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Abstract

This paper describes a way of extracting concepts from
streams of sensor readings. In particular, we demon-
strate the value of attractor reconstruction techniques
for transforming time series into clusters of points.
These clusters, in turn, represent perceptual categories
with predictive value to the agent/environment system.
We also discuss the relationship between categories and
concepts, with particular emphasis on class member-
ship and predictive inference.

Introduction

This research is part of an e�ort to explain how senso-
rimotor agents develop symbolic, conceptual thought,
as every human child does. As in (Cohen et al. 1996)
we are trying to \grow" an intelligent agent from min-
imal beginnings by having it interact with a complex
environment. One problem with such projects is the
transformation of streams of sensor data into symbolic
concepts, cf. the symbol grounding problem (Harnad
1990). Hence, the focus of this paper is an unsuper-
vised learning mechanism for extracting concepts from
time series of sensor readings.
Concepts are abstractions of experience that confer

a predictive ability for new situations. Moreover, for
this project we assume a predictive semantics where
the meaning of a concept is the predictions it makes.
This working de�nition applies equally well to both
objects and activities and depends upon a notion of
category. For instance, just as one can form the cat-
egory toy for objects ball and top, one can also
create the category play for activities bounce and
spin. From the interactionist perspective (Lako� 1984;
Johnson 1987), this correspondence is a natural one. In-
deed, objects and activities seem to be duals | linked
by sensorimotor experience | with a category of one
connected to a category of the other.
Epistemically, a category is simply a collection of in-

stances (of objects or activities) and a concept is a cat-
egory plus its entailments (or consequences of category
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membership). A similar de�nition follows from the in-
uential work of Rosch involving categories and their
abstractions, called prototypes (Rosch & Lloyd 1978).
A protoype is best understood as a representative cat-
egory member that may or may not correspond to any
observed instance. (In fact, the latter case is true for
the results in this paper.) Thus, whenever such abstrac-
tions can take the place of a category, one can think of
a concept as a category prototype plus its meaning or
predictive inferences.

clustering

Cluster

recognition

prediction

Outcomes

Time Series

Time Series

Cluster Prototype

Outcome

observation

FUNCTIONAL EPISTEMIC

Concept
Use

Concept
Discovery Category

Meaning

Entailments

Instance

Instance

Category Prototype

Figure 1: Functional view of concepts and the corresponding

epistemic terms.

Figure 1 illustrates the way we realize these de�ni-
tions of concepts. In particular, we begin with time
series data and form clusters of points that have some-
thing in common. We then observe the subsequent out-
comes, i.e., the future properties of the cluster mem-
bers. Since we equate clusters with categories and out-
comes with entailments, we also equate the correspond-
ing acts of clustering and observation with the discovery
of concepts. Concept use then follows a similar two-step
procedure: (1) Recognition. Given a new time series,
�nd the cluster prototype most like the new instance.
(2) Prediction. Report the most likely outcome for the



cluster referred to by the matching prototype.

Experimental Environment

To demonstrate concept discovery and use, a simple ex-
perimental environment was created where two agents
interact based on their predetermined movement strate-
gies. These agents are entirely reactive and pursue or
avoid one another using one of four basic behaviors:

1. none. The agent follows a line determined by its
initial velocity. No attention is paid to the opponent's
position.

2. avoid. The agent attempts to move away from its
opponent and avoid contact.

3. crash. The agent attempts to move toward its op-
ponent and initiate contact.

4. kiss. The agent slows down before making contact
(implemented as a combination of avoid and crash).

Figure 2 shows two examples from the pur-
suit/avoidance simulator. During each trial, the agents
interact only when they are close enough to detect one
another, as represented by the inner circle in Figure
2. A trial ends when the agents make contact, when
they get too far apart, or when the trial exceeds a time
limit which is large compared to the duration of a typi-
cal interaction. The simulator implements a movement
strategy by varying the agent's acceleration in response
to the relative position of its opponent. (See (Rosen-
stein et al. 1997) for details.) In particular, movement
strategies are equations of the form

a = i � f(d; _d); (1)

where a is acceleration, d is distance between agents,
f is a function that gives one of the basic movement
strategies, and i is a scale factor that represents the
agent's strength or intensity.

(a) (b)

Figure 2: Simulator screen dump showing a representative

trial of: (a) avoid vs. crash; (b) kiss vs. kiss.

