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Abstract. This paper introduces a Bayesian method for clustering dy-

namic processes and applies it to the characterization of the dynamics of

a military scenario. The method models dynamics as Markov chains and

then applies an agglomerative clustering procedure to discover the most

probable set of clusters capturing the di�erent dynamics. To increase

e�ciency, the method uses an entropy-based heuristic search strategy.

1 Introduction

An open problem in exploratory data analysis is to automatically construct

explanations of data [5]. This paper takes a step toward automatic explanations

of time series data. In particular, we show how to reduce a large batch of time

series to a small number of clusters, where each cluster contains time series

that have similar dynamics, thus simplifying the task of explaining the data.

The method we propose in this paper is a Bayesian algorithm for clustering by

dynamics.

Suppose one has a set of univariate time series generated by one or more

unknown processes, and the processes have characteristic dynamics. Clustering

by dynamics is the problem of grouping time series into clusters so that the

elements of each cluster have similar dynamics. For example, if a batch contains

a time series of sistolic and diastolic phases, clustering by dynamics might �nd

clusters corresponding to the pathologies of the heart. If the batch of time series

represents sensory experiences of a mobile robot, clustering by dynamics might

�nd clusters corresponding to abstractions of sensory inputs [4].

Our algorithm learns Markov chain (mc) representations of the dynamics in

the time series and then clusters similar time series to learn prototype dynamics.

A mc represents a dynamic process as a transition probability matrix. For each

time series observed on a variable X , we construct one such matrix. Each row in

the matrix represents a state of the variable X , and the columns represent the

probabilities of transition from that state to each other state of the variable on

the next time step. The result is a set of conditional probability distributions,

one for each state of the variable X , that can be learned from a time series. A

transition matrix is learned for each time series in a training batch of time series.

Next, a Bayesian clustering algorithm groups time series that produce similar

transition probability matrices.
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The reminder of this paper is organized as follows. We �rst describe the

scenario on which we apply our clustering algorithm. The Bayesian clustering

algorithm is described in Section 3. We apply the algorithm to a set of 81 time

series generated in our application scenario and discuss the results in Section 4.

2 The Problem

The domain of our application is a simulated military scenario. For this work,

we employ the Abstract Force Simulator (afs) [1], which has been under de-

velopment at the University of Massachusetts for several years. afs uses a set

of abstract agents called blobs which are described by a small set of physical

features, including mass and velocity. A blob is an abstract unit; it could be

an army, a soldier, a planet, or a political entity. Every blob has a small set of

primitive actions that it can perform, primarily move and apply-force, to which

more advanced actions, such as tactics in the military domain, can be added.

afs operates by iterating over all the units in a simulation at each clock tick and

updates their properties and locations based on the forces acting on them. The

physics of the world speci�es probabilistically the outcomes of unit interactions.

By changing the physics of the simulator, a military domain was created for this

work.

Blob Task

Primary Red 2 retain

E�ort objective Red Flag

Blue 2 attack

objective Red Flag

Supporting Red 1 attack

E�ort blob Blue 1

Blue 1 escort

blob Blue 1

Table 1. The tasks given to each blob in the scenario.

The time series that we want to analyze come from a simple 2-on-2 Capture

the Flag scenario. In this scenario, the blue team, Blue 1 and Blue 2, attempt

to capture the objective Red Flag. Defending the objective is the red team, Red

1 and Red 2. The red team must defend the objective for 125 time steps. If the

objective has not been captured by the 125th time step, the trial is ended and

the red team is awarded a victory. The choice of goals and the number of blobs

on each team provide a simple scenario. Each blob is given a task (or tactic) to

follow and it will attempt to ful�ll the task until it is destroyed or the simulation

ends (Table 1).

