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Abstract

We have developed a learning mechanism that allows robots
to discover the conditional e�ects of their actions. Based on
sensorimotor experience, this mechanism permits a robot
to explore its environment and observe e�ects of its ac-
tions. These observations are used to learn a context oper-

ator di�erence table, a structure that relates circumstances
(context) and actions (operators) to e�ects on the environ-
ment. From the context operator di�erence table, one can
extract a relatively small set of state variables, which simpli-
�es the problem of learning policies for complex activities.
We demonstrate results with the Pioneer 1 mobile robot.

1 Introduction

This paper describes a method by which a robot learns
context-dependent e�ects of its actions. The robot is a
Pioneer 1, manufactured by Real World Interfaces, Inc.,
equipped with sonars and a gripper. By interacting with
its environment, the robot learns a context operator di�er-

ence table (CODT) that relates primitive actions to changes
in sensor readings. In general, the e�ects of actions will de-
pend on context. For instance, if the robot has run into an
obstacle, then attempted forward movement will have lit-
tle or no e�ect on the values returned by forward-pointing
sonars, whereas moving backward, away from the obsta-
cle, will a�ect these sonar readings. Each cell in a CODT
speci�es the e�ects of a single action on readings from a
single sensor in context. For example, when the robot is
jammed against an obstacle, the left-wheel-stalled and
right-wheel-stalled sensors return \true", and in this con-
text, attempted forward movement will have no e�ect on the
robot's frontmost sonar, but attempted backward movement
will be accompanied by an increase in the readings from that
same sonar. Conditional knowledge of this sort is stored in
decision trees, and the CODT contains one such tree learned
for every action-sensor pair.

Although CODTs represent the e�ects of actions, they
are not used to control the robot. Control policies are
learned by another algorithm, described below. In fact, the
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valuable contribution of CODTs is not the mappings they
provide from actions to e�ects but, rather, the contexts for
these mappings. CODTs tell us which of many variables are
relevant to the conditional e�ects of actions. Said di�erently,
they specify upon which variables e�ects are conditioned.
Because they specify which (relatively few) variables are
relevant to the e�ects of actions, CODTs can signi�cantly
reduce the dimensionality of search spaces for control poli-
cies. Thus CODTs are part of a divide-and-conquer strategy
for learning robot control strategies. We outline the entire
strategy in order to show the role of CODTs.

Inuenced by the interactionist philosophy of Mark John-
son and George Lako� [Lak84, Joh87], the developmental
psychology of Jean Mandler [Man92], and our previous work
in the Baby project [COAB96], we are using Pioneer 1 robots
to implement a theory of the origins of knowledge. The the-
ory says that conceptual systems (or ontologies) are grounded
in activity and that classes and concepts are essentially in-

teractionist. Through interaction an infant learns that some
objects are furry and soft, others are inexible and hard. If
this distinction is salient, the infant may identify one or more
extensional categories of objects. Similarly, a robot may dis-
tinguish graspable objects from those it cannot grasp. But
why should it? The distinction between graspable and non-
graspable objects must be salient|it must matter to the

robot|otherwise it should not be made and the correspond-
ing categories should not be formed. In our theory, distinc-
tions are salient if they help the robot predict whether it will
achieve its self-determined goals. For example, the robot
might establish the goal of moving an object to a location.
The distinction between graspable and non-graspable ob-
jects is salient in this case because it a�ects how (or whether)
the robot will achieve its goal. In sum, categories and con-
cepts are based on distinctions (such as graspability) which
are salient to the robot as it learns activities. Much of our
research has focused on making a robot learn increasingly
complex activities in an unsupervised way|without us spec-
ifying which activities it should learn.

We are developing two approaches to learning activi-
ties in which increasingly complex activities are constructed
from subactivities and primitive actions. For instance, car-
rying an object to a location (carry-to) consists of subactiv-
ities grasp-object and move-to, which are themselves con-
structed from parameterized primitives including move and
close-gripper. In the �rst approach, hierarchical reinforce-
ment learning, each activity has its own relevant state vari-
ables, its own available subactivities or actions, its own goal,
and its own evaluation function for representing a policy to
achieve the goal. The second approach is also constructive in
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the sense of building larger activities from smaller ones, and
it also reinforces some activities over others, but it does not
rely on goals, nor does it back up reward, as reinforcement
learning usually does.

