
Learning Planning Operators in Real-World, Partially Observable
Environments

Matthew D. Schmill, Tim Oates, and Paul R. Cohen
Computer Science Department, LGRC
University of Massachusetts, Box 34610

Amherst, MA 01003-4610
fschmill,oates,coheng@cs.umass.edu

Abstract

We are interested in the development of activities in
situated, embodied agents such as mobile robots. Cen-
tral to our theory of development is means-ends anal-
ysis planning, and as such, we must rely on operator
models that can express the e�ects of a robot's action
in a dynamic, partially-observable environment. This
paper presents a two-step process which employs clus-
tering and decision tree induction to perform unsuper-
vised learning of operator models from simple interac-
tions between an agent and its environment. We report
our �ndings with an implementation of this system on
a Pioneer-1 mobile robot.

Introduction

We are developing a theory of conceptual development
in intelligent agents. In our theory, activity plays a crit-
ical role in the development of many high-level cogni-
tive structures, in particular classes, concepts, and lan-
guage. It is our goal to derive and implement a theory of
the emergence of complex activity in intelligent agents
and implement it using the Pioneer-1 mobile robot.
In our theory, means-ends planning plays a central

role in the development of activities. Development be-
gins with the agent exploring its native actions (move
and turn, plus raising and lowering a gripper, for the
Pioneer-1), and building operator models for them.
With these, the agent can begin creating simple se-
quences of native actions using means-ends planning.
Successful plans can be cached and taken as activities
themselves. These activities are in turn modeled, and
feed the next wave of activity planning, resulting in a
hierarchy of increasingly sophisticated activity. It is on
this foundation that we will base our investigation into
the acquisition of classes, concepts, and language.
Our theory hinges on the idea that the native actions

can be modeled in such a way that they will support
planning for a mobile robot. In particular, a mobile
robot operating in a complex, partially observable envi-
ronment creates the following requirements of operator
models:

Copyright c 2000, American Association for Arti�cial In-
telligence (www.aaai.org). All rights reserved.

� Operator models must express e�ects of actions that
as they are sensed by the robot. Sensor readings are
real-valued and actions have temporal extent. Push-
ing an object is sensed by a Pioneer-1 through a va-
riety of continuous sensors. Its sonars report the dis-
tance, in millimeters, to the object in front of it. Its
velocity encoders report the robot's velocities before
and after it makes contact with the object. Likewise,
its vision system and bump sensors produce continu-
ous valued readings 10 times a second throughout the
duration of the activity. Operator models must en-
code how these sensor readings change over the course
of activity.

� Operator models must express the multiplicity of out-
comes for a single action. Executing an action may
result in many di�erent outcomes with qualitatively
di�erent sensor patterns associated with them. The
move-forward action, for example, may lead to
pushing a small object, being impeded by a large ob-
ject, or narrowly missing and passing by an object.
An agent must learn to distinguish the qualitatively
di�erent outcomes of activity.

� Operator models must include a predictive compo-
nent (like the preconditions of classical planning)
which relate actions and sensory patterns to possible
outcomes of that action. That is, if there is a large
object a short distance ahead of the robot, a move-
forward action is more likely to result in the robot
crashing than the robot moving without obstruction.
The possiblity of crashing should be predicted when
sensors are reporting a large object ahead.

The remainder of this paper describes our unsu-
pervised algorithms for learning probabilistic operator
models for a robot acting in a complex, continuous en-
vironment. We treat this as a two part problem, one
of learning the e�ects (roughly speaking, the postcondi-
tions) of the robot's actions, and one of learning sensory
features, which we call initial conditions, that can be
used to predict the e�ects of an action. In the next sec-
tion, we consider a clustering scheme that distinguishes
between the many outcomes a single action might pro-
duce. Clusters built by this scheme form the basis of
operator models, with dynamic representations of out-

come. In the section that follows, we discuss the induc-
tion of initial conditions that are associated with the
various outcomes of the robot's actions, and the chal-
lenges that a partially-observable environment presents
to this task. We conclude with a discussion of our oper-
ator models and our preliminary work in planning using
the learned operator models.

