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Abstract

Finding patterns in temporally structured data is an important and di�cult problem. Ex-

amples of temporally structured data include time series of economic indicators, distributed

network status reports, and continuous streams such as ight recorder data. We have devel-

oped a family of algorithms for �nding structure in multivariate, discrete-valued time series

data (Oates & Cohen 1996b; Oates, Schmill, & Cohen 1996; Oates et al. 1995). In this paper,

we introduce a new member of that family for handling event-based data, and o�er an empirical

characterization of a time series based algorithm.

1 Introduction

Dependency detection is an approach to �nding patterns in time series or event data based on

locating unexpectedly frequent or infrequent co-occurrences of patterns in the data. We call these

co-occurrences dependencies that can be expressed as rules of the following form: \If an instance

of pattern x is observed at time t, then an instance of pattern y will be observed after some delay

with probability p." Dependency rules are denoted x ) y; x is called the precursor pattern, and

y is called the successor pattern. A dependency is strong if the empirically determined value of

p (obtained by counting actual co-occurrences of x and y in the data) is very di�erent from the

probability of seeing a co-occurrence of x and y under the assumption that they are independent.

Our algorithms �nd strong dependencies between patterns by performing a general-to-speci�c,

systematic search over the space of possible dependencies.

We begin by introducing Multi-Event Dependency Detection (medd), an algorithm for �nding

patterns in event-based data. We report on its performance in a computer network event correlation

task. Next, we give an empirical characterization of the Multi-Stream Dependency Detection

(msdd) algorithm for time series based dependency detection. We conclude with a discussion of

the general e�ciency and applicability of the family of dependency detection algorithms.

2 Searching for Structure in Event-based Data

Computer networks produce large amounts of event-based data, and management of such networks

is largely driven by the generation and interpretation of events. A problem that plagues network

managers is the large number of events of di�erent types from disparate locations in the network

that result from network faults (Oates 1995). Finding patterns in those events to form clusters of

related events is important for reducing the amount of information that must be interpreted and
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for understanding the state of the network (e.g. by identifying whether a set of events represents

the e�ects of a single fault or multiple, concurrent faults).

Multi-Event Dependency Detection searches for frequently co-occurring patterns of events recorded

in event logs. Because strict temporal ordering cannot be enforced in network logs, medd searches

for dependencies among groups of events recorded within some temporal window �. Thus, medd de-

pendencies can be expressed by rules of the form: \If an instance of event pattern x is recorded in

the log at time t, then an instance of event pattern y will be recorded between t� �=2 and t+ �=2

with probability p."

Although the goal of our work with medd is the development of a tool that automatically

acquires knowledge from network event logs for the purpose of event correlation (Jensen, Oates,

& Cohen 1996; Oates, Jensen, & Cohen 1995), we believe that the approach is very general. The

algorithm's ability to �nd dependencies in event data may be useful in many other �elds that manage

large, interconnected systems; e.g. healthcare, transportation, logistics, telecommunications, etc.

2.1 Multi-Event Dependency Detection

medd accepts as input a set of historical event logs, searches for dependencies between patterns of

events in those logs until a user de�ned limit on the number of nodes to expand is reached, and

returns a list of the nodes explored. The nodes are then �ltered to identify those that represent

strong dependencies as measured by G, a statistical measure of non-independence (Wickens 1989).

The precursors of the remaining rules can then be matched against new event data to predict

occurrences of their successors.

Precursor and successor event patterns contain one or more partially instantiated events (PIEs).

In general, events recorded in logs comprise multiple �elds, and each �eld takes a value from a set

of allowable values speci�c to that �eld. For example, the status �eld might take values from the

set fup, downg. Assuming that events contain f �elds, and that �eld i takes values from the set

Vi, then the space of all possible events is given by E = �f
i=1Vi (that is, the cross product of all of

the Vi { every possible combination of �eld values). Any event e that appears in an event log is

an element of E . PIEs simply leave the value of one or more �elds unspeci�ed, which is denoted

by assigning those �elds the wildcard value �. Therefore, the space of all possible PIEs is given by