In this domain, retaining requires the blob to maintain a position near the

object of the retain | the Red Flag in this example | and protect it from
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State # State Description Notes

0 (F1, FFR+, CFR+) Strong Red

1 (F1, FFR+, CFR-)

2 (F1, FFR-, CFR+)

3 (F1, FFR-, CFR-)

4 (F2, FFR+, CFR+) Strong Red

5 (F2, FFR+, CFR-)

6 (F2, FFR-, CFR+)

7 (F2, FFR-, CFR-) Strong Blue

8 (F3, FFR+, CFR+)

9 (F3, FFR+, CFR-)

10 (F3, FFR-, CFR+)

11 (F3, FFR-, CFR-) Strong Blue

Table 2. Univariate representation of the scenario.

the enemy team. When an enemy blob comes within a certain proximity of the

object of the retain, the retaining blob will attack it. Escorting requires the blob

to maintain a position close to the escorted blob and to attack any enemy blob

that comes within a certain proximity of the escorted blob. Attacking requires

the blob to engage the object of the attack without regard to its own state. These

tactics remain constant over all trials, but vary in the way they are carried out

based on environmental conditions such as mass, velocity and distance of friendly

and enemy units. To add further variety to the trials, there are three initial mass

values that a blob can be given. With four blobs, there are 81 combinations of

these three mass values. At the end of each trial, one of three ending conditions

is true:

A The trial ends in less than 125 time steps and the blue team captures the

ag.
B The trials ends in less than 125 time steps and the blue team is destroyed.
C The trial is stopped at the 125th time step and the blue fails to complete its

goal.

To capture the dynamics of the trials, we chose to de�ne our state space in

terms of the number of units engaged and force ratios. There are three possible

engagement states at each time step. Red has more blobs \free" or unengaged

(F1), both blue and red have an equal number of unengaged blobs (F2), or blue

has more unengaged blobs (F3). In each of these states, either the red team or

the blue team has more unengaged mass (FFR+ or FFR- respectively). In each

of the six possible combinations of the above states, either red or blue has more

cumulative mass (CFR+ or CFR- respectively). Altogether there are 12 possible

world states, as shown in Table 2. The table shows states 0 and 4 to be especially

advantageous for red and states 7 and 11 to be favorable to blue.

In the next section, we represent this set as the states of a univariate variable

X , and show how to model the dynamics of each trial and then cluster trials

having similar dynamics.
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3 Clustering Markov Chains

We describe the algorithm in general terms. Suppose we have a batch of m time

series, recording values of a variable X taking values 1; 2; :::; s. We model the

dynamics of each trial as a mc. For each time series, we estimate a transition

matrix from data and then we cluster transition matrices with similar dynamics.

3.1 Learning Markov Chains

Suppose we observe a time series x = (x0; x1; x2; :::; xi�1; xi; ::). The process

generating the sequence x is a mc if p(X = xtj(x0; x1; x2; :::; xt�1)) = p(X =

xtjxt�1) for any xt in x [3]. Let Xt be the variable representing the variable

values at time t, then Xt is conditionally independent of X0; X1; :::; Xt�2 given

Xt�1. This conditional independence assumption allows us to represent a mc as

a vector of probabilities p0 = (p01; p02; :::; p0s), denoting the distribution of X0

(the initial state of the chain) and a matrix of transition probabilities

P = (pij) =

Xt

Xt�1 1 2 � � � s

1 p11 p12 � � � p1s
2 p21 p22 � � � p2s
... � � �
s ps1 ps2 � � � pss

where pij = p(Xt = jjXt�1 = i). Given a time series generated from a mc, we

can estimate the probabilities pij from the data and store them in the matrix

P . The assumption that the generating process is a mc implies that only pairs

of transitions Xt�1 = i ! Xt = j are informative, where a transition Xt�1 =

i ! Xt = j occurs when we observe the pair Xt�1 = i;Xt = j in the time

series. Hence, the time series can be summarized into an s� s contingency table

containing the frequencies of transitions nij = n(i ! j) where, for simplicity,

we denote the transition Xt�1 = i ! Xt = j by i ! j. The frequencies nij are

used to estimate the transition probabilities pij characterizing the dynamics of

the process that generated the data.

However, the observed transition frequencies nij may not be the only source

of information about the process dynamics. We may also have some background

knowledge that can be represented in terms of a hypothetical time series of length

� + 1 in which the � transitions are divided into �ij transitions of type i ! j.

This background knowledge gives rise to a s� s contingency table, homologous

to the frequency table, containing these hypothetical transitions �ij that we call

hyper-parameters.