Clustering by Dynamics
To ground our discussion of learning planning opera-
tors, consider the Pioneer-1 mobile robot. Its sensors
include, among others, a bump switch on the end of
each gripper paddle that indicates when its gripper hits
an object, an infrared break beam between the gripper
paddles that indicates when an object enters the grip-
per, and wheel encoders that measure the rate at which
the wheels are spinning. Also included are visual sen-
sors for tracking colored objects. The vision system can
track up to 3 objects, reporting their locations and sizes
in the visual �eld.
Suppose the robot is moving forward at a �xed ve-

locity. The values returned by the sensors mentioned
above can be used to discriminate many di�erent ex-
periences of the robot. For example, if the robot runs
into a large immovable object, such as a wall, the bump
sensors go high and the wheel velocities abruptly drop
to zero. If it bumps into a trash can, which is large
but movable, the bump sensors go high and the wheel
velocities remain constant. If it comes across an object
that can be grasped, the break beam goes high when
the object enters the gripper and there is no change
in wheel velocity. As observers of the robot's actions,
we make these discriminations easily. For our own pur-
poses, we give names to these outcomes, and invoke
them as needed to achieve our goals. For the Pioneer,
though, there is only one action, move, to which it has
access. To be successful in planning, the Pioneer must
itself discriminate these outcomes, and use them as the
basis for a set of operator models based around the
move action.
Let E denote an experience, a multivariate time se-

ries containing n measurements from a set of sensors
recorded over the course of engaging in a single action
such that E = fetj1 � t � ng. The ei are vectors of
values containing one element for each sensor. Given
a set of m experiences, we want to obtain, in an unsu-
pervised manner, a partition into subsets of experiences
such that each subset corresponds to a qualitatively dif-
ferent type of experience.
If an appropriate measure of the similarity of two

time series is available, clustering is a suitable unsuper-
vised learning method for this problem. Finding such
a measure of similarity is diÆcult because experiences
that are qualitatively the same may be quantitatively
di�erent in at least two ways. First, they may be of dif-
ferent lengths, making it diÆcult or impossible to em-
bed the time series in a metric space and use, for exam-
ple, Euclidean distance to determine similarity. Second,
within a single time series, the rate at which progress

is made can vary non-linearly. For example, the robot
may move slowly or quickly toward a wall, leading to
either a slow or rapid decrease in the distance returned
by its forward-pointing sonar. In each case, though,
then end result is the same, the robot bumps into the
wall. Such di�erences in rate make similarity measures
such as cross-correlation unusable.
The measure of similarity that we use is Dynamic

Time Warping (DTW) (SK83). It is ideally suited for
the time series generated by a robot's sensors. DTW
is a generalization of classical algorithms for compar-
ing discrete sequences (e.g. minimum string edit dis-
tance (CLR90)) to sequences of continuous values. It
was used extensively in speech recognition, a domain
in which the time series are notoriously complex and
noisy, until the advent of Hidden Markov Models of-
fered a uni�ed probabilistic framework for the entire
recognition process (Jel97).
Given two experiences, E1 and E2 (more generally,

two continuous multivariate time series), DTW �nds a
warping of the time dimension in E1 that minimizes
the di�erence between the two experiences. Warping
consists of stretches or compressions of intervals in the
time dimension of one experience so that it more closely
resembles the second.
Consider the univariate time series E1 and E2 of the

leftmost column in �gure 1. Many warpings (denoted
E0

1) of E1 are possible, such as the one in the mid-
dle column of the �gure, in which the interval from
point 3 to 7 are compressed and the preceding interval
is stretched. This one, however, certainly does not min-
imize the shaded area between E1 and E2. The right-
most column shows how the intervals from 1 to 3 and
4 through 7 can be compressed, stretching the interval
between them, to produce a warping which minimizes
the area between the time series. In general, there are
exponentially many ways to warp the time dimension
of E1. DTW uses dynamic programming to �nd the
warping that minimizes the area between the curve in
time that is a low order polynomial of the lengths of E1

and E2, i.e. O(jE1jjE2j).
DTW returns the optimal warping of E1, the one that

minimizes the area between E0

1 and E2, and the area as-
sociated with that warping. The area is used as a mea-
sure of similarity between the two time series. Note that
this measure of similarity handles nonlinearities in the
rates at which experiences progress and is not a�ected
by di�erences in the lengths of experiences. In general,
the area between E0

