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1. Introduction

Suppose one has a batch of univariate sequences gener-
ated by one or more unknown processes, and the pro-
cesses have characteristic dynamics. The task of an
unsupervised classi�er consists of clustering these se-
quences into mutually exclusive classes, so that the el-
ements of each class have similar dynamics. Suppose
a batch contains a sequence of stride length for every
episode in which a person moves on foot from one place
to another. An unsupervised classi�er might �nd classes
corresponding to \ambling," \striding," \running," and
\pushing a shopping cart," because the dynamics of
stride length are di�erent in these processes. Similarly,
pathologies of the heart can be characterized by the pat-
terns of sistolic and diastolic phases; dance steps, hand
gestures and facial expressions can be characterized by
the dynamics of movement of body parts [Johansson,
1973]; economic states such as recession can be charac-
terized by the dynamics of economic indicators; syntactic
categories can be categorized by the dynamics of word
transitions [Charniak, 1993]; and so on.

The goal of this work is to enable mobile robots to
learn the dynamics of their activities. If we regard the
sequences of sensory inputs of the mobile robot as time
series, we can represent these time series as Markov chain
(mc) and then clusters these mcs by their dynamics to
learn prototype experiences. For example, our robot has
learned prototype experiences that correspond to pass-
ing an object and moving toward an object. It is impor-
tant to the goals of our project that the robot's learning
should be unsupervised, which means we do not tell our
algorithm which Markov chains, class and prototypes to
learn.

A mc represents a dynamic process as a transition
probability matrix. For each experience the robot has,
we construct one such matrix for each sensor. Each row
in the matrix represents a state of the sensor, and the
columns represent the probabilities of transition from
that state to each other state of the sensor on the next
time step. The result is a set of conditional probability
distributions, one for each state of the sensor, that can be
learned from the past experiences of the agent. After k
experiences, the robot has learned k transition matrices

for each sensor. Next, a Bayesian clustering algorithm
groups experiences that produce similar transition prob-
ability matrices. Each group is then characterized by its
average or prototypical dynamics. The learned model
of dynamics enables the agent to classify its current ex-
perience by computing the probability of an experience
being in a particular class of experiences given sensor
readings, and to predict future experiences, conditional
on current input and class membership.

A Bayesian approach is particularly well suited to clus-
tering by dynamics because it frames the learning pro-
cess as continuous updating rather than a batch analysis
of data. Furthermore, a Bayesian approach provides a
principled way to integrate prior and current evidence.
As our robot gains more experience (i.e., as its \prior"
knowledge increases) it requires proportionately more
evidence to modify or discount its prior conclusions.

The rest of the paper is organized as follows. After
reviewing background material on mcs, we describe how
to induce the transition probability matrix of a mc from
sensor readings, and then describe a Bayesian clustering
algorithm to sequentially merge similar mcs induced by
episodes.

2. The Robot Platform

The Pioneer 1 robot is a small platform with two drive
wheels and a trailing caster, and a two degree of freedom
paddle gripper. For sensors the Pioneer 1 has shaft en-
coders, stall sensors, �ve forward pointing and two side
pointing sonars, bump sensors, a pair of IR sensors at
the front and back of its gripper, and a simple vision
system that reports the location and size of color-coded
objects. Our con�guration of the Pioneer 1 has roughly
forty sensors, though the values returned by some are
derived from others.

3. Clustering Markov Chains

During its interaction with the world, the robot records
the values of about 40 sensors every 1/10 of a second.
In an extended period of wandering around the labora-
tory, the robot will engage in several di�erent activities



| moving toward an object, losing sight of an object,
bumping into something | and these activities will have
di�erent sensory signatures. Because we insist that the
robot's learning is unsupervised, we do not tell the robot
which activities it is engaging in, or even that it has
switched from one activity to another. Instead we de�ne
a simple event marker | simultaneous change in three
sensors | and we de�ne an episode as the period be-
tween event markers. For each episode in each sensor,
we build a transition matrix and then we cluster transi-
tion matrices with similar dynamics.

