
Learned Models for Continuous Planning

Matthew D. Schmill, Tim Oates, and Paul R. Cohen

Computer Science Department, LGRC
University of Massachusetts, Box 34610

Amherst, MA 01003-4610
fschmill,oates,coheng@cs.umass.edu

Abstract

We are interested in the nature of activity {
structured behavior of nontrivial duration {
in intelligent agents. We believe that the de-

velopment of activity is a continual process
in which simpler activities are composed, via
planning, to form more sophisticated ones in
a hierarchical fashion. The success or failure
of a planner depends on its models of the en-
vironment, and its ability to implement its
plans in the world. We describe an approach
to generating dynamical models of activity
from real-world experiences and explain how
they can be applied towards planning in a
continuous state space.

1 Introduction

We are interested in the problem of how activity
emerges in an intelligent agent. We believe that ac-
tivity plays a critical role in the development of many
high-level cognitive structures: classes, concepts, and
language, to name a few. Thus, it is our goal to derive
and implement a theory of the development of activ-
ity in intelligent agents and implement it using the
Pioneer-1 mobile robot.

Our model of the development of activities can be bro-
ken down into two continuously ongoing processes: a
modeling process, and a planning process. In the mod-
eling process, the agent endeavors to represent the ef-
fects of its actions on the observable environment. The
Pioneer begins the modeling process with some primi-
tive actions and sensors. Its primitive actions move
the robot forward and backward, turn it clockwise
and counter-clockwise, and raise and lower its grip-
per. The Pioneer's 42 real-valued primitive sensors
include sonars, velocity encoders, bump sensors, and
various readings from a blob vision system. At the
outset, then, the Pioneer attempts to model how the

primitive actions a�ect the patterns observed in its
primitive sensors.

As models are created and re�ned, the planning pro-
cess can begin to compose the models into simple plans
for achieving goals. Useful plans will themselves be-
come activities, be modeled, and reused by the planner
to create new activities that do more and achieve in-
creasingly sophisticated goals. The result of this pro-
cess is a hierarchy of activities that can serve as a basis
for further conceptual development like language, con-
cepts, and classes.

Our focus in this paper is to detail the modeling pro-
cess that enables planning. In the next section, we de-
scribe the analyses and transformations that are used
to model the e�ects of activity. We follow with a dis-
cussion of how these models can be instantiated to
generate simple controllers that serve as the basis for
planning in the continuous space of the Pioneer-1 mo-
bile robot. We conclude with a short discussion of the
state of the system and future work in planning.

2 Learning Dynamics from Experience

We would like our models of activity to explain the
sensory patterns a robot can expect if it engages in
an activity. For example, engaging in a move activity
might result in the robot's velocity encoders ramping
up and the distance to an object decreasing. On the
other hand, the robot may be obstructed when it at-
tempts to move. In this case, the velocity encoders will
report no change, the robot's bump sensor will report
contact, and its sonars will likely report no change.
In fact, each of the primitive actions o�er a handful
of qualitatively di�erent possible outcomes. The �rst
step in modeling, then, is for the robot to di�erentiate
between the multiple outcomes of its activities.

Time series sensor data resulting from the application
of an activity (called an experience) indicates that typ-
ical outcomes have characteristic sensory patterns as-



5000

10000

time(seconds)
1 3 5

di
st

an
ce

-t
o-

ob
je

ct
(m

m
)

5000

10000

1 3 5
time(seconds)

di
st

an
ce

-t
o-

ob
je

ct
(m

m
)

Figure 1: Traces of the distance between the agent and an object during two di�erent experiences with the move
activity. The data on the left is from an experience where the robot moves past the object without incident. On
the right, data represents the robot pushing the object.

sociated with them. Figure 1 shows two character-
istic sensory patterns for the move activity. In the
plot on the left, the distance from the agent to the
object slowly decreases, and then sharply increases to
10 meters. The increase to 10 meters is caused by
the object disappearing from view, indicating that the
robot passed by the object in this experience. In the
right-hand plot, the distance to the object is close to
zero, and constant. This pattern is characteristic of a
movement in which the object is being pushed. Our
approach to di�erentiating between di�erent outcomes
uses these signature patterns as a basis for clustering.

2.1 Clustering Experiences

The most common clustering algorithms rely on some
kind of similarity metric, often called a distance met-

ric, to judge whether or not two data should be kept
together in a single cluster. For our system, the dis-
tance metric should make use of characteristic patterns

in time series data to judge similarity.