A Bayesian estimation of the probabilities pij takes into account this prior

information by augmenting the observed frequencies nij by the hyper-parameters

�ij so that the Bayesian estimate of pij is
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p̂ij =
�ij + nij

�i + ni

(1)

where �i =
P

j
�ij and ni =

P
j
nij . Thus, �i and ni are the numbers of times

the variable X visits state i in a process consisting of � and n transitions,

respectively. By writing Equation 1 as

p̂ij =
�ij

�i

�i

�i + ni

+
nij

ni

ni

�i + ni

(2)

we see that p̂ij is an average of the classical estimate nij=ni and of the quantity

�ij=�i, with weights depending on �i and ni. Rewriting of Equation 1 as 2 shows

that �ij=�i is the estimate of pij when the data set does not contain transitions

from the state i | and hence nij = 0 for all j | and it is therefore called the

prior estimate of pij , while p̂ij is called the posterior estimate. The variance of

the prior estimate �ij=�i is given by (�ij=�i)(1��ij=�i)=(�i+1) and, for �xed

�ij=�i, the variance is a decreasing function of �i. Since small variance implies

a large precision about the estimate, �i is called the local precision about the

conditional distribution XtjXt�1 = i and it indicates the level of con�dence

about the prior speci�cation. The quantity � =
P

i
�i is the global precision, as

it accounts for the level of precision of all the s conditional distributions.

When ni is large relative to �i, so that the ratio ni=(�i + ni) is approxi-

mately 1, the Bayesian estimate reduces to the classical estimate given by the

ratio between the number nij of times the transition has been observed and the

number ni of times the variable has visited state i. In this way, the estimate of

the transition probability pij is approximately 0 when nij = 0 and ni is large.

The variance of the posterior estimate pij is p̂ij(1 � p̂ij)=(�i + ni + 1) and, for

�xed p̂ij , it is a decreasing function of �i +ni, the local precision augmented by

the sample size ni. Hence, the quantity �i + ni can be regarded as a measure

of the con�dence in the estimates: the larger the sample size, the stronger the

con�dence in the estimate.

3.2 Clustering

The second step of the learning process is an unsupervised agglomerative clus-

tering of mcs on the basis of their dynamics. The available data is a set S = fSig
of m time series. The task of the clustering algorithm is two-fold: �nd the set

of clusters that gives the best partition according to some measure, and assign

each mc to one cluster. A partition is an assignment of mcs to clusters such that

each time series belongs to one and only one cluster.

We regard the task of clustering mcs as a Bayesian model selection prob-

lem. In this framework, the model we are looking for is the most probable way

of partitioning mcs according to their similarity, given the data. We use the

probability of a partition given the data |- i.e. the posterior probability of the

partition | as scoring metric and we select the model with maximum posterior

probability. Formally, this is done by regarding a partition as a hidden discrete

variable C, where each state of C represents a cluster of mcs. The number c of
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states of C is unknown, but the number m of available mcs imposes an upper

bound, as c � m. Each partition identi�es a model Mc, and we denote by p(Mc)

its prior probability. By Bayes' Theorem, the posterior probability of Mc, given

the sample S, is

p(McjS) =
p(Mc)p(SjMc)

p(S)
:

The quantity p(S) is the marginal probability of the data. Since we are comparing

all the models over the same data, p(S) is constant and, for the purpose of

maximizing p(McjS), it is su�cient to consider p(Mc)p(SjMc). Furthermore,

if all models are a priori equally likely, the comparison can be based on the

marginal likelihood p(SjMc), which is a measure of how likely the data are if the

model Mc is true.

The quantity p(SjMc) can be computed from the marginal distribution (pk)

of C and the conditional distribution (pkij) of XtjXt�1 = i; Ck | where Ck

represents the cluster membership of the transition matrix of XtjXt�1 | us-

ing a well-known Bayesian method [2]. Let nkij be the observed frequencies of

transitions i ! j in cluster Ck, and let nki =
P

j
nkij be the number of tran-

sitions observed from state i in cluster Ck. We de�ne mk to be the number of

time series that are merged into cluster Ck. The observed frequencies (nkij) and

(mk) are the data required to learn the probabilities (pkij) and (pk) respectively

and, together with the prior hyper-parameters �kij , they are all that is needed

to compute the probability p(SjMc), which is the product of two components:

f(S;C) and f(S;Xt�1; Xt; C). Intuitively, the �rst quantity is the likelihood of

the data, if we assume that we can partition the m mcs into c clusters, and it is

computed as

f(S;C) =
� (�)

� (�+m)

cY

k=1

� (�k +mk)

� (�k)
:

The second quantity measures the likelihood of the data when, conditional on

having c clusters, we uniquely assign each time series to a particular cluster.

