting tree. Each box repre-
sents a meeting and contains a list of participating hats. Arrows
indicate the temporal order of meetings.

 Task force members may or may not already possess the
required capabilities; usually they don’t. The planner cre-
ates a set of meetings designed to ensure that the task force
acquires all of the required capabilities before it reaches the
target location. This is accomplished by constructing a
meeting tree that specifies meetings and their temporal or-
der. Figure 2 shows an example meeting tree, where boxes
represent planned meetings among hats and arrows repre-
sent the planned temporal partial order of meetings. The
tree is “inverted” in the sense that the arrows point from
leaves inward toward the root of the tree. Parent meetings,
where arrows originate, are executed first. When all of the
parent meetings of a child meeting have completed, then the
child meeting happens. This ensures that none of the hats
that participate in the child meeting are busy in other meet-
ings. Meeting execution means that the hats participating in
the meeting begin moving toward the meeting location. The
final, root meeting takes place at the task target location and
includes all of the task force hats. The locations of the other
meetings in the tree are selected randomly.
 Initially, the meeting tree is skeletal, containing meetings
whose only participants are the task force members them-
selves. From the organization’s remaining free hats, the
planner selects a second group of resource hats that carry
required capabilities not currently carried by the task force.
Resource hats are randomly assigned to existing meetings,
and trades of required capabilities are scheduled to take
place during the meeting. The planner finishes tree con-
struction by adding decoy meetings, spurious trades and
additional free hats not already involved in moving required
capabilities to the goal. A constraint maintained throughout
tree construction is that at least one hat from a parent meet-

ing will go on to meet in a child meeting. These hats will
either be task force members, resource hats carrying re-
quired capabilities to trade in the next meeting, or will be
decoy hats arriving from decoy meetings.
 Completed meeting trees are added to a queue of pending
tasks. At each tick, the simulator engine searches the task
queue for meetings with no currently executing parent meet-
ings. These meetings are then assigned to a queue of cur-
rently executing meetings and the participant hats are in-
crementally moved toward the meeting location. When all
of the participants have arrived at the meeting location, the
meeting itself lasts for two ticks, after which all hats not
participating in more meetings are set “free” and become
available to participate in new meetings.
 Meeting trees typically have a depth of 2 to 7. The fre-
quency of new tasks depends on both the probability of
starting a new task as well as the number of hats in each
organization.

3. The Information Broker
We are currently developing a human interface to Hats to
enable human analysts to play the Hats game. As an ana-
lyst playing the game, your job is to protect the Hats so-
ciety from terrorist attacks. You need to identify terrorist
task forces before they attack beacons, but you also need
to avoid falsely accusing innocent hats. The only way to
do this successfully is to gather information about hats,
identify meetings, track capability trades and form hy-
potheses about the intentions of groups of hats. The in-
formation broker provides information about the state of
the Hats world. The information broker will respond to
questions such as Where is Hat27 right now? It will also
provide information by subscription to analysts’ tools,
which in turn make information broker requests. For
example, a tool might process requests like, Identify eve-
ryone Hat27 meets in the next 100 ticks, or, Tell me if
Hat27 approaches a beacon with capabilities c1, c7 or c29.
 Some information is free, but information about states
of the simulator that change over time is costly. The
quality of the information obtained is determined by the
amount paid. The following two sections describe the
two central components of the request framework: the
cost of information and noise. Together, these compo-
nents make the Hats simulator an experimental environ-
ment for studying the economics of information value in
the context of intelligence analysis.

3.1 The Cost of Information
Some information from the broker is free. This includes
information about the population (who the known terror-
ists are), the simulator world (world-map dimensions),
and some event bookkeeping (locations of attacks, a list
of currently arrested hats). Other types of information
require payment and the amount paid sets a base prob-
ability that is used to determine the accuracy of the in-
formation. Use of this base probability is explained in
the next section. In the current implementation, increas-

ing accuracy requires exponentially more “algorithmic
dollars.” The function in Equation 1 maps payment to
probability.

probability = 1−
1

log2
payment

5
+ 2

⎛
⎝
⎜

⎞
⎠
⎟

 (1)

The same function is applied to every payment-based
request. This particular function was chosen because of
its desirable rate of exponential growth, but other func-
tions may be used.