1 and E2 may not be the same as
the area between E0

2 into E1. We use a symmetrized
version of DTW that essentially computes the average
of those two areas based on a single warping (KL83).
Given m experiences, we can construct a complete

pairwise distance matrix by invoking DTW m(m�1)=2
times (the factor of 2 is due to the use of symmetrized
DTW). We then apply a standard hierarchical, agglom-
erative clustering algorithm that starts with one clus-
ter for each experience and merges the pair of clus-
ters with the minimum average intercluster distance

E2

E1

Figure 1: Two time series, E1 and E2, (the leftmost column) and two possible warpings of E1 into E2 (the middle
and rightmost columns).

(Eve93). Without a stopping criterion, merging will
continue until there is a single cluster containing all m
experiences. To avoid that situation, we do not merge
clusters for which the mean intercluster distance is sig-
ni�cantly di�erent from the mean intracluster distance
as measured by a t-test.
Clusters then become the basis for operator models.

Each corresponds to a qualitatively di�erent outcome:
pushing, crashing, etc., and can be described by a clus-
ter prototype. The cluster prototype may be the aver-
age of all the cluster members' time series, or simply
the centroid experience, and contains the sensory pat-
terns that are characteristic of that outcome. These
time series, then, are analog to the postconditions of
classical planning operator models. They express what
the Pioneer can expect to happen given the action it is
about to take �ts into some cluster. What is missing is
the predictive component of operator models: sensory
conditions that inform the Pioneer of which cluster out-
comes are likely to unfold given its choice of action to
take.

Initial Condition Induction

For our operator models to be useful for generative
planning, we must be able to identify what aspects of
the state of the world cause one outcome cluster to un-
fold instead of another. What causes the Pioneer to be
impeded during a move as opposed to moving freely?
One might call the features of the environment that
answer this question the preconditions to crashing or
moving freely.
When the Pioneer is considering which action to take,

it has only its sensors to guide it. When it considers
what will happen if it executes the move action, it can
access its vision system, its sonars, and its internal state
sensors. It does not have the bene�t of rich represen-
tations of the world to tell it that it is facing a wall as
opposed to a trash can. If we are to understand precon-
ditions to have causal interpretations, then the Pioneer
cannot truly generate preconditions. It can only asso-
ciate sensory states with outcomes: a small red object

in the visual �eld is most closely associated with cluster
c1 unfolding, while a large blue object is associated with
cluster c5 unfolding. We call these sensory states initial
conditions to distinguish them from preconditions. In
this section, we describe our system for inducing the
initial conditions associated with cluster outcomes.

Our approach to initial condition induction is as fol-
lows. We have a set of experiences E , and a partitioning
of these experiences into outcome clusters. Included in
each experience are sensor readings for one second lead-
ing up to the onset of activity. We call this interval the
precursor to the actual experience, and the remainder of
the experience the successor. The precursor describes
the context in which the action was taken. We can
use the precursor sensor readings, then, as features in
a classi�cation task where we want to predict cluster
membership of the successor based on precursor sensor
readings.

For the purposes of this paper, we make the sim-
plifying assumption that in all of our experiences, the
Pioneer is at rest during the precursor. Under this sim-
plifying assumption, we can take the mean values (some
sensors are noisy) over the precursor interval for each
sensor. Thus, if there are n sensors, and m experiences,
we have a training set of m instances, each instance
described by n features, and labeled by the number of
the cluster the experience belongs to. In future work,
we intend to lift this assumption, using regression lines
over the precursor instead of the mean.

A variety of algorithms are suitable for this clas-
si�cation task: arti�cial neural networks, the simple
Bayes classi�er, and decision tree induction have all
been shown to perform well. Since we are not only
interested in being able to predict the cluster that will
unfold, but also in the sensory features that matter to
the predictor, our choice of classi�er is narrowed to al-
gorithms that maintain declarative, easily interpreted
structures. We chose decision tree induction for its
balance between performance and ease of interpreta-
tion. Of the many decision tree induction algorithms,
we use TBA, a system designed to prevent over�tting

which is present in most induction algorithms (JC96;
JS97), since in the context of our system, over�tting
equates to producing unnecessarily restrictive initial
conditions.