3.1 Markov Chains

The dynamics of a sequence of sensory values can
be modeled by a Markov Chain (mc). The sen-
sor X is regarded as a random variable taking val-
ues 1; 2; :::; s. The process generating the sequence
x = (x0; x1; x2; :::; xi�1; xi; ::) is a mc if p(X =
xtj(x0; x1; x2; :::; xt�1)) = p(X = xtjxt�1) for any xt in
x. Let Xt be the variable representing the sensor val-
ues at time t, then Xt is conditionally independent of
X0; X1; :::; Xt�2 given Xt�1. The assumption of condi-
tional independence allows us to represent a mc by a
vector of probabilities p0 = (p01; p02; :::; p0s), denoting
the distribution of X0 (the initial state of the chain) and
a matrix of transition probabilities:

P = (pij) =

Xt

Xt�1 1 2 � � � s
1 p11 p12 � � � p1s
2 p21 p22 � � � p2s
... � � �
s ps1 ps2 � � � pss

where pij = p(Xt = jjXt�1 = i). By using the

Chapman-Kolmogorov Equations [Ross, 1996], the ex-
pected value of Xt is p0P

t which, for increasing values
of t, gives the average sequence.

3.2 Learning A Markov Chain

Suppose the robot has generated a sequence of values
from the sensorX for one episode. This sequences can be
summarized into a s� s contingency table that contains
the frequencies of transitions nij = n(Xt�1 = i! Xt =
j). These counts are used to estimate the transition
probabilities pij characterizing the dynamic process that
generated the data.
An intuitive way to estimate pij is to use the relative

frequencies of transitions nij=ni. In this way, the prob-
ability of the transition Xt�1 = i ! Xt = j, that we
will denote as i ! j, is estimated as the ratio between
the number nij of times the transition has been observed
and all observations on the variable in state i, that is,
ni =
P

j nij . This estimate is a function of the data only

and there may be other sources of information about the
process. Furthermore, this method estimates the transi-

tion probability pij as 0 whenever nij = 0. Thus, when
the chain is observed over a relatively short time inter-
val, or a transition probability is small, it is very easy to
conclude that some transition is impossible. A Bayesian
estimation of pij overcomes this problem as well as using
any prior knowledge about the process. This is achieved
by augmenting the observed frequencies nij by hyper-

parameters �ij that encode the prior knowledge about
the process in terms of imaginary counts of a sample of
size �. The Bayesian estimate of pij is

p̂ij =
�ij + nij

�i + ni

(1)

where �i =
P

j �ij . By writing Equation 1 as

p̂ij =
�ij

�i

�i

�i + ni

+
nij

ni

ni

�i + ni

(2)

we see that p̂ij is an average of the estimate nij=ni and
of the quantity �ij=�i with weights that depend on �i

and the sample size ni. Rewriting of Equation 1 as 2
shows that �ij=�i is the estimate of pij when the data
set does not contain transitions from the state i | and
hence nij = 0 for all j | and it is therefore called the
prior estimate of pij while p̂ij is called the posterior es-

timate. It can be shown that the variance of the prior
estimate �ij=�i is given by (�ij=�i)(1��ij=�i)=(�i+1)
and, for �xed �ij=�i, the variance is a decreasing func-
tion of �i. Since small variance implies a large precision
about the estimate, �i will be called the local precision

about the conditional distribution XtjXt�1 = i and it
indicates the level of con�dence about the prior speci�-
cation. The quantity � =

P
i �i is the global precision,

as it accounts for the level of precision of all the s con-
ditional distributions.

Equation 2 shows the trade-o� between the intuitive
estimate nij=ni and prior estimate �ij=�i: as the sample
size ni becomes large, relative to �i, the estimate pij
will approach nij=ni and the e�ect of the prior input is
overcome by data. However, when �i is large, relative
to ni, the e�ect of the prior input is dominating. Note
that the variance of the posterior estimate pij is p̂ij(1�
p̂ij)=(�i + ni + 1) and, for �xed p̂ij , it is a decreasing
function of �i + ni, the local precision augmented by
the sample size ni. Hence, the quantity �i + ni can be
taken as a measure of the con�dence in the estimates:
the larger the sample size, the stronger the con�dence in
the estimate.

Example. The table below reports the frequencies of
transition observed in an episode of 296 readings for the
sensor vis-a-x, which represents the horizontal location
of an object in the visual �eld. The sensor returns con-
tinuous values in the range -140, 140. We discretized
these values into 5 equally spaced bins labeled 1 to 5.



Figure 1: The Markov Chain used in the example.