P = �f
i=1(Vi [ f�g). Note that E � P. Consider a simple event structure containing two �elds {

status and element { such that Vstatus = fup, downg and Velement = fhost, routerg. Then E
and P are as follows:

E =

(
(up host) (up router)

(down host) (down router)

)
P =

8><
>:

(up host) (up router) (up *)

(down host) (down router) (down *)

(* host) (* router) (* *)

9>=
>;

A PIE p 2 P is said to match an event e 2 E if every non-wildcard �eld in p has the same value

as the corresponding �eld in e. For example, the PIE p = (up *) matches event e
1
= (up router),

but it does not match event e
2
= (down host) or event e

3
= (down router). Event patterns,

precursors and successors, are de�ned to be sets of PIEs; i.e. x = fp
1
; : : : ; pnjpi 2 Pg is an event

pattern. Precursors and successors are said to match a fragment of an event log if each of their

constituent PIEs can be matched on a di�erent event in the fragment.

medd's traversal of the space of dependencies between event patterns is both general-to-speci�c

and systematic. Each node in the search space corresponds to a dependency rule, and the root of

that space is the completely general rule in which both the precursor and successor contain only

wildcards. For the simple two-�eld event structure introduced earlier, the root node contains the

rule f(* *)g ) f(* *)g. The children of a node are generated by modifying either the precursor or



successor of that node in one of two ways: by �lling in the value of a �eld that contains a wildcard

in an existing PIE, or by adding a new PIE containing a single non-wildcard �eld. In either case,

the descendants of a node are always more speci�c { they specify more non-wildcard values for

�elds { than the original node.

The search is made systematic, and therefore more e�cient (Rymon 1992; Webb 1996), by

only adding non-wildcards and PIEs to the right of the right-most non-wildcard in a node when

generating that node's children. Consider the node f(up *)g ) f(down *)g. The right-most

non-wildcard in this rule is down in the successor. Therefore, f(up *)g ) f(down router)g is a
valid child, but f(up router)g ) f(down *)g would not be generated because it requires adding

a non-wildcard to the left of down. (The interested reader is referred to (Oates & Cohen 1996b) for

a detailed discussion of the use of this type of operator ordering to achieve systematicity.)

medd's search through the space of dependencies is guided by a best-�rst heuristic. Each time a

node is generated, medd scans its historical event logs, counting the number of times the precursor

and successor of that node co-occurred within a temporal window of size � (speci�ed by the user).

Frequency of co-occurrence becomes the node's heuristic value, biasing the search to prefer rules

with frequently occurring precursors and precursor/successor pairs that frequently co-occur. The

search proceeds by iteratively selecting the node with the highest value, generating that node's

children, and adding them to the list of nodes under consideration.

Counting co-occurrences of precursors and successors is not as straightforward as it might

appear. For a log fragment with n events and a pattern with k PIEs, there are n choose k ways

that the pattern might match. If the precursor matches a fragment, then the successor must also

be checked for a match. That process is complicated by the fact that the successor may not match

because certain events are \taken" by the precursor (the precursor and successor must match on

di�erent events), but the precursor could match on a di�erent set of events allowing the successor

to match. In the worst case, all possible matches of the precursor must be tried to �nd a match

for the successor. We currently use an approximate counting scheme, and are investigating ways

to e�ciently implement more accurate counting algorithms.

medd returns all of the nodes that it explores in the space of dependencies. To �nd the strongest

dependencies among those explored, a 2x2 contingency table that describes the frequency of co-

occurrence of each rule's precursor and successor is built. (Actually, the complete table is built

during the search as each node is expanded. The �rst cell of the table is used as the node's heuristic

value to guide the search.) Then, the G statistic, a statistical measure of non-independence, is

computed for each rule, and the rules are sorted in non-decreasing order of G. We then remove

generalizations of the strongest rules that were generated as the search descended through the tree

to �nd those rules. Finally, the top k rules are retained. Currently, the choice of k is ad hoc. We

are investigating automated methods for choosing \good" values for k.