Context operator di�erence tables facilitate activity learn-
ing by reducing the state space that the learning algorithm
must search. This is especially important for hierarchical re-
inforcement learning. To avoid the curse of dimensionality,
most applications of reinforcement learning involve careful
design, by an experienced researcher, of the state space and
reinforcement function. However, our research program pre-
cludes this: We want robots to learn complex activities and
concepts without ourselves having to specify individual re-
ward functions and state spaces for each activity. How can
the learning algorithm construct its own state spaces (one
for each activity) from subsets of state variables? Very few
state variables are actually relevant to any given activity, so
the value function for an activity can often be learned e�-
ciently in a small state space, if only the learning algorithm
knows which state variables to ignore. This is exactly the
knowledge provided by CODTs, which identify the context
variables that are relevant to the e�ects of actions. Only
those variables need be included in the state space for learn-
ing an activity.

2 Context Operator Di�erence Tables

Operator di�erence tables, familiar to students of means-
ends analysis [NS63], have actions on one axis and state
variables on the other, and the cells contain symbols, such
as `+', `�', or functions, which represent the unconditional
e�ects of the actions on the variables. Context operator dif-
ference tables (CODTs) represent the conditional e�ects of
actions. The rows and columns of CODTs list actions and
state variables, respectively, but the cells contain decision
trees that represent the e�ects of actions on state variables
in di�erent contexts. At the leaves of these trees are the
symbols `+', `�', and `0', which represent e�ects. The inte-
rior nodes are tests on state variables. In this study, each
state variable corresponds to one sensor on the Pioneer 1
robot.

Consider a table entry relating the action move to the
state variable moving. The tree in this cell may split on the
variable left-wheel-stalled and terminate in two leaves,
+ and 0. Its interpretation is, \If the robot's left wheel is not
stalled, a move command produces movement, otherwise it
produces no movement." A more surprising example relates
the action open-gripper to the state variable stalled: The
tree in this CODT cell says \If the robot is stalled, and the
sonars indicate that an object is very nearby, then opening
the gripper will make the robot unstalled." The reason for
this (which is not encoded in the CODT tree) is that when
the robot bumps into a wall and stalls, opening the gripper
will sometimes push the robot away from the wall, freeing
it.

The process of learning context operator di�erence tables
from sensiomotor experience involves repeated observation
and learning. During observation, the agent perceives states
and classi�es the changes that are observed in its sensor
readings. Once an observation becomes available, the agent
learns from it by updating the structures of the CODT to
reect the new information. We now describe the mecha-
nisms that classify changes in sensor readings and generate
CODT entries.

2.1 Classifying Changes

To learn the context-dependent e�ects of its actions, the
robot must interact with its environment and accumulate
observations. Each observation is represented as a data
structure consisting of an action description, a list of sen-
sor readings (the raw context), and a list of class labels that
describes the changes in sensor readings (the raw e�ects).

Observations are acquired with the help of the sensor

monitor, which classi�es changes in sensor readings. We use
the Saphira multitasking system (SRI International, Menlo
Park, CA), which handles the low-level details of communi-
cation with the Pioneer robot. Saphira supports customized
microtasks, or synchronous C functions. The sensor monitor
is such a microtask. Every 100 ms the monitor polls each of
the robot's 19 sensors, and bu�ers the most recent readings.

To classify the e�ects of an action on sensor readings,
the sensor monitor looks for a di�erence in the values of
the readings before and after the action. More speci�cally,
for each sensor, the slope of the readings before the action
is compared with the slope after the action. For instance,
if the robot is sitting still with its gripper open, then the
slope of the readings from a forward-looking sonar will be
zero. If the robot then closes its gripper, this action will
not a�ect the sonar readings, in the sense that the slope
will continue to be at. But if the robot is moving toward
an obstacle (producing a negative slope on forward-looking
sonar readings) and then moves away from it, the slopes of
the sonar readings will shift from negative to positive, and
the robot will have the opportunity to learn that moving
backwards changes the sign of the rate of change of sonar
readings.

These slope values are computed by an incremental al-
gorithm that �ts a least-squares line to the most recent ten
data points. (More or fewer points could be used, but ten
points, representing one second of activity, yields su�cient
data for the statistical test described below, given the noisi-
ness of the data.) Let beforei be the slope for sensor i before
the action, and afteri be the slope of ten values from sensor
i after the action and a short delay. (The delay gives the
action time to have an e�ect. Presently, the delay is �xed at
1000 ms, although in future work, the robot may learn an
appropriate delay for each sensor.) To classify the e�ects of
an action, the sensor monitor calculates beforei�afteri for
each sensor i, and converts the result to a class label, `+',
`�', or `0', representing an increase, a decrease, or no change
in slope, respectively. More precisely, the monitor tests the
hypothesis that beforei =afteri with the following statistical
comparison of the slopes of two regression lines:

t =
beforei � afteri

�̂b1�b2
; (1)

where �̂b1�b2 is the estimate of the standard error for the
di�erence of slopes from two regression lines. This estimate
is computed from the pooled variance, or sums of squares of
residuals from each least-squares line:

�̂b1�b2 =

s
ŝ2pooled

�
1

SSX1

+
1

SSX2

�
(2)

ŝ
2

pooled =
SSresidual1 + SSresidual2

df
(3)

SSresidual =
�
1� r

2
�
SSY (4)

In Eqs. (2)-(4), SSX and SSY are the sums of squares for
the independent and dependent variables (respectively, time
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Figure 1: A Pioneer 1 robot exploring the laboratory environment.

and sensor i), and r2 is the goodness of �t for the regression
line. Finally, the t statistic is compared to the t distribution
with n1 + n2 � 4 degrees of freedom to see whether the
hypothesis of equal slope should be rejected [KJ89]. In our
experiments, n1 = n2 = 10, because each slope is based on
ten observations.

2.2 Generating CODT Entries

The sensor monitor provides a fast, incremental way to clas-
sify the observed e�ects of its actions. The next step is to
generate CODT entries.

The CODT is a two dimensional table, one dimension
indexed by an action, the other by a sensor, that is, a state
variable. Each entry (a; s) of the CODT contains a decision
tree that represents the e�ects of action a on sensor s, in-
duced on whatever observations were made of the pair (a; s).
The decision trees encode two types of information about the
Pioneer's experience. The leaves express how an action is
expected to change a sensor reading. A leaf that predicts
the class `+' reects the experience that action a has been
shown to cause the slope of sensor s to increase. Decision
nodes within the trees express context dependencies among
the observations. A decision node that splits on the value
of left-wheel-stall indicates that the e�ect of action a on
sensor s varies and may be predicted more accurately when
the stall state of the left wheel is taken into account. By
a simple tree traversal of a column of the CODT, the Pio-
neer robot can quickly generate a set of actions and context
variables relevant to achieving a desired sensory state.

The trees in CODTs are built by an algorithm called
TBA that uses bonferroni adjustments to guard against over-
�tting [JS97]. We developed TBA originally to test a sta-
tistical theory of over�tting, but the algorithm is especially
important for the current application. The whole point of
CODTs is to �nd small subsets of context variables that

are su�cient to predict context dependent e�ects of actions.
Decision tree algorithms that over�t (and all but TBA do)
will produce subsets of context variables that are larger than
they need to be. Over�tting-avoidance schemes other than
TBA's do not in general �x this problem [JS97]; thus TBA
is necessary to ful�ll the promise of CODTs.

Unfortunately, TBA is not an incremental algorithm, so
observations are processed in batches. Currently, TBA is
employed on a �xed schedule to rebuild the CODT trees
whenever 20 observations are waiting for processing. We
hope to develop an incremental version of TBA in the near
future. In section 4, we examine some trees built by TBA
and their meaning.

3 Experiments

To evaluate the CODT learning algorithm, we conducted
four trials in which the Pioneer mobile robot explored its
environment. During each trial the robot performed 150 ac-
tions selected randomly from four primitive types: move(x),
turn(x), open-gripper, and close-gripper. The param-
eter x denotes the desired translation or rotation of the
robot, in millimeters or degrees, respectively. Values of
x for move(x) were selected from the uniform distribution
[�1000;+2000]; similarly, values of x for turn(x) were se-
lected from the uniform distribution [�360;+360]. Actions
were performed sequentially, so that the robot's state after
one action served as the initial state for the next. Occa-
sionally, an action would begin before the previous action
�nished; for example, move(x) might not �nish because the
robot runs into an obstacle.

In these experiments the goal was to learn a CODT
relating four primitive actions to nineteen native sensors:
seven sonars, four velocity transducers (translational, rota-
tional, left and right wheels individually), four gripper state
switches (vertical position, two break beams, one bumper),
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three stall encoders, and heading.
The experiments were performed in a messy laboratory

environment with some irregularly-shaped open oor space
and common obstacles including chairs, desks, waste bas-
kets, partitions, and people (see Figure 1). During a typical
trial, the Pioneer wandered about the room, occasionally
opening or closing its gripper. Sometimes, the robot ap-
proached a small object (a plastic bottle) with its gripper
open and, if it was lucky, closed the gripper at the right
moment to lift the object and carry it until open-gripper
was selected. While exploring the environment, the robot
inevitably ran into obstacles or got wedged under a desk or
chair, and stalled. As no human intervention was allowed
during these experiments, the robot remained stalled until
one of its randomly chosen actions set it free. Usually the
robot freed itself by turning its wheels in the opposite direc-
tion, although in one interesting case, the Pioneer discovered
that open-gripper (which opens the gripper paddles) some-
times a�ects the heading and stall sensors by pushing the
robot away from a wall.