Inducing initial conditions in this way is a simple
task. Experiences are converted to training instances
and fed to TBA, which produces an initial condition

tree for each action. The initial conditions for cluster ci
built on action a are extracted by searching the leaves
of a's tree for occurrences of ci. For each leaf containing
an instance of ci, a clause is formed by tracing a path
back to the root and conjoining a clause for each deci-
sion node. The initial condition set is the disjunction
of all the conjunctive clauses formed in this way.

Consider the sample tree of �gure 2. At the leaves
are outcome clusters, which have been hand-assigned
descriptive titles after generation (for our own bene�t),
and their observed frequency. If we are extracting the
initial conditions for the premature halt outcome of the
turn action, in which the robot comes to a stop before
it intended to (usually due to a blocked path), we note
that it is included in two leaves. The path to the �rst
occurs when the direction of the turn is clockwise. The
second occurs when the direction is counter-clockwise
and the gripper beam is not broken in the precursor
interval. A �rst pass at the initial conditions for pre-
mature halt would be

(direction = clockwise) _
(direction = counter-clockwise ^ beam = o�)

It is worth noting, though, that between the two
leaves, premature halt is found less frequently in the
�rst one. The percentages shown in the �gure represent
the frequency of that outcome in the leaf. In the clock-
wise leaf, this outcome was observed in 16% of cases,
while only 8% in the counter-clockwise leaf. While this
is most likely a spurious condition due to the fact that
this outcome is infrequent, one can easily imagine situ-
ations where relative frequencies between leaves would
be important and useful information to a planner. Sup-
pose that premature halt was also found in the third leaf
of �gure 2, in which the break beam was on, with an
observed frequency of 40%. It would follow that the
outcome would be most likely if the break beam were
broken, a useful heuristic to guide the planner's search.
Therefore, we include these frequencies in our initial
condition speci�cations and denote them as follows:

(direction = clockwise)[16%]_
(direction = counter-clockwise ^ beam = o�)[8%]

With the addition of initial conditions, our operator
models now have the requisite properties for means-
ends planning. Before moving on to an outline of
how the operator models are utilized by a planner, we
present our experimental results with the clustering and
initial condition induction schemes.

Experimental Results

Our experiments with operator models evaluate each
component of the system individually. We started by
collecting data for 4 sets of experiences: 102 experi-
ences with the robot moving in a straight line while
collecting data from its velocity encoders, break beams,
and gripper bumper (which we will call the tactile sen-
sors), the same 102 move experiences collecting data
from the Pioneer's vision system, including the X and
Y location, area, and distance to a single visible object
being tracked (which we will call the visual sensors),
50 experiences with the robot turning in place collect-
ing tactile data, and those same 50 turn experiences
collecting visual data. In each experience, the robot at-
tempted to move or turn for a duration between 2 and
8 seconds in a laboratory environment. Among the ex-
periments were examples of the robot moving backward
and forward at 4 di�erent speeds and turning clock-
wise or counter-clockwise while pushing various objects,
passing by them, becoming blocked, and with objects
entering and leaving the visual �eld.

Clustering

Our goal in clustering is for the clusters to map to action
outcomes for the purposes of planning in service of our
theories of conceptual development. Roughly, we would
like our agents to produce ontologies of activity that are
in accordance with those a human might produce. As
such, our primary means of evaluating cluster quality
is to compare them against clusters generated manually
by the experimenter who designed the experiences they
comprise.
We evaluate the clusters generated by DTW and ag-

glomerative clustering with a 2 � 2 contingency table
called an accordance table. Consider the following ta-
ble:

te :te

tt n1 n2

:tt n3 n4

We calculate the cells of this table by considering all
pairs of experiences ej and ek, and their relationships
in the target (hand-built) and evaluation (DTW) clus-
terings. If ej and ek reside in the same cluster in the
target clustering (denoted by tt), and ej and ek also
reside in the same cluster in the evaluation clustering
(denoted by te), then cell n1 is incremented. The other
cells of the table are incremented when either the tar-
get or evaluation clusterings places the experiences in
di�erent clusters (:tt and :te, respectively).
Cells n1 and n4 of this table represent the number of

experience pairs in which the clustering algorithms are
in accordance. We call n1 + n4 the number of agree-
ments and n2 + n3 the number of disagreements. The
accordance ratios that we are interested in are n1

n1+n2
,

accordance with respect to tt, and
n4

n3+n4
, accordance

with respect to :tt.