1 2 3 4 5
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 228 2 0
4 0 0 1 50 2
5 0 0 0 1 11

With a prior global precision � = 25 and a uniform prior
probability distribution, the learned transition matrix is:

P̂=

1 2 3 4 5
1 0.20 0.20 0.20 0.20 0.20
2 0.20 0.20 0.20 0.20 0.20
3 0.00 0.00 0.99 0.01 0.00
4 0.00 0.00 0.02 0.93 0.05
5 0.02 0.02 0.02 0.09 0.86

This matrix represents (to those of us familiar with the
robot and its activities) an episode in which an object
was in the visual �eld but not near the robot (the val-
ues 3, 4 and 5 represent the range -28,140.) The high
con�dence on the distributions of transitions from state
3 and 4 (respectively 230 and 53 derived from the sam-
ple sizes n3 and n4) essentially rules out the possibility
that either states 1 or 2 can be reached from 3 and 4.
However, the small number of transitions observed from
state 5 (n5 = 12) does not rule out the possibility of
transitions from 5 to either 1, 2 or 3, and the lack of in-
formation about transitions from states 1 and 2 results
in these transitions getting uniform probabilities with a
large uncertainty.
A summary of the induced mc is in Figure 1 in which

dotted paths represent rare transitions and the dashed
paths from states 1 and 2 represent unknown transitions.

3.3 Clustering

The second step of the learning process is an unsuper-
vised agglomerative clustering of mcs on the basis of

their dynamics. The available data is a set S = fSig of
m episodes (not necessarily of the same length) for each
sensor and each episode is supposed to be generated by a
mc. The task of the clustering algorithm is two-fold: �nd
the set of classes that gives the best partition according
to some measure, and assign each mc to one class. A
partition is an assignment of mcs to classes such that
each episode belongs to one and only one class.
The novelty of our approach is to regard the task of

clustering mcs as a Bayesian model selection problem.
In this framework, the model we are looking for is the
most probable way of partition mcs according to their
similarity given the data. We will use the posterior prob-
ability of a partition given the data as scoring metric to
assess its goodness of �t and we will select the most prob-
able model, that is, the model with maximum posterior
probability given the data.
There is then the problem of mapping each episode

to one class. We regard a partition as a hidden dis-
crete variable C, where each state of C represents a class
of mcs. The number c of states of C is unknown, but
the number m of mcs to be clustered imposes an upper
bound, as c will never exceed m. Each partition iden-
ti�es a model Mc. Let p(Mc) be the prior probability
of Mc. By Bayes' Theorem, the posterior probability of
Mc, given the sample S is

p(McjS) =
p(Mc)p(SjMc)

p(S)
:

The quantity p(S) is the marginal probability of the
data. Since we are comparing all the models over
the same data, p(S) is constant and, for the pur-
pose of maximizing p(McjS), it is su�cient to consider
p(Mc)p(SjMc). Furthermore, if all models are a pri-

ori equally likely, the comparison can be based on the
marginal likelihood p(SjMc), which is a measure of how
likely the data are if the model Mc is true.
The quantity p(SjMc) can be computed from the

marginal distribution (pk) of C and the conditional dis-
tribution (pkij ) of XtjXt�1 = i; Ck | where Ck rep-
resents the class membership of the transition matrix
of XtjXt�1 | using a well-known Bayesian method
[Cooper and Herskovitz, 1992]. Let nkij be the observed
frequencies of transitions i ! j in class Ck, and let
nki =

P
j nkij be the number of transitions observed

from state i in class Ck. We also de�ne mk to be
the number of episodes that are merged into class Ck.
The observed frequencies (nkij) and (mk) are the data
required to learn the probabilities (pkij) and (pk) re-
spectively and, together with the prior hyper-parameters
�kij , they are all is needed to compute p(SjMc) as

p(SjMc) = p(SjC)p(SjXt; Xt�1; C)

where

p(SjC) =
�(�)

�(�+m)

cY

k=1

�(�k +mk)

�(�k)



and

p(SjXt; Xt�1; C) =

cY

k=1

sY

i=1

�(�ki)

�(�ki + nki)

sY

j=1

�(�kij + nkij)

�(�kij )

where �(�) denotes the Gamma function. Once created,
the transition probability matrix of a class Ck | ob-
tained by merging mk episodes | can be estimated as

p̂kij =
�kij + nkij

�ki + nki

:

In principle, we just need a search procedure over the
set of possible partitions and the posterior probability of
each partition as a scoring metric. However, the number
of possible partitions grows exponentially with the num-
ber of mcs to be considered and, therefore, a heuristic
method is required to make it feasible. The solution we
propose is to use a measure of similarity between esti-
mated transition probability matrices to guide the search
process. The algorithm performs a bottom-up search by
recursively merging the closest mcs (representing either
a class or a single episode) and evaluating whether the
resulting model is more probable than the model where
these mcs are separate. When this is the case, the proce-
dure replaces the two mcs with the cluster resulting from
their merging and tries to cluster two other mcs. Oth-
erwise, the algorithm tries to merge the second best, the
third best, and so on, until the set of pairs is empty and,
in this case, returns the most probable partition found
so far. The rationale behind this ordering is that merg-
ing closer mcs �rst should result in better models and
increase the posterior probability sooner. Note that the
agglomerative nature of the clustering procedure spares
us the further e�ort of assigning each single episode to
a class because this assignment comes as a side e�ect of
partitioning process.
For each sensorXi, the algorithm applies the following

procedure:

Input: A set S of sensor readings episodes.

