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Introduction
The ability to extract words from fluent speech appears
early in human development, as early as seven months
(Jusczyk, 1999). Many models of this word segmentation
ability have emerged, coming from such diverse fields as
linguistics, psychology, and computer science. Here, we
examine a representative set of computational models in
light of what is known about the segmentation ability
that children possess. Specifically, we explore the possi-
bility that children could use general-purpose chunking
mechanisms to perform word segmentation. We argue
that such a model is consistent with key experimental re-
sults and offers a more parsimonious alternative to mod-
els that posit special-purpose linguistic mechanisms to
explain word segmentation.

Word Segmentation Strategies
Considering only the general outcome that children suc-
cessfully learn to segment words, a wide range of segmen-
tation strategies are plausible. One common approach is
to take advantage of the semi-supervised nature of the
problem: Each utterance is implicitly surrounded by two
boundaries. When a sequence of phonemes encountered
as a short utterance is discovered within a larger utter-
ance, these boundaries can be placed into the larger ut-
terance, thus splitting the large utterance. When these
utterance segments are used to split future utterances,
the resulting self-sustaining process is called bootstrap-
ping.

Brent (1999) proposed a model of word segmentation
in children that operates on similar principles, in the
form of the MBDP-1 algorithm. MBDP-1 achieves
its robust form of bootstrapping through the use of
Bayesian maximum likelihood estimation of a language
model. Since MBDP-1, several other language-modeling
have been proposed (Venkataraman, 2001; Fleck, 2008;
Goldwater, Griffiths, & Johnson, 2008).

However, because such accounts depend intrinsically
on the input being structured as a series of bounded ut-
terances, they cannot explain key experimental results
in the child language learning literature, such as the
seminal series of studies by Saffran et al. (1996). In
these studies, Saffran et al. show that both adults and
8-month-old infants can extract words from a continuous
speech stream in an artifical language. Speech segmen-
tation experiments with cotton-top tamarins (Hauser,
Newport, & Aslin, 2001) have yielded similar results
to Saffran’s experiments with human infants, suggest-
ing that this ability might be innate. As bootstrapping
algorithms cannot produce this result, Saffran et al. con-
cluded that statistical analysis of the properties of the

speech stream forms the basis for the infant’s ability to
infer word boundaries. In particular, they proposed that
infants attend to transitional probabilities (TP) between
syllables, and posit boundaries at places of low transi-
tional probability.

While this simple TP model is sufficient to explain
the results of Saffran et al.’s 1996 study, it performs
very poorly on actual child-directed speech, regard-
less of whether the probabilities are calculated between
phonemes (Brent, 1999) or syllables (Gambell & Yang,
2006). In the case of syllables, preferred by Saffran et
al., there is a further problem of correct syllabification,
which requires knowledge of language-specific phonotac-
tic constraints. In response to this failure of TP to gener-
alize to the full complexity of natural language, Gambell
and Yang (2004, 2006) suggest that perhaps children’s
ability to segment sequences based on statistical analysis
is not the driving force behind word segmentation in a
natural setting. Instead, they propose a model that com-
bines innate constraints on linguistic stress with simple
bootstrapping.

Here, we explore an alternative explanation: Slightly
more sophisticated statistical methods, particularly
those based on entropy, may provide a natural explana-
tion of the effects Saffran et al. observed, and still per-
form well on natural language input. Within the context
of language, the form of entropy most often explored is
boundary entropy (also called branching entropy), which
is the entropy of the set of continuations of a sequence,
typically a sequence of phonemes or syllables. For exam-
ple, the boundary entropy of victo is very low, because
the next letter is almost certainly r, but the boundary
entropy of th is high, as many letters can follow th in
English.

Harris was one of the first to propose that boundary
entropy at the phoneme level could serve as an indicator
for morpheme boundaries (and therefore word bound-
aries as well). He observed that morpheme boundaries
tended to occur at points where boundary entropy in-
creased relative to the previous position (Harris, 1955).
For example, the boundary entropy of victor is greater
than that of victo, and thus a morpheme boundary is
likely to occur after victor. This proposal was imple-
mented computationally by Tanaka-Ishii and Jin (2006),
who found that the method was able to segment phone-
mic English and Chinese corpora with performance com-
parable to other unsupervised algorithms.

Chunking

Here, we consider a slightly more complex entropic
method of segmentation, in the form of the Voting Ex-



perts algorithm (VE) for finding chunks. A chunk is a
sequence with the property that the elements within it
predict one another, but do not predict elements outside
the sequence. In information-theoretic terms, chunks
have low internal entropy (also called surprisal), and
high boundary entropy. VE is a local, greedy algorithm
that works by moving a small sliding window along the
input, and examining only sequences within the win-
dow. For further details of the VE algorithm, see Cohen
(2001).