free turn (46%)
no effect (19%)
premature halt (16%)
temporary bump (5%)
stalled (5%)
+bumper temporary (3%)
+ free (3%)
impeded turn (3%)

+ free (67%)
+ never stops (21%)
premature halt (8%)
+ bumper (4%)

[clockwise][counter-clockwise]
Direction

gripper-beam
[off][on]

+ stopped (100%)

Figure 2: An initial condition tree built on clusters describing the e�ects of turn actions on the Pioneer's bump,
beam, and velocity sensors.

tt tt^te % :tt :tt^:te % Agree Disagree %

Move visual -5 876 720 82.2 4275 4125 96.4 4845 306 94.0

Move tactile -7 443 378 85.3 4708 4468 95.0 4846 305 94.0

Turn visual -5 262 262 100.0 599 571 95.3 833 28 96.7

Turn tactile -6 163 163 100.0 698 593 85.0 756 105 87.8

Figure 3: Accordance statistics for automated clustering against the hand built clustering.

Table 3 shows the breakdown of accordance for the
combination of dynamic time warping and agglomera-
tive clustering versus the ideal clustering built by hand.
The column labeled \#" indicates the di�erence be-
tween the number of hand-built and automated clus-
ters. In each problem, the automated algorithm clus-
tered more aggressively, resulting in fewer clusters. The
columns that follow present the accordance ratios for
experiences grouped together, apart, and the total num-
ber of agreements and disagreements.
The table shows very high levels of accordance. Ra-

tios ranged from a minimum of 82.2% for experiences
clustered together (tt) in the move/visual set to 100%
for experiences clustered together in the turn problems.
For the turn problems, the aggressive clustering may
account for the high tt accuracy, causing slightly lower
accuracy in the :tt case.

Initial Conditions

Using the hand-built clusters generated during the pre-
vious evaluation, we built initial condition trees for each
of the four datasets. We had three goals in evaluat-
ing these trees: to examine their accuracy in predicting
the class label of new experiences, to ensure that they
are encoding relevant contingencies in the environment,
and to ensure that the structure of the trees will even-
tually stabilize.
The trees generated for the turn/tactile and

move/visual sets are shown in �gure 2 and �gure 4,

respectively. It is readily apparent from the trees that
they do indeed uncover some of the structure of the en-
vironment. In �gure 2, the gripper beam being broken
is an indication that something is within the gripper's
grasp. This is one of the few instances in which a Pi-
oneer can easily be prevented from turning, con�rmed
by the 100% observed frequency of the outcome stopped.
The tree in 4 is much richer in structure. It �rst splits
on the x location of the object being tracked on the vi-
sual �eld, as this location determines whether moving
will bring the Pioneer into contact with the object, or
whether it will pass on the left or the right. The tree
also splits on the object's apparent width when it is to-
ward the center of the visual �eld, as small object tend
to disappear under the camera and into the gripper,
while large ones end up �lling the visual �eld. Finally,
the extreme right range of X (a value of 140) indicates
that there is no visible object being tracked. In this
case, it is unlikely an object will come into view mov-
ing forward, but more likely (37%) that one will come
into view when moving backwards.

Tree stability (robustness against drastic changes in
tree structure when new training data becomes avail-
able) is important for two reasons. First, stability is a
sign that additional experiences are not uncovering any
new, hidden structure of the environment1. We would

1The converse is not necessarily true, as many induction
algorithms continue to grow their representations even after
the true structure of the domain is learned (OJ97).