4 Results

The experiments described in the previous section yielded
600 observations, roughly 150 per action, on which to eval-
uate the CODT generation algorithm. We begin with qual-
itative evaluation and then present some quantitative sum-
maries of the algorithm's performance. These analyses ad-
dress several questions. Recall that the primary purpose of
CODTs is not to predict the e�ects of actions but, rather,
to specify which contextual information is relevant to these
e�ects. Thus, the following analyses will focus primarily on
how well CODTs identify relevant factors and secondarily on
how well they predict the e�ects of actions. Of particular
interest is the amount of training required to learn relevant
factors, and whether CODTs identify the same relevant fac-
tors consistently in di�erent trials despite the highly variable
interactions between the robot and its environment.

4.1 Qualitative Analysis

It is instructive to look at some of the decision trees con-
structed by the CODT generation algorithm. For instance,
Figure 2 shows the conditional e�ects of the close-gripper
action on heading, based on 115 observations. One might
expect this tree to be empty, for it is hard to imagine why
closing the gripper would have any e�ect on the robot's
heading. But imagine you are standing with your hand on a
wall, bearing some of your weight. If you relax your arm and
don't compensate, you will fall toward the wall. This is what
happens when the robot is pushed against an obstacle and
then it closes its gripper. It is one of four scenarios described
in Figure 2. The root node of the tree tests rotational ve-
locity. The middle branch, [-0.97...0.97] corresponds to very
little rotational velocity. Below it is a test on whether the
right wheel is stalled. If so, then closing the gripper will af-
fect the robot's heading. This is the case we just described:
the robot is hardly moving, in fact its right wheel is stalled,
which happens when the robot is jammed against an obsta-
cle, and in this situation, closing the gripper induces a small
rotation and change in heading. On the other hand, if the
robot isn't moving and isn't stalled then closing the gripper
has no e�ect on heading; this is the leaf labelled `0' in Fig-
ure 2. The other branches of the tree represent the e�ects
of residual rotational velocity. When the robot decides to
close its gripper, it may still be turning. The `+' and `�'

Velocity

Right Wheel
Stall

-

Rotational

0

(min..-0.97](-0.97..0.97)[0.97..max]

+

[Yes][No]

+

Figure 2: A CODT entry that represents the factors relevant
to the e�ects of the close-gripper action on heading.

labels on the far left and far right of the tree represent these
e�ects. In fact, \e�ects" is not the right word, because clos-
ing the gripper did not cause the robot to change heading in
these cases: the robot was already changing heading when
it closed its gripper.

4.2 Quantitative Analyses

The tree in Figure 2 was based on 115 observations, and one
wonders whether it is \stable," whether another set of obser-
vations would produce essentially the same tree or a di�erent
one. For our purposes (namely, providing knowledge about
relevant factors), CODT trees for an action-sensor pair are
stable if they contain the same factors, or decision nodes.
For instance, suppose we collected other batches of observa-
tions and built trees for the conditional e�ects of gripper
on heading (of which Fig. 2 is one). We would say these
trees are stable if they all split on rotational velocity and
right wheel stall. In other words, stability means that a set
of factors is identi�ed in the CODT as relevant to an ef-
fect of an action, and the elements of this set do not vary
much. (Note that we are not asking whether trees for suc-
cessive batches of observations have the same structure, only
whether they have the same elements, because we are em-
phasizing not classi�cation performance but the ability to
identify relevant factors).

To test whether trees built by the CODT generation al-
gorithm are stable, we ran an incremental cross-validation
procedure on the observations [Coh95]. We have roughly
150 observations for each of the four primitive actions|
move(x), turn(x), gripper-up, gripper-down. It is a sim-
ple matter to select a subset of these observations at random
and build a CODT for that subset. The subset can be of
any size, but for this analysis we used subsets of 50 and
115 observations. Repeating the process K times yields K

CODTs, each generated from a di�erent batch of observa-
tions. Now we can look at the K versions of a tree generated
for a single cell of the CODT, say the tree for the e�ects of
gripper on heading, and ask whether all K trees split on ro-
tational velocity and right wheel stall as the tree in Figure 2
does. In fact, we calculate a slightly more informative statis-
tic: The probability that a factor (e.g., right wheel stall) is
included in a tree. This probability is just the number of
trees in which the factor is included, divided by K. Some-
times, the CODT generation algorithm did not build a tree
for an action-sensor pair. This non-tree still contributes to
K. Thus, if only two trees are built given K = 10 opportu-
nities, and a factor is included in just one of them, then its
probability of occurring in a tree is 0.1. Finally, we can rank
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of the factors. The CODT algorithm e�ectively �nds small
subsets of factors that are relevant to the e�ects of actions.
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