2.2 Experiment

This section describes an experiment designed to test both medd's ability to �nd strong depen-

dencies between patterns of events and the utility of those dependencies with respect to event

correlation. Event logs were generated by a modi�ed version of the Netsim network simulator

which is publicly available from MIT (Heybey & Robertson 1994). The simulator was modi�ed to

allow randomly selected components to fail. In addition, a monitor component was added to the

simulator to act as a Simple Network Management Protocol (SNMP - the Internet standard for net-

work management) proxy agent. That component periodically polls the other network components

and reports on their reachability.

Netsim generated two separate event logs for a simulated network containing 17 components.



Each event contained six �elds: the ID of the component reporting the event, that component's

type, the time at which the event was reported, the event type, and two additional �elds whose

semantics and contents depend on the event type. The �rst event log, which covered 261 network

errors and 237 reported events, was used by medd to search for dependency rules. Not all errors

generated events, and some errors generated multiple events. The latter errors are the ones that

medd attempts to correlate. The second event log, which covered 248 network errors and 243

reported events, was used as a source of new events to test the rules generated from the previous

log. The rules were used to �nd and report correlated events.

medd generated 30,000 search nodes, and the total CPU time required by the search and post-

processing was 344 seconds. Post-processing removed all but 2761 rules, and the top 200 were

retained (rather arbitrarily) for correlating future events. Given knowledge of the actual errors

introduced into the simulated network while generating the test log, it is possible to form 56 groups

of events for which the events in each group are causally related to a single error. Events not

contained in these groups should not be correlated with other events because they are not causally

related to any other events. Of the 56 possible groups, medd's rules found all or part of 35. In six of

those cases, an extraneous event that belonged to a di�erent error was included. Of the 21 groups

that medd failed to identity, 17 involved an indirect manifestation of an error and a report from

the monitor component identifying the cause of that manifestation. That is, the missed groupings

almost entirely involved diagnostic relationships, a problem that may be alleviated by recourse

to domain knowledge. Finally, medd formed groupings of causally unrelated events 8 times. In

several of those cases, the groupings pair an event reporting one error with an event reporting a

manifestation of a second (di�erent) error that could have been caused by the �rst error. Our

conjecture is that deepening the search for rules (i.e. increasing the number of nodes that medd

explores) will lead to more speci�c rules that will be able to distinguish such cases.

2.3 Discussion

The experimental results reported in the previous section are very encouraging. For a simulated

network experiencing multiple (often almost simultaneous) errors, rules generated by medd can

successfully correlate events caused by a single root error. The rules rarely incorporate unrelated

events, and they rarely form completely erroneous groupings. Future work will involve reducing

the number of errors that the rules commit, perhaps allowing a user-de�ned tradeo� between

aggressiveness in grouping events and the potential for di�erent types of errors.

3 Empirical Characterization of MSDD for Time Series Data

Multi-Stream Dependency Detection (msdd) is an algorithm for �nding the strongest dependencies

in multiple synchronized streams of discrete time series data. As opposed to medd, msdd assumes

that its data are strictly ordered, and thus its rules predict future patterns from observed precursor

patterns: \If an instance of pattern x beginning at time t is observed, then an instance of pattern

y will be observed beginning at time t+ � with probability p." Consider three streams:

Stream1 A C F B L A A B B B B C A F F L B

Stream2 V W W W V X W X Y X W Y W W X W X

Stream3 7 3 1 3 1 7 6 6 2 5 3 5 7 5 5 3 1

The boldfaced tokens highlight a dependency between two patterns in these streams. The following

rule represents a co-occurrence that was observed twice in the streams above:
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64 A *

* W

7 *

3
75 3
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64 *

W
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3
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This rule says, \When you see A in Stream 1 and 7 in Stream 3 on timestep t, and W in Stream 2

on timestep t + 1, then expect to see W in Stream 2 and 3 in Stream 3 on timestep t + 3." Note

that some token values are irrelevant for predictive purposes; these are wildcarded in the rule. The

number of timesteps spanned by the precursor or successor is called the block size. The precursor

and successor above have block sizes of 2 and 1, respectively.

Rules like this are hard to �nd; the search space is exponential (Oates et al. 1995). Msdd treats

dependency detection as an e�cient search for the k most predictive rules in the search space.