A very simple distance metric for judging the distance
between two time series would be to simply compute
the mean square di�erence between the two time se-
ries. Under this metric, the patterns of �gure 1 would
have a large distance due to the sharp increase in the
plot on the left.

This simple distance metric is not robust against dif-
ferences in timing, though. Consider two experiences
passing by an object, one in which the object is passed
after 1 second, and another in which the object is
passed after 5 seconds. The 4 second di�erence in tim-
ing causes 4 seconds of drastic mean square di�erence,
most likely resulting in a distance between these two
experience greater than the distance between the two
plots of �gure 1. A more robust distance metric would

abstract away di�erences in timing and duration.

To perform this temporal abstraction, we utilize an
algorithm called dynamic time warping [5]. The dy-
namic time warping algorithm uses stretching and
compressing operations to create a temporal map-
ping between two time series that minimizes the mean
square di�erence between them. The stretch opera-
tions extend the time scale over a region of the time
series, mapping an interval of duration � to an inter-
val of duration ��, where � > 1, while preserving the
temporal ordering of all data points. Conversely, the
compress operation maps an interval of duration � to
an interval of duration ��, where � < 1.

In the previous example of the 1 second and 5 second
pass experiences, dynamic time warping could simply
compress the 5 seconds leading up to the object dis-
appearing from sight into a 1 second interval. This
new, warped time series has a very small mean square
di�erence from the 1 second pass. On the other hand,
no series of compressions or stretches can obscure the
di�erence between the two time series of �gure 1. As
a result, the distance between these two time series is
sure to be greater than the di�erence between the 1
and 5 second pass experiences.

The dynamic warping algorithm can be applied to the
task of warping one experience to another to �nd the
temporal mapping which minimizes the di�erence be-
tween arbitrary subsets of sensor time series. By using
subsets of correlated sensors, rather than all 42 sen-
sors at once, we relieve the algorithm of possible inter-
ference e�ects, whereby subtle patterns such as those
found in the visual sensors may be overshadowed by
wild or noisy patterns in other sensors, such as the
sonars.



The minimized mean square di�erence between two
experiences computed by the dynamic time warping
algorithm is taken to be our distance metric for clus-
tering. We employ a simple group-average, agglom-
erative clustering algorithm to collect together expe-
riences whose warping distances are small. This type
of clustering scheme begins with each experience as a
separate cluster, and merges the two clusters with the
lowest group-average distance between experiences in
the two clusters. Merging continues until the distribu-
tion of within-cluster distances is judged signi�cantly
di�erent than the distribution of between-cluster dis-
tances.

2.2 Clusters as Operator Models

The result of the clustering algorithm is a partitioning
of the agent's experiences in which each cluster cor-
responds to one possible outcome of an activity. We
would like clusters to serve as predictive operator mod-
els for planning, and to make them more practical for
this purpose, we subject clusters to further transfor-
mation.

First, we represent each cluster by a prototype expe-

rience. A cluster's prototype experience is created by
averaging the sensory time series of the experiences
that belong to that cluster. This averaging serves to
smooth out noisy sensor data as well reduce the volume
of data that must be considered to make a prediction.

Finally, the prototype experience's time series are re-
described by a piecewise linear �t. Recall the variable
nature of an activity's duration: an activity may last
for 1 second, 5 seconds, or 2 hours. The crucial in-
formation from a planning perspective is the rate at
which things change. A piecewise linear �t retains
rate information while allowing the planner to project
over variable durations. We will return to the issue of
prediction in section 3.

Our piecewise �tting algorithm is a divide-and-conquer
approach to line �tting that passes a window of size
� over the data, calculating the di�erence between
the slope of the least-squares �t on the left and right
sides of the window. The t statistic is then computed
for the most drastic change in slope over the data.
If the t value is signi�cant at some threshold �, the
algorithm splits the time series about the most drastic
slope change, and recursively invokes the line �tting
algorithm on the two pieces. The algorithm continues
until the most drastic slope change in every piece is
no longer signi�cant. Each piece is then described by
its least-squares �t. Two screen shots of the piecewise
�tting algorithm's results are shown in �gure 2.

To recap, modeling entails 3 processes. First, the
robot's experiences with its actions are clustered by

their dynamics into groups of similar outcome. Each
cluster is then represented by a prototype experience,
and this experience's sensory traces are redescribed by
a piecewise line �tting algorithm. With this represen-
tation, the robot is ready to use clusters for planning.