Vis-X

Vanish-Right (80%)
Approach-Right (20%)

Approach-Small (36%)
Approach-Right (36%)
Approach-Vanish (18%)
Approach-Big (9%)

Approach-Ahead (67%)
Approach-Vanish (33%)

Approach-Big (40%)
Approach-Ahead (40%)
Approach-Vanish (20%)

Approach-Small (62%)
Approach-Vanish (38%)

Move-Speed
[min..0][0..max]

Move-Speed
[min..0][0..max]

Approach-Left (40%)
Approach-Big (40%)
Approach-Small (20%)

Vanish-Left (80%)

[min..-58][-58..0.5][0.5..16][16..62][62..128][128..max]

Noisy-Dot (20%)

Retreat-Left (100%)
See-Nothing (93%)
Noisy-Dot (7%)

See-Nothing (63%)
Discover-Left (26%)
Discover-Right (11%)

Approach-Big (100%)

Vis-Width
[min..17][17..37][37..53][53..max]

Figure 4: An initial condition tree built on clusters describing the e�ects of move actions on the Pioneer's visual
sensors.

like our trees to stabilize early to show that our system
needs relatively few examples to cover most of the con-
tingencies. Second, since we use the structure of the
trees to support planning, we would like stable trees so
our operator models are not constantly changing, thus
preventing e�ective plan reuse. To test for tree stability
we generated 50 new experiences with the Pioneer, ran-
domly, and used DTW to assign cluster labels to them,
rebuilding the trees after adding the �rst 25, then the
full 50 to the original data.

The initial condition trees showed only minor changes
when additional experiences were added to the train-
ing set. Of the four trees, one tree (turn/tactile)
did not change. In another (turn/visual), two nodes
changed after adding 50 instances. In the third
tree (move/tactile), one decision node was collapsed,
and the last tree (move/visual) underwent signi�cant
changes. So, after roughly 75 turns, the turn trees
have appeared to achieve a moderate degree of stabil-
ity, and after 125 moves, the visual tree was still un-
stable, and the tactile tree was relatively stable. Most
telling, though, were the types of changes that occurred
in the trees. Many of the signi�cant changes occurred
when a decision node was replaced in a tree by what
we call a surrogate node. In some cases, one sensor can
convey the same information as another. For example,
the visual sensors of an object's height and it's Y loca-
tion on the visual �eld are often correlated: a taller ob-
ject's center of mass is higher on the visual �eld. When
the tree building algorithm evaluates a decision node
and its surrogate, they may appear equal statistically,
though they may a�ect the structure of the tree below
considerably. We are considering ways to improve the
worst-case stability of our tree induction algorithm.

Finally, we were interested in the accuracy of the
trees. The typical evaluation metric for decision tree
induction is a winner-take-all task, in which trees are
generated on a test set, and accuracy is tested on a sep-
arate test set. It is not surprising, then, that our trees

did not test well. Consider the distributions of class
labels in some of the leaves of �gures 2 and 4. In many
cases, the majority class has an observed frequency of
60% or less; one should not expect better performance
on a test set. Using the 50 randomly generated expe-
riences from the stability test, we produced accuracy
scores for the 4 initial condition trees, and indeed did
not produce high accuracy scores. On the move sets,
error rates of 80% to 90% were found, and on the turn
sets, error rates 40% to 50% were recorded.

In a related experiment, we trained backpropoga-
tion networks to perform the same classi�cation task.
Again, the classi�er scored poorly on the winner-take-
all task (Sch99), achieving scoring well on training data,
but achieving error rates indistinguishable from those
of the decision trees on test data.

The key to understanding why our classi�cation
schemes perform so poorly is identifying the extent to
which the environment is not fully observable through
the Pioneer's sensors. Consider the case in which the
Pioneer is considering turning. If there is nothing in its
visual �eld, how can it predict whether something will
appear or not? It can't. It can only narrow down the
possibilities, and be left with a probability distribution
over the likely outcomes. Consider the case in which
the robot sits before a red object. If it moves forward,
it will surely come in contact with the object, and can
predict this, but will it succeed in pushing it, or will
it crash? Since the Pioneer cannot sense features be-
yond location and size, it also cannot distinguish these
outcomes, either. It is, in a sense, unfair to expect the
Pioneer to score well on a winner-take-all accuracy test,
since its sensors do not supply enough information to
predict with absolute accuracy.