Importantly for the present discussion, the entropic
properties of chunks that enable VE to succeed are
present in a variety of domains, including word segmen-
tation. Cohen and Adams (2001) explored word segmen-
tation in a variety of languages, as well as segmenting
sequences of robot actions. Miller and Stoytchev (2008)
also used VE twice to perform a vision task similar to
OCR: First to chunk columns of pixels into images let-
ters, and then to chunk sequences of these discovered
letters into words.

In Figure 1, we compare VE to a bootstrapping al-
gorithm proposed by Gambell and Yang (2006) that is
endowed with innate knowledge of stress patterns (the
“Unique Stress Constraint,” or USC), allowing it to elim-
inate many potential boundary locations. Operating
on syllabified input, both algorithms outperform sim-
ple transitional probability (TP), but the performance
of VE demonstrates that successful segmentation does
not require the innate constraints suggested by Gambell
and Yang.

Chunking and Bootstrapping
The framework provided by the Voting Experts al-
gorithm does not preclude the possibility of bootstrap-
ping. Bootstrap Voting Experts (BVE) is an ex-
tension to Voting Experts that incorporates knowl-
edge gained from prior segmentation attempts when seg-
menting new input (Hewlett & Cohen, 2009). How-
ever, unlike bootstrapping algorithms such as MBDP-
1, BVE stores statistics describing the beginnings and
endings of chunks. In the word segmentation domain,
these statistics effectively correspond to phonotactic con-
straints that are inferred from hypothesized segmenta-
tions. Inferred boundaries are stored in a data struc-
ture called a knowledge trie (shown in Figure 3). BVE
achieved a higher level of performance on phonemically-
encoded corpora of child-directed speech taken from
the CHILDES database (MacWhinney & Snow, 1985).
These results from Hewlett and Cohen are reproduced
in Figure 2.

Over time, BVE refines the quality of the boundary
information stored in the knowledge trie. Thus, sim-
ply by storing the beginnings and endings of segments,
the knowledge trie comes to store sequences like #cat#,
where # represents a word boundary. The set of such
bounded sequences constitutes a simple, but accurate,

emergent lexicon. After segmenting a corpus of child-
directed speech, the ten most frequent words of this lex-
icon are you, the, that, what, is, it, this, what’s, to, and
look. Of the 100 most frequent words, 93 are correct.
The 7 errors include splitting off morphemes such as ing,
and merging frequently co-occurring word pairs such as
do you.

Artificial Language Results
To simulate the input children heard during Saffran et
al.’s 1996 experiment, we generated a corpus of 400
words, each chosen from the four artificial words from
that experiment (dapiku, tilado, burobi, and pagotu).
Like the original study, the only condition imposed on
the random sequence was that no word would appear
twice in succession. Voting Experts achieves an F-score
of 1.0 whether the input is syllabified or considered sim-
ply as a stream of phonemes, suggesting that a child
equipped with a chunking ability similar to VE could
succeed even without syllabification.

Conclusion
We have argued that the existence of an innate, domain-
independent chunking ability provides an explanation for
the statistical segmentation ability of infants reported by
Saffran et al. When segmenting natural language, chunk-
ing can be coupled with simple bootstrapping to pro-
duce a segmentation ability that is the most accurate of
the computational models studied here, when evaluated
against corpora of child-directed speech from CHILDES.



Algorithm Precision Recall BF

Transitional Probability (TP)

TP with USC

Bootstrapping with USC

Voting Experts

All Locations

0.416 0.233 0.298

0.735 0.712 0.723

0.959 0.934 0.946

0.918 0.992 0.953

0.839 1.000 0.913

Figure 1: Performance of various algorithms on syl-
labified input from the Brown corpus (CHILDES), as
measured by boundary F-score. Other than Voting
Experts and All-Locations, values are taken from
(Gambell & Yang, 2006).

Algorithm BP BR BF WP WR WF

VE

BVE

MBDP-1i

HDPi

WordEndsi

All Locations

0.867 0.854 0.860 0.652 0.642 0.647

0.928 0.905 0.916 0.791 0.794 0.793

0.803 0.843 0.823 0.670 0.694 0.682

0.903 0.808 0.852 0.752 0.696 0.723

0.946 0.737 0.829 - - 0.707

0.258 1.000 0.411 0.013 0.051 0.021

Figure 2: Results obtained for the Bernstein Ratner cor-
pus (Ratner, 1987), as well as published results from
selected other algorithms. Performance is measured in
boundary/word precision, recall, and F-score. Repro-
duced from Hewlett and Cohen (2009).
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Figure 3: A portion of the knowledge trie built from
#the#cat#sat#on#the#mat#. Numbers within each
node are frequency counts.
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