3.1 The MSDD Algorithm

Msdd accepts as input a dataset of streams, each of which comprises a list of categorical tokens.

It returns the k strongest dependencies between precursor and successor patterns. msdd performs

a general-to-speci�c, systematic search over the space of possible dependency rules, starting with

a root node that speci�es all wildcards for both the precursor and the successor. The children of

a node are generated by adding a single token to its precursor or successor. By imposing a total

ordering on the adding of tokens, msdd ensures that each dependency rule is generated at most

once (Oates et al. 1995; Webb 1996). To evaluate a rule Rp ! Rs, msdd counts co-occurrences

of Rp and Rs, and also occurrences of other precursors Rp and other successors Rs in the dataset.

The following contingency table summarizes these counts:

Rs Rs

Rp n
1

n
2

Rp n
3

n
4

Msdd is interested in unusually high or low cell counts in n
1
; this is the cell that represents the

number of times Rp ! Rs held true in the data. For the purpose of rating nodes, msdd uses the G

statistic for measuring nonindependence in 2x2 contingency tables (Wickens 1989). Msdd main-

tains a list of k rules sorted by the G statistic. Because it is possible to derive an optimistic upper

bound on the G statistic for the children of a given rule, msdd is able to prune large portions of

the search space when the upper bound on G for a node's children is found to be less than that of

the worst rule present in the k-best list (Oates & Cohen 1996b). The systematic search for rules

continues until all of the unvisited nodes at the fringe of the search tree have no chance at being

among the k strongest dependencies.

3.2 Empirical Evaluation

Msdd has been tested in several domains, including learning planning operators (Oates & Cohen

1996a), predicting pathologies in a simulating shipping network, and classi�cation (Oates & Cohen

1996b). Our purpose here is to provide an empirical assessment of its performance when its param-

eters and the structure of datasets are manipulated. Each dataset comprised n streams of length l

tokens. The tokens were selected from an alphabet of a tokens. Each target rule Rp ! Rs involved

c non-wildcards in both Rp and Rs; we call this value c the rule's complexity. The block size for

Rp and Rs was always 1. We constructed r target rules and inserted them into otherwise random



streams. For each experiment we set k and measured the internal CPU time of the trial, the number

of nodes expanded in the search, and the proportion of tokens that were actually predictable in the

streams. Each trial was replicated 5 times to generate estimates of mean performance and variance.
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Figure 1: Top, left(a): trend of CPU time per node and nodes expanded as stream length l

increases; top, right(b): nodes expanded at various levels of k over increasing complexity; bottom,

left(c): the e�ect of n for various levels of a on nodes expanded; bottom, right(d): the e�ect of a

for several levels of n. Each datapoint represents 5 trials with 95% con�dence intervals.

3.2.1 Stream Length

Figure 1a shows the trends of CPU time per node expanded and total nodes expanded as l grows

from 500 to 10,000 training instances, with all other measures held constant. Nodes expanded

remains quite stable as stream length increases, while CPU time per node ascends in a linear

fashion to its maximum at l = 10000. Because the data is recounted during the evaluation of each

node, CPU time is proportional to stream length. (Other parameters, a, n, k, and r, have constant

e�ects on CPU time.) However, stream length has no signi�cant e�ect on the number of nodes

expanded.



3.2.2 K and Complexity

The choice of k speci�es the number of strongest dependencies that msdd will report at the con-

clusion of the search, and implicitly speci�es how aggressively msdd will be able to prune. Choice

of a low value for k ensures that the k-best list will �ll rapidly with highly-rated dependencies,

making it easier for msdd to prune weak rules; however, msdd may miss less accurate (but valid)

dependencies when there are more than k stronger ones in the data. A large value for k results in

more nodes being searched and more subtle dependencies detected. Figure 1b plots the number of

nodes expanded as a function of rule complexity c|the number of non-wildcards in Rp and Rs|for

various levels of k, in a dataset created with seven streams and seven target rules.