Activity Maps

Our previous approach to concept discovery was
based on representations of dynamics called activity

maps (Rosenstein et al. 1997). In keeping with the
functional view of concepts in Figure 1, we also made
the distinction between two types of activity maps: be-
havior maps for recognizing agent behaviors such as

crash or kiss, and interaction maps for predicting out-
comes such as contact or no-contact. These repre-
sentations, in turn, were based on phase portraits and
basins of attraction | common tools used by dynami-
cists for understanding system behavior.

During a learning phase, a library of activity maps
was constructed by running thousands of trials in the
simulator while recording the movement patterns of
each agent as well as the outcome of every trial. In a su-
pervised manner, one behavior map was built for each of
eight agent types (four basic movement strategies with
three levels of intensity for avoid and crash), and one
interaction map was built for each of the 36 distinct
pairs of behaviors (64 possible pairs minus 28 symmet-
rically equivalent pairs). With the pursuit/avoidance
simulator, this library of activity maps proved su�cient
for recognizing the participants of a new trial and for
predicting a contact or no-contact outcome.

Table 1 illustrates the performance of the recogni-
tion algorithm in (Rosenstein et al. 1997). Interest-
ingly, this confusion table demonstrates the misinter-
pretation of the various behaviors. For example, 66%
of the time the algorithm confused kiss with one of the
crash movement strategies, yet rarely mistook kiss for
one of the avoid types. The reason for this sort of
confusion is that apparent behavior is dependent upon
not only the agent's predetermined movement strategy,
but also the circumstances, i.e., initial velocity and op-
ponent behavior. Actually, in some situations, a kiss

agent reacts just like a crash type, and vice versa.
These results suggest that another way to categorize
interactions is by the nature of the interaction itself.
In fact, the explicit step of behavior recognition is no
longer necessary with the clustering approach described
shortly.

Recognizer Response

Actual N A- A A+ C- C C+ K

N 40 21 7 3 26 3 0 0

A- 18 53 19 5 5 0 0 0

A 2 16 74 8 0 0 0 0

A+ 0 2 8 90 0 0 0 0

C- 26 6 3 1 35 23 0 6

C 2 2 0 1 21 25 21 28

C+ 0 0 0 0 1 9 77 13

K 8 1 0 0 21 20 25 25

Table 1: Confusion table illustrating recognition perfor-

mance with agent behaviors chosen randomly. Shown are

response percentages, where behavior names are shortened

to �rst letters only, and - and + indicate weak and strong

forms, respectively.



Despite the success of activity maps at recognizing
behaviors and predicting outcomes, the approach has
two drawbacks worth mentioning. First, even for a
simple simulator with just two agents, the size of the
map library scales as O(n2), where n is the number of
movement strategies. Preferably, the concept library
should have size proportional to the number of needed
concepts. Second, thousands of trials are necessary to
build just one map and the associated learning algo-
rithm must operate in a supervised fashion. Instead,
an agent should �nd the relevant categories for itself,
without the imposed biases of an external teacher. For
these reasons, we developed the current approach to
concept discovery based on clustering techniques. Be-
low, we show that few clusters and few experiences are
needed to recognize situations and predict outcomes |
without a supervisor | and to do so quite accurately.

The Method of Delays

The formation of clusters requires a metric and so one
must �rst devise a suitable metric space for the data.
In this work we make use of an attractor reconstruction

technique called themethod of delays or delay-space em-

bedding. Takens proved that the method of delays pro-
vides a means for mapping a time series to a topolog-
ically equivalent spatial representation (an embedding)
of an underlying dynamical system (Takens 1981). This
mapping is accomplished by forming an m-dimensional
vector of delay coordinates,

X
T

i
= [xi xi�J xi�2J ::: xi�(m�1)J ]; (2)

where fx1; x2; :::; xng is the n-point time series, m is
called the embedding dimension, and J is the embed-

ding delay. As described in (Rosenstein, Collins, &
De Luca 1994), and references therein, the practical ap-
plication of Takens theorem requires some care on the
experimenter's part when choosing the delay value. In
any case, the theoretical basis of attractor reconstruc-
tion is geared toward dynamical systems, although the
techniques often prove useful for uncovering patterns in
time series data, regardless of their source.
For instance, Figure 3 shows a delay portrait with rep-

resentative trajectories leading to three di�erent out-
comes in the pursuit/avoidance simulator. Each curve
is based on the distance time series recorded during one
interaction. We chose object-distance as the agent's
only sensor because we want to demonstrate concept