Output: A set of clusters and cluster assignments.

Initialization: Initialize as follows:

Matrix Estimation: For each episode Si 2 S, es-

timate the transition probability matrix P̂i as

described above and de�ne the set Tc = fP̂ig
of all transition probability matrices.

Likelihood: Compute the marginal likelihood
p(SjMc), where Mc represents the model in
which each episode is generated by a di�erent
mc, and set B = p(SjMc). Note that, in this
initial step, c = m = jSj

Distance: Create the set D of the pairwise dis-
tances between each transition probability ma-
trix in Tc according to some measure.

Sort: Sort the set D in descending order.

Iteration: Iterate until B does not increase any longer,
then return Tc:

Clustering: Create the cluster Ck by summing
the transition frequencies corresponding to the

two closest transition probability matrices P̂i

and P̂j . Estimate the resulting transition prob-

ability matrix P̂k. Create the set T
0

c, by replac-

ing P̂i and P̂j by P̂k. Create the set D0 by

inserting each distance between P̂k and each

other P̂i in Tc in the ordered set D and by re-

moving the distances involving either P̂i or P̂j .

Likelihood: Compute the marginal likelihood
p(SjMc), where Mc represents the model in
which the episodes Si and Sj are supposed to
be generated by Pk.

Closure: If p(SjMc) > B, set B = p(SjMc), re-
place Tc by T

0

c, D by D0 and iterate. Otherwise,
remove the �rst element of D and iterate on Tc.

The distance measure guiding the process can be any
distance between probability distributions. Let P1 and
P2 be matrices of transition probabilities of two mcs.
Since they are both a collection of s probability distri-
butions, and rows with the same index are probability
distributions conditional on the same event, a measure
of similarity can be an average of the Kulback-Liebler
distance between corresponding rows. Let p1ij and p2ij
be the probabilities of the transition i! j in P1 and P2.
The Kulback-Liebler distance of these two probability
distributions is

D(p1i; p2i) =

sX

j=1

p1ij log
p1ij

p2ij
:

The average distance between P1 and P2 is then
D(P1; P2) =

P
iD(p1i; p2i)=s. Note that this distance

becomes 0 when P1 = P2 and it is otherwise greater
than zero.
We conclude this section by suggesting a choice of the

hyper-parameters �kij . We can use uniform prior distri-
butions for all the transition probability matrices consid-
ered at the beginning of the search process. The initial
m�s�s hyper-parameters �kij are set equal to �=(ms2)
and, when two mcs are similar and the corresponding ob-
served frequencies of transitions are merged, their hyper-
parameters are summed up. Thus, the hyper-parameters
of a cluster corresponding to the merging of mk initial
mcs will be mk�=(ms2). In this way, the speci�cation of
the prior hyper-parameters requires only the prior global
precision �, which measures the con�dence in the prior
model. An analogous procedure can be applied to the
hyper-parameters �k associated with the prior estimates
of pk. We will denote by �0 the global prior precision as-
sociated to pk.

4. Prototypical Dynamics

In an experimental trial lasting about 30 minutes, the
robot's activities were divided into 42 episodes by the
following criterion: An episode ends when three or more



Figure 2: mc representing the �rst class.

sensors' values change simultaneously. The data in-
clude 11,118 values for each sensor. Our prior hyper-
parameters are computed by uniformly distributing the
global prior precision, where � = 5 and �0 = 42.
Figures 2 and 3 depict the mcs representing the two

classes learned for the sensor vis-a-x, the horizontal
location of an object in the visual �eld. The �rst class
captures the sensor dynamics when the robot is not close
to an object. The transitions are limited to states 3, 4
and 5 that correspond to the range -28, 140. The initial
state 1 can be reached from state 5, which represents the
fact that the object appears and disappears from the vi-
sual �eld. However, since the estimate of the probability
of transitions 5 ! 1 and 1 ! 5 are derived from only
two cases observed in all the episodes merged into class 1,
the con�dence in these estimate is very low. The second
class, on the other hand, represents the sensor dynam-
ics for an object not far from the robot, since transitions
are essentially limited among the �rst 4 states. The prior
speci�cation does not rule out the possibility that either
state 1 or 5 be reached from state 4. However, in the 12
episodes merged to create class 2, the transitions 4! 5
and 4! 1 were never observed, while state 4 was reached
only once from state 3.
Our analysis can be extended to provide the robot