3 Continuous Space Planning

To generate activities by planning as we propose, we
require a generative, means-ends analysis planner, sim-
ilar to the STRIPS and ABSTRIPS planners [4]. Un-
fortunately, neither of these planners was designed to
cope with a continuous environment. Systems such as
the Prodigy [1] planner adapt STRIPS-like planning
to the domain of mobile robotics by discretizing the
action and state spaces into discrete behaviors and
predicates that can be reasoned about symbolically.

Others, such as the Zeno planner[3], introduce rates of
change and temporal quanti�cation to introduce tem-
poral constraints and continuous change to symbolic
planning. Our approach is di�erent in that it works di-
rectly at the sensor level, creating low-level controllers
to achieve goals using learned operator models.

This process of creating low-level controllers out of
learned operator models is called operator instantia-

tion. We next describe a language for implementing
simple controllers before detailing the operator instan-
tiation process.

3.1 A Control Language

Our goal in designing a control language was to create
a language that was expressive enough for a human
engineer to implement hierarchical controllers of ar-
bitrary complexity, but simple enough for a planner
to generate the same type of controllers to achieve its

own goals. The resulting language, ACL, possesses a
simple LISP type syntax with very few primitives that
are powerful enough to implement most conceivable
behaviors.

The four basic constructs of ACL are initi-

ate, termination-conditions, conditional, and
terminate-on. The �rst two are for the activation
and deactivation of activity, the third provides condi-
tional branching, and the last construct declares when
a control program should terminate. The following
control program is a useful illustration of the program-
ming language:

(define-control-program grasp
(run-to-completion foveate)
(initiate (move+100)

(termination-conditions
(success (= gripper-beam 1))))

(run-to-completion gripper-up)
(terminate-on



100

200

300

400

500

600
D

is
ta

nc
e-

to
-o

bj
ec

t(
m

m
)

Time(seconds)
1 6

0

100

200

T
ra

ns
la

tio
na

l v
el

oc
ity

(m
m

/s
ec

)

Time(seconds)
1 6

4

3

2
1

Figure 2: Two sensor traces from a move activity shown with their piecewise linear �ttings. On the right is a
trace of translational velocity. On the right is a trace of a visual sensor that records the distance to a blob being
tracked by the vision system. The grey vertical bars indicate the activation and deactivation times of the move
activity, while the number markers on the left graph denote the phases generated by the piecewise linear �t.

(success :success)
(failure :failure)))

The above program, named \grasp", �nds an object,
moves the agent towards it, and grasps it. The �rst line
of the control program makes use of a macro run-to-
completion, which simply runs a subprogram until
that subprogram completes. The next form initiates
the move+100 activity and speci�es that it should be
terminated when the gripper beams are broken, not-
ing that this condition is to be called \success". The
program next raises its gripper, and �nishes with the
terminate-on form, which terminates itself and in-
dicates \success" or \failure" to its parent, depending
on the status of the three subprograms that the grasp
program initiated.

ACL provides the necessary language for specifying
controllers for agents operating in a continuous space.
The initiate/termination-conditions form is the
elementary building block of these controllers, and the
output of the operator instantiation process.

3.2 Operator Instantiation

Recall that operator instantiation is the process by
which a known operator model is used to achieve a
speci�c goal. In ACL terms, operator instantiation
is the process by which an initiate/termination-
conditions block is generated from an operator
model intended to achieve a goal.

It will help in the discussion of operator instantiation
to break operator models into three intervals. The �rst
interval, called the preactivation interval, describes the
sensory patterns observed before the operator is ac-

tivated. The second interval, the activation interval

represents experience during the lifetime of the activ-
ity. Finally, the deactivation interval describes what
happens after an activity has been deactivated. These
intervals are delineated by the vertical lines of �gure 2.

The intervals of interest to operator instantiation are
the activation and deactivation intervals. The activa-
tion interval represents the behavior that is under the
control of the agent. During this interval, the agent
can exercise limited control over what happens by de-
activating the activity. The deactivation interval rep-

resents behavior that is not under control of the agent.
It is what happens after the agent has deactivated the
activity: it is what happens after the Pioneer-1 deac-
tivates the move activity, for example.

The key to operator instantiation is in computing
when to deactivate an activity such that the agent will
come to rest at the goal. Consider the second step of
the ACL program of section 3.1 in which an agent
moves toward an object to be grasped. In this exam-
ple program, the gripper beam is used as the trigger
for deactivating the move activity. It is a simple but
less than ideal stopping criteria, as the gripper beam
is a mere 10 millimeters ahead of the back of the grip-
per. If it takes more than 10 millimeters for the robot
to stop, then we can expect this activity to reliably
bump into the object to be grasped as it comes to a
stop. This may be unacceptable if the object can be
tipped over.