Despite our problems evaluating the initial condition
induction, we remain encouraged. Our initial condi-
tion trees are uncovering the structure of the Pioneer's
environment, and are allowing the Pioneer to make es-
timates of cluster outcome, even if it cannot pinpoint

a single outcome, and the trees are reasonably stable,
even with as few as 75 data points to build on.

Planning

Our planner is still in its preliminary stages, and as
such, our goal in this section is to describe how our
learned operator models are to be used in planning. The
planner is a standard backward chaining, state based,
means-ends analysis planner. Like the STRIPS plan-
ner (FN71) (and its many derivatives), planning here
boils down to a search through the space of operator
sequences. Due to nature of our operator models, and
the environment we are working in, we must diverge
from the simplicity of STRIPS-style planning in three
situations.

Goal crossings are used as the basis for goal-matching.

Active planning can be used for the purpose of simul-
taneously re�ning planning operators and relaxing
overly constrained plan spaces.

Planning operators must be instantiated as closed-loop
controllers before they can be executed in plans on
the Pioneer-1.

Recall the basic operation of a STRIPS-style plan-
ner. The agent begins with a goal, described in terms
of a desired sensory state, and computes the di�erence
between its current state and the goal state. The plan-
ner then considers any activity that can resolve some
or all of those di�erences. Since our operator models
are made up of prototype time series sensor data, and
not discrete propositions over the state space, our plan-
ner selects cadidate activities when their sensory proto-
types exhibit goal crossings. Goal crossings are simply
points in the prototype at which goal sensor values are
achieved. Generally, the activity with the most desir-
able goal crossing is then added to the tail of the plan,
and its initial conditions are added to the goal stack.
Unfortunately, we cannot count on the initial condi-

tion induction algorithm to always produce perfect ini-
tial condition sets. In particular, induction algorithms
are prone to over�tting, which will result in spurious ini-
tial conditions, which in turn overconstrains planning.
In some cases, overconstrained planning will result in a
planner failure when a solution does exist. We call the
process of attempting to execute a plan in which most,
but not all of a component operator's intial conditions
can be met active planning. Active planning serves a
dual purpose. First, it allows successful plans to be
found and executed when spurious intial conditions are
included in operator models. Second, it allows for those
spurious conditions to be indenti�ed; if a plan produces
the same rate of success without satisfying a particular
initial condition as it does with that condition satis-
�ed, then it can be concluded that the condition is not
necessary in the model.
Once a sequence of operator models has been selected

to achieve the goal state, the sequence must be con-
verted into series of closed-loop controllers. We call

the process of generating a controller from an operator
model operator instantiation. Operator instantiation
works as follows. First, determine how the sensor val-
ues change after the action being instantiated is deacti-
vated. On a robot, activities take a non-trivial amount
of time to deactivate, such as the time it takes to come
to a halt when a move-forward action is deactivated.
We call the e�ects of an action that occur after it has
been deactivated the deactivation e�ects. Next, com-
pute when the operator should be deactivated by sub-
tracting the deactivation e�ects from the goal crossing
which the controller is attempting to achieve. Finally,
a control program is generated using ACL (Sch98), a
language we have developed for operator instantiation
on the Pioneer.
A sample planner trace is shown in �gure 5a, with

its corresponding ACL control program shown in �g-
ure 5b. This plan is designed to satisfy the sensor goal
of foveating on an object. In terms of sensor values, the
robot wants to achieve an X location of a visible object
between -10 and 10, or (vis-x 2 [�10 : : :10]).
The plan trace includes two paths. One, which at-

tempts to achieve the goal by moving forward using the
operator \noisy-tiny-dot" (an outcome in which noise in
the vision system leads to a variety of spurious sensor
readings in the absence of any visible object), leads the
planner down a fruitless path. Indeed, moving forward
is not the best way for the Pioneer to foveate on an
object. The second path through the plan space, which
uses the turn operator \pass-left-to-right", is much sim-
pler and has a much greater chance of success. This
operator model has no initial conditions, and thus the
planner returns the controller in �gure 5b, which states
that the Pioneer should turn counter-clockwise until an
object enters the range [�16:35 : : :8:35].