with tools for recognizing the class it is in, given sen-
sor data. Suppose the robot sensor related to vis-a-x

records the new transition 1 ! 2. It can infer class
membership by applying Bayes theorem. The �rst clus-
ter is obtained by merging 30 episodes. Since the global
precision adopted is �0 = 42, we can estimate that, con-
ditional on the data, the probability of C1 | i.e. that
class membership is 1 and hence the object is not near
the robot | is 0.7. Hence, the probability that C = 2
| i.e. that class membership is 2 and hence the ob-
ject is not far from the robot | is 0.3. The probability
of observing the transition 1 ! 2 when C = 1 is 0.05,
and becomes 0.013 when C = 2. A simple application
of Bayes Theorem returns p(C = 1j0:2 ! 0:4) = 0:90
so that the robot is able to detect that, conditional on
this new observed transition, it is more likely that it is

Figure 3: mc representing the second class.

in class 1.
Clustering by dynamics involves two levels of abstrac-

tion. First, the transitions in an episode are summarized
in a transition matrix (mc); second, episodes are grouped
into classes, and the mc representing a class is an aver-
ages of the constituent episode mcs. Both operations lose
information. The log-score of a transition helps us eval-
uate these losses [Hand, 1997]. Let se;kij = � log p̂kij be
the score of the transition i ! j observed in an episode
e. This score penalizes an episode mc by assigning large
values to observed transitions when the mc assigns them
small probabilities. We sum this score over all transitions
in an episode, and sum again over all episodes, to get a
score for the loss incurred by summarizing the time series
of episode transitions into episode mcs. Now, instead of
computing losses for episode e based on the episode mc,
we can compute them based on the mc for the class to
which e belongs. We let sc;kij = � log p̂kij be the score
assigned to the transition i ! j observed in an episode
that belongs to class Ck. As before, we sum sc;kij over
the transitions within an episode, and sum again over
episodes.
Finally, if episode e belongs to class Ck, we can ask

how much predictive accuracy would be lost by using
a randomly selected class to predict the episode transi-
tions. This amounts to a test of whether classes retain
any predictive power at all: if not, then a randomly se-
lected class will incur the same losses as class Ck for
episode e. The score sr;kij = � log p̂kij is given to tran-
sition i! j observed in episode k but predicted by a ran-
dom classi�cation. Once again, these scores are summed
over transitions in an episode and over episodes. We
have now described three cumulative scores, se, sc and
sr, which, for the dataset described earlier, have values
se = 120:5, sc = 212:2 and sr = 449:5. The loss is least
for episode mcs, intermediate for the mcs of our gener-
ated classi�cations and highest for randomly-select mcs.
Apparently, the mc for episode e does a better job of
predicting transitions in e than does the mc for class Ck

to which e belongs, and both are better than using a
randomly selected mc to make predictions.



Sign tests can tell us whether se = 120:5, sc = 212:2
and sr = 449:5 are signi�cantly di�erent. Let s�;kij =
se;kij � sc;kij be the di�erence in scores assigned to
episode and cluster mcs for the transition i ! j in
episode k. Under the null hypothesis that the episode
and cluster mcs make equally lossy predictions, half
these di�erences should have a positive sign, half neg-
ative. In fact, 1567 di�erences are positive, 9950 are
negative. We can compare predictions based on the gen-
erated classi�cation with predictions based on randomly-
selected mcs in the same way; 2799 di�erences are pos-
itive, 4445 are negative, and 3993 are zero. The sam-
pling distribution for the number of positive di�erences
is binomial and is well approximated by the normal dis-
tribution for this sample size. We �nd that episode mcs
are signi�cantly less lossy than the mcs representing the
classes, which are themselves signi�cantly less lossy than
randomly-selected mcs.

5. Conclusions

This paper describes a new approach to discovering
the dynamics of prototypical sensory experiences as
a Bayesian unsupervised classi�cation problem. The
method represents the dynamic processes resulting from
the interaction between the robot and its environment as
mcs, and then groups these mcs into prototypical experi-
ences. As described, the method uses �rst order mcs and
univariate distributions but it can be easily extended to
higher order mcs and multivariate distributions.
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