This quantity is given by

f(S;Xt�1; Xt; C) =

cY

k=1

sY

i=1

� (�ki)

� (�ki + nki)

sY

j=1

� (�kij + nkij)

� (�kij)

where � (�) denotes the Gamma function. Once created, the transition probability

matrix of a cluster Ck | obtained by mergingmk time series | can be estimated

as p̂kij = (�kij + nkij)=(�ki + nki).

In principle, we just need a search procedure over the set of possible parti-

tions and the posterior probability of each partition as a scoring metric. How-

ever, the number of possible partitions grows exponentially with the number

of mcs to be considered and, therefore, a heuristic method is required to make

the search feasible. The solution we propose is to use a measure of similarity

between estimated transition probability matrices to guide the search. Let P1



Discovering Dynamics using Bayesian Clustering 7

and P2 be transition probability matrices of two mcs. We adopt, as measure

of similarity, the average Kulback-Liebler distance between the rows of the two

matrices. Let p1ij and p2ij be the probabilities of the transition i ! j in P1
and P2. The Kulback-Liebler distance of these two probability distributions is

D(p1i; p2i) =
Ps

j=1
p1ij log p1ij=p2ij and the average distance between P1 and

P2 is then D(P1; P2) =
P

i
D(p1i; p2i)=s.

Our algorithm performs a bottom-up search by recursively merging the clos-

est mcs (representing either a cluster or a single trial) and evaluating whether

the resulting model is more probable than the model where these mcs are sepa-

rated. When this is the case, the procedure replaces the two mcs with the cluster

resulting from their merging and tries to cluster the next nearest mcs. Otherwise,

the algorithm tries to merge the second best, the third best, and so on, until the

set of pairs is empty and, in this case, returns the most probable partition found

so far. The rationale behind this ordering is that merging closer mcs �rst should

result in better models and increase the posterior probability sooner. Note that

the agglomerative nature of the clustering procedure spares us the further e�ort

of assigning each single time series to a cluster, because this assignment comes

as a side e�ect of clustering process.

We conclude this section by suggesting a choice of the hyper-parameters

�kij . We use uniform prior distributions for all the transition probability ma-

trices considered at the beginning of the search process. The initial m � s � s

hyper-parameters �kij are set equal to �=(ms2) and, when two mcs are simi-

lar and the corresponding observed frequencies of transitions are merged, their

hyper-parameters are summed up. Thus, the hyper-parameters of a cluster cor-

responding to the merging of mk initial mcs will be mk�=(ms2). In this way,

the speci�cation of the prior hyper-parameters requires only the prior global

precision �, which measures the con�dence in the prior model. An analogous

procedure can be applied to the hyper-parameters �k associated with the prior

estimates of pk. We note that, since � (x) is de�ned only for values greater than

zero, the hyper-parameters �kij must be non-negative.

4 Clusters of Dynamics

The 81 times series generated with afs for the Capture the Flag scenario consist

of 42 trials in which the blue team captures the red ag (end state A), 17 trials

in which the blue forces are defeated (end state B) and 22 which were stopped

after 125 time steps (end state C).

We used our clustering algorithm to partition the times series according

to the dynamics they represent. A choice of a prior global precision � = 972

| corresponding to the initial assignment �kij = 1=12 in the 81 transition

probability matrices | yields 8 clusters. Table 3 gives the assignment of time

series to each of the 8 clusters. By analyzing the dynamics represented by each

cluster, it is possible to reconstruct the course of events for each trial. We did

this \by hand" to understand and evaluate the clusters, to see whether the

algorithm divides the trials in a signi�cant way. We found that, indeed, the
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Cluster A B C Total

C1 5 1 3 9

C2 2 0 2 4

C3 7 0 0 7

C4 14 0 12 26

C5 1 0 1 2

C6 8 16 4 28

C7 2 0 0 2

C8 3 0 0 3

Total 42 17 22 81

Table 3. Summary of the clusters identi�ed by the algorithm.

clusters correspond not only to end states, but di�erent prototypical ways in

which the end states were reached.