Conclusions

We presented a system for the induction of planning op-
erators from simple, sensorimotor interaction between
an agent and a real-world, partially observable environ-
ment. Our system �rst uses dynamic time warping and
agglomerative clustering to partition the experiences of
an agent with its primitive actions into qualitatively
di�erent outcome classes. We evaluated this learning
component by comparing it against hand-built cluster-
ings, and found high levels of accordance between the
automated system and the human expert, indicating
that the automated system is keying on many of the
same dynamic features that the human is.
Once our system has clustered its experiences by the

dynamics of their outcomes, it attempts to learn sen-
sory features that are associated with those outcomes.
We make a distinction between preconditions, which
have causal connotations, and initial conditions, which
associate sensory features with likely outcomes, and de-
scribe an approach to inducing initial conditions based
on decision tree induction. We found that the initial
condition trees do indeed encode interesting features of

(initiate-action ’turn-100
 (termination-conditions

 (failure :otherwise))))

goal
(< -10 vis-x 10)

move
(noisy-tiny-dot)

turn
(pass-left-to-right)

move
(vanish-on-right) (success (< -16.35 ’vis-x 8.35))

move

(b)

(retreat-left)

<dead-end>

<success>

(a)

Figure 5: (a) A sample plan trace that achieves a simple goal with learned operators. (b) A closed-loop controller
that implements the plan.

the environment associated with the outcomes of ac-
tions, and we have reason to believe that the trees will
stabilize quickly, though we will continue to push for
greater stability. Finally, the Pioneer's sensory appa-
ratus allows it only partial observability, which has a
considerable e�ect on the accuracy of initial condition
trees in a winner-take-all prediction task.
This work suggests that researchers choose one of two

courses for planning in realistic, partially observable
domains. On one hand, providing additional learning
mechanisms that will allow an agent to create richer
representations of its world (in particular, the loca-
tions and features of objects not within sensor range)
solves the problem of partial observability by making
the world wholly observable. On the other hand, one
might emphasize the importance of planning with con-
tingencies to monitor and handle cases in which the
expected outcome fails to occur. In future work, we
hope to show that the latter is a viable option.

Acknowledgements

This research is supported by DARPA/AFOSR
contract #F49620-97-1-0485 and DARPA contract
#N66001-96-C-8504. The U.S. Government is autho-
rized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright nota-
tion hereon. The views and conclusions contained
herein are those of the authors and should not be in-
terpreted as necessarily representing the oÆcial poli-
cies or endorsements either expressed or implied, of the
DARPA, AFOSR or the U.S. Government.

References

T. H. Corman, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. MIT Press, 1990.

Brian Everitt. Cluster Analysis. John Wiley & Sons,
Inc., 1993.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A
new approach to the application of theorem proving

to problem solving. Arti�cial Intelligence, 2(2):189{
208, 1971.

David Jensen and Paul R. Cohen. Over�tting in in-
ductive learning algorithms: Why it occurs and how to
correct it. Submitted to the Thirteenth International

Conference on Machine Learning, 1996.

Frederick Jelinek. Statistical Methods for Speech

Recognition. MIT Press, 1997.

David Jensen and Matthew D. Schmill. Adjusting
for multiple comparisons in decision tree pruning. In
Proceedings of the Third International Conference on

Knowledge Discovery and Data Mining, pages 195{
198, 1997.

Joseph B. Kruskall and Mark Liberman. The sym-
metric time warping problem: From continuous to
discrete. In Time Warps, String Edits and Macro-

molecules: The Theory and Practice of Sequence Com-

parison. Addison-Wesley, 1983.

Tim Oates and David Jensen. The e�ects of training
set size on decision tree complexity. In Proceedings of

the Fourteenth International Conference on Machine

Learning, 1997.

Matthew D. Schmill. The eksl saphira-lisp system and
acl user's guide. EKSL Memorandum #98-32, 1998.

Matthew D. Schmill. Predicting outcome classes for
the experiences of a mobile robot. EKSL Memoran-
dum #99-33, February 1999.

David Sanko� and Joseph B. Kruskal, editors. Time

Warps, String Edits, and Macromolecules: Theory

and Practice of Sequence Comparisons. Addison-
Wesley Publishing Company, Reading, MA, 1983.