A more reliable solution would be to use the Pioneer's
vision system to measure the robot's distance to the
object, and to account for the deceleration of the robot
such that the movement step would end with the dis-



tance equal to zero. The task of operator instantiation
is to compute the termination conditions for the move
activity that will result in the goal being achieved after
any e�ects of the deactivation phase have occurred.

The deactivation point is computed by starting with
the goal value and working in reverse through the
piecewise �ts of the operator model's deactivation
phase. Each piecewise �t that is not part of the acti-
vation phase is taken to be a �xed, unavoidable e�ect,
and is added to the goal value. Once the cumulative
e�ects of the deactivation phase have been computed,
this new modi�ed goal value is taken as the deactiva-
tion point of the activity.

Consider again the example of approaching an object
to grasp it. The selected operator model's prototype
for distance-to-object is pictured in the left-hand
graph of �gure 2. Starting with the goal value of zero,
the operator instantiation begins by adding the e�ects
of phase 4. The slope of phase 4's linear �t is zero, and
so this phase has no e�ect on the goal value. Phase
3 is next, and has a slope value of �80:3mm

sec
. The

duration of this phase is �xed, as the deceleration of
the robot is constant, and is approximately one half
second long. The e�ect is computed to be �40:15mm,
and is subtracted from the original goal value. The
next phase, phase 2, is the activation phase. Since this
phase can be deactivated at will by the robot, the com-
putation stops, and distance-to-object=40:15mm
is taken to be the deactivation criteria for the move
activity. The revised movement block of the grasp
program would be:

(initiate (move+100)
(termination-conditions

(success (<= distance-to-object 40.15))))

4 Conclusions and Future Work

We propose an end to end system for explaining the
development of structured activities in an intelligent
agent. The system divides development into two pro-
cesses: a modeling process whereby the agent learns
about the dynamics of the activities that it already
can perform, and a planning process whereby the agent
composes existing activities, in a disciplined way, into
new activities.

The modeling process must account for the fact that
a single activity may have several possible outcomes,
and that a single outcome may be of varying dura-
tion. We generate operator models by �rst clustering
experiences by their outcome, and then redescribing
these clusters with piecewise linear models. Currently,
we have run the modeling system on some 200 expe-
riences of the Pioneer's primitive actions and gener-

ated 102 clusters using di�erent subsets of the Pio-
neer's primitive sensors. These clusters separate expe-
riences into groups of categorically di�erent outcomes:
unobstructed versus obstructed moves, and passing an
object on the left versus passing one on the right, for
example.

We have implemented operator instantiation and
tested it with our clusters on a small number of simple
goal-operator pairs, such as the distance-to-object
example in the discussion of section 3.2. In these cases,
the operators are instantiated by ACL code that cor-
rectly projects the termination criteria to arrive at the
simple goals. Continued testing in this area is in order
to test the reliability of the piecewise �ts, and to ensure
that treating the deactivation phases as �xed intervals
is expressive enough to handle all activity outcomes.

Acknowledgments

This research is supported by the Defense Advanced
Research Projects Agency, AFOSR, and USAF un-
der contracts F49620-97-1-0485 and F30602-97-1-0289.
The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwith-
standing any copyright notation herein. The views
and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily rep-
resenting the o�cial policies or endorsements either
expressed or implied, of DARPA, AFOSR, USAF, or

the U.S. Government.

References

[1] Jaime Carbonell, Oren Etezioni, Yolanda Gil, Robert
Joseph, Craig Knoblock, Steve Minton, and Manuela
Veloso. Prodigy: an integrated architecture for plan-
ning and learning. In Working Notes of the AAAI
Spring Symposium on Integrated Agent Architectures,
1991.

[2] Brian Everitt. Cluster Analysis. John Wiley & Sons,
Inc., 1993.

[3] J. Penberthy and D. S. Weld. Temporal planning
with continuous change. In Proceedings of the Twelfth
National Conference on Arti�cial Intelligence, Menlo
Park, CA, 1994. AAAI/MIT Press.

[4] Earl D. Sacerdoti. Planning in a hierarchy of abstrac-
tion spaces. Arti�cial Intelligence Journal, 5(2):115{
135, September 1974.

[5] David Sanko� and Joseph B. Kruskal (editors), editors.
Time Warps, String Edits, and Macromolecules: The-
ory and Practice of Sequence Comparisons. Addison-
Wesley Publishing Company, Reading, MA, 1983.