3.2 Making Requested Information Noisy
Modeling noise is a topic suitable for an entire research
program. There are many issues to consider, including
whether one can request the same information multiple
times, and if so, how information quality changes;
whether one can get accurate information about events
that occurred in the past; whether one can tell which in-
formation sources are reliable by asking several times the
same question; and so on. We have started simply, im-
posing the constraint that the analyst may request a par-
ticular piece of information only once. This means that
they must select the level of payment for the information
at the time of the request and there is no going back once
the request is made. Information that updates from one
tick to the next, such as the current location of a hat, may
be asked again at the next tick. However, information
that is fixed in time, such as when or where a meeting
took place, can be requested only once. This model al-
lows us to avoid, for now, the thorny issue of how to
“noise up” multiple requests for the same information.

Using the payment function described in the previous
section, a payment amount is mapped to a “base” prob-
ability p. With probability p, the information requested
is returned in its entirety; with probability 1-p it is sub-
ject to noise.

There are eight basic information requests that may be
made: the hats at the location, if any, participants in a
meeting, capabilities carried by a hat, capability trades,
meeting times, hat death time, meeting locations and hat
locations. The first five requests return lists of things,
such as hats, capabilities, times, etc. The latter three re-
turn single elements. How we add noise to responses to
these requests depends on the type of thing requested as
well as whether they involve single elements or lists of
elements.

For locations and times, adding noise is treated as
sampling from a normal distribution, where the mean is
the location or time of the requested item, and the vari-
ance is a function of the size of the Hats world (for loca-
tions) or the amount of time since beginning the simula-
tion (for times). Tests ensure that noisy locations are not
off the Hats world map and that noisy times are not re-
ported as having happened in the future. Adding noise to
reports about a hat or capability requires sampling from
the original set of hat and capability ids defined for the
scenario.

 Information about lists of elements is made noisy in
two stages. First, the list itself is modified by discarding
or adding elements. Then, with probability 1-p, each
element of the resulting list is replaced by an element
sampled uniformly from the relevant domain (e.g., re-
placing a true hat id by one selected at random from
among all hat ids).

Information that is requested about events or entities
that do not exist are also subject to noise. If noise is not
applied, then a query accurately responds that the re-
quested information does not exist. If, however, the an-
swer is to be made noisy, then random information of the
same type requested is returned.

3.3 Exporting Data
The Hats Simulator and Information Broker are designed
to provide an online data feed and allow for interaction
between the analyst and simulation. However, we also
have implemented facilities to export batch data from the
Information Broker. Hats data can be exported as perfect
information (ground truth) or noisy data sets. Applica-
tion of noise works differently because there is no analog
of online requests with payment levels. Noise is applied
to exported data in three ways: exclusion of perfect in-
formation, inclusion of false information and corruption
of perfect information. The level and type of noise is
parameterized. Exported Hats data has been used in sev-
eral projects, including an EAGLE Program mini-TIE
and controlled experiments with social network analysis
tools.

4. Actions
In addition to requesting information, the analyst playing
the Hats game can also change a beacon’s alert level and
arrest hats. Both actions affect an analyst’s performance
score (discussed in Section 5).

4.1 Raising Alerts
We may not be able to stop an attack, but if we know it is
coming, we can prepare and minimize loss. This is the
inspiration behind modeling alerts. Each beacon can be
in one of three alert levels: off (default), low or high.
These correspond to the conditions of no threat, a chance
of an attack, and attack likely. The analyst decides which
the level of each beacon alert, but the Hats Simulator
keeps track of alert states over time and whether an ac-
tual attack occurs while the state is elevated. The simula-
tor keeps statistics including counts of hits (occurrences
of attacks during elevated alerts) and false positives (ele-
vated alerts that begin and end with no beacon attack
occurring). The goal of the analyst is to minimize the
time beacon alerts are elevated. High alerts are more
costly than low ones. On the other hand, if an attack
does occur on a beacon, a high alert is better than a low
alert, and a low alert is better than none.