An interesting feature of graph 1b is that as c varies from 1 to 6, the number of nodes expanded

�rst decreases and then begins to grow. In cases where k > r, the k-best list cannot be �lled by

target (strong) dependencies. msdd must then search for rules to �ll out the k� r \free" spaces in

the k-best list. This gives rise to an interaction e�ect between c and k. Consider a rule Rp ! Rs

with two non-wildcards in Rp and Rs (i.e., c = 2). A candidate rule with one correct token in Rp

and two correct tokens in Rs is a generalization of the target rule; it might have a high G value,

indicating structure below it in the search tree. As the complexity of the target rules increases,

the probability increases that some generalizations of the target rules will be highly-rated. Thus,

the k-best list tends to become populated with highly rated generalizations, and spurious rules are

quickly pruned. For low values of c (c = 1 in particular), there are not enough generalizations to �ll

the k-best list, and thus some number of slots in the k-best list will be contested by spurious rules.

The result is that msdd cannot prune as signi�cant a portion of the search space. These results

are reected in graph 1b; the downward slope at the outset of the plots represents more abundant

generalizations as c increases overcoming an unnecessarily large choice of k.

Irrespective of k, complexity a�ects the depth of the e�ective msdd search space. Because the

space is structured from general to speci�c, more complex target rules are situated more deeply in

the search tree. We see this e�ect in the ascending portions of the plots of graph 1b. Experiments

holding k constant, and varying c for trials with larger numbers of streams indicate that the e�ect

of c on nodes expanded may be superlinear.

3.2.3 Alphabet Size and Number of Streams

Token alphabet size, a, and number of streams, n, are the main contributors to the size of the

unpruned search space. Analysis of the space's organization indicates that n a�ects the search

tree's depth and both a and n e�ect the branching factor. Graph 1c plots the observed e�ect of n

on the number of nodes expanded. This plot shows a superlinear growth of nodes expanded as n

grows. Most interesting, though, is the e�ect of varying a in these trials. The trial where a = 4

grows most rapidly; even more quickly than when a = 12.

Figure 1d plots the number of nodes expanded versus a in the same trials as �gure 1c. For very

low values of a, there is little possible token variance in the streams to distinguish between random

co-occurrences and actual dependencies. As a result, some very general, yet random co-occurrences

may appear somewhat frequently in the data, and msdd must consider many of these highly rated

spurious associations before the search can terminate. As a increases, the probability of seeing

any given random co-occurrence decreases, lengthening the distance between the real dependency

ratings and spurious ones. We see this \distinguishing e�ect" when a increases from 4 to 6. As a

increases beyond 6, this e�ect becomes insigni�cant compared to the increase in branching factor,

and we see an increase in the number of nodes expanded.



3.3 Discussion

By systematizing its search and pruning the children of all but the k best nodes, msdd e�ciently

searches an exponential space of dependency rules. Experiments indicate that the e�ects of com-

plexity and number of streams on the number of nodes expanded appear to be superlinear; however,

msdd still only expands a tiny fraction of its search space. In our experiments, msdd explored as

few as 10�21 of the possible rules in the n = 12; a = 12 case. For a search space of depth 7, the

minimum depth required to correctly identify rules of complexity 3, msdd prunes more than 98%

of the space in the n = 12; a = 12 case. Additionally, msdd appears to be a�ected little by choice

of conservatively large choices of k in all but the c = 1 case, and exhibits only small increases in

nodes searched as a becomes larger.

4 Conclusions

We have described a family of algorithms for �nding dependencies in temporally structured, mul-

tivariate datasets. Based on a systematic, general-to-speci�c search procedure, medd locates cor-

related event patterns in event-based data, and msdd determines the k strongest dependencies in

time series data. The medd algorithm provided encouraging results by uncovering much of the

underlying structure present in a simulated network application. Results of a controlled set of

experiments indicate signi�cant pruning of the exponential space of dependencies is possible due to

a heuristic based on optimistic upper bounds on the G statistic for a dependency's children. This

pruning allows msdd to conduct its search in a tiny portion of the overall search space. Because

these two algorithms are both based on the same principles, we expect the empirical �ndings on

msdd to apply to a k-best medd algorithm.
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