Clusters C2, C4 and C5 consist entirely of trials in which blue captured the

ag or time expired (end state A and C). While this may at �rst be seen as

the algorithm's inability to distinguish between the two events, a large majority

(though it is not possible to judge how many) of the \time-outs" were caused

by the blue team's inability to capitalize on a favorable circumstance. A good

example is a situation in which the red team is eliminated, but the blue blobs

overlap in their attempt to reach the ag. This causes them to slow to a speed at

which they were unable to move to the ag before time expires. Only a handful

of \time-outs" represent an encounter in which the red team held the blue team

away from the ag. Clusters C2, C4 and C5 demonstrate that the clustering

algorithm can identify subtleties in the dynamics of trials, as no information

about the end state is provided, implicitly or explicitly, by the world state.

Clusters C1 and C6 merge trials of all types. C1 is an interesting cluster of

drawn out encounters in which the advantage changes sides, and blobs engage

and disengage much more than in the other clusters. For example, C1 is the only

cluster in which the mc visits all states of the variable and, in particular, is the

only cluster in which state 8 is visited. By looking at the transition probabilities,

we see that state 8 is more likely to be reached from state 6, and to be followed by

state 0. Thus, from a condition of equal free units (F2) we move to a situation

in which blue disengages a unit and has a free unit advantage (F3), which is

immediately followed by a situation in which red has a free units advantage (F1).

The \time-outs" (end state C) in this cluster represent the red team holding o�

the blue team until time runs out.

Cluster C6, on the other hand, contains all but one of the trials in which the

red team eliminated all of the blue units (end state B), as well as very similar

trials where the red blobs appear dominant, but the blue team makes a quick

move and grabs the ag. The cluster is characterized by having transitions among

states 0, 4 and 10, with a large probability of staying in state 0 (in which the

red forces are dominant) when reached. The large number of trials in which the

blue team wins (especially large when we realize that C-endings are blue wins
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but for the fact that overlapping forces move very slowly) is a result of Blue 1

being tasked to escort Blue 2, a tactic which allows Blue 1 to adapt its actions

to a changing environment more readily than other unit's tactics, and in many

trials, gives blue a tactical advantage.

Cluster 3 Cluster 7 Cluster 8

Fig. 1. Markov Chains representing clusters C3, C7 and C8.

Clusters C3, C7 and C8 merge only times series of end state A, in which the

blue team always captured the ag. Figure 1 displays the mc representing the

three clusters (in which we have removed transitions with very low probability).

Each cluster captures a di�erent dynamics of how a blue victory was reached.

For example, cluster C8 is characterized by transitions among states 1, 5, 7 and

11 in which the blue team maintains dominance, and transitions to states 4 and

8 | in which the red forces are dominant | are given a very low probability.

Indeed, the number of time steps of the trials assigned to cluster C8 was always

low, as the blue team maintained dominance throughout the trials and states 4

and 8 were never visited.

The trials in cluster C7 visited states 0, 4, and 10 frequently and correspond

to cases in which the blue team won despite a large mass de�cit. In these cases,

the objective was achieved by a break away of one of the blue blobs that outruns

the red blobs to capture the ag. The trials assigned to cluster C7 concluded

with victory of the blue team despite a large mass de�cit (the objective was

achieved by a break away of one of the blue blobs that outruns the red blobs to

capture the ag). Cluster C3 displays transitions among states 0, 1, 4, 5, 6, 10

and 11 and represents longer, more balanced encounters in which the blue team

was able to succeed.

5 Conclusions

Our overriding goal is to develop a program that automatically generates ex-

planations of time series data, and this paper takes a step toward this goal by

introducing a new method for clustering by dynamics. This method starts by

modeling the dynamics as mcs and then applies a Bayesian clustering procedure
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to merge these mcs in a smaller set of prototypical dynamics. Explaining half a

dozen clusters is much easier than explaining hundreds of time series. Although

the explanations o�ered in this paper are still generated by human analysts |

we have not yet achieved fully-automated explanation | the explanatory task

is made much easier by our method.
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