4.2 Arresting Hats
Analysts can also issue arrest warrants for hats in order
to prevent beacon attacks. Arrests are successful only
when the targeted hat is currently a member of a terrorist
task force. Attempted arrests under any other conditions,
including hats that are terrorists but not currently part of
a terrorist task force, result in a false arrest (a false posi-
tive). Under this model, a hat can be a terrorist but not
be guilty of any crime. Unless terrorist hats are engaged
in ongoing terrorist activities, their arrest incurs penal-
ties. While this is a simple model, it places realistic con-
straints on the analyst’s choice of actions.
 Successful arrests do not guarantee saving beacons. A
beacon is only attacked when some subset of members
from a terrorist task force successfully carry the capabili-
ties matching the target beacon’s vulnerabilities to a final
meeting at on that beacon. It is possible to successfully
arrest a terrorist task force member but the other terrorist
taskforce members still have the capabilities required to
attack the beacon. However, if the analyst successfully
arrests a terrorist task force member carrying required
capabilities that no other task force member has, then the
final meeting of the task force will take place but it will
not be attacked. This is counted as a beacon save.

5. Scoring Analyst Performance
The Hats Simulator and Information Broker together pro-
vide an environment for testing analyst tools. The object
of the game is to identify terrorist task forces before they
attack beacons. Three kinds of costs are accrued:

1 The cost of acquiring and processing information
about a hat. This is the “government in the bed-
room” or intrusiveness cost.

2 The cost of falsely arresting benign hats.
3 The cost of harm done by terrorists.

The skill of analysts and the value of analysis tools can
be measured in terms of these costs, and the Hats envi-
ronment tracks them automatically as analysts play. At
the end of a game, a final report is generated that in-
cludes the following four categories:

1 Costs: the total amount of “algorithmic dollars”
spent on information.

2 Beacon Attacks: including the total number of
attacks that succeeded and the total number of at-
tacks that were stopped by successful arrests

3 Arrests: the number of successful arrests and the
number of false arrests (false positives)

4 Beacon Alerts: the number of low and high alert
hits and false positives.

6. Conclusion
Intelligence analysts tell us that Hats has many attributes of
“the real thing.” Some say in the same breath that Hats
ought to have other attributes, for instance, telephone com-
munications, rapid transportation of hats around the board,
different kinds of beacons, and so on. We resist these efforts

to make Hats more “realistic” because for us, the purpose of
Hats is to provide an enormously difficult detection problem
without the overhead of building rich (and probably classi-
fied) models of real domains. No doubt Hats will change
over time, but we will strive to keep it simple. The other
goal that guides our development of Hats is what we might
call the “missing science” of intelligence analysis. To the
best of our knowledge, in the current climate, analysts pe-
nalize misses more than false positives. This sort of utility
function has consequences – raised national alert levels,
lines at airports, and so on. Hats is intended to be a simu-
lated world in which analysts can experiment with different
utility functions. It is a laboratory in which scientific models
of intelligence gathering, filtering, and use – models based
on utility and information theory – can be tested and com-
pared.

To meet these goals, we will continue development of
Hats along these lines: (1) increasing the scale and effi-
ciency of the simulator to accommodate hundreds of
thousands of hats running in reasonable time to conduct
experiments and play in real-time; (2) building WebHats,
a web-based interface to Hats, enabling any researcher
with access to the web to make immediate use of Hats as
a data source; (3) providing league tables of analyst/tool
performance scores from playing the Hats game, promot-
ing public competition to better intelligence analysis
technology; and (4) developing a user-friendly interface
to Hats, including more complex information querying
and visual aids so that human analysts can play the Hats
game more naturally.

Acknowledgments
Paul Cohen and Niall Admas conceived of the Hats
Simulator at Imperial College in the summer of 2002.
Professor Cohen implemented the first version of Hats.
Bob Schrag at IET contributed useful ideas and built a
simulator similar to Hats for use in the DARPA EELD
and AFRL EAGLE program. Work on this project was
funded by the Air Force Research Laboratory, account
number 53-4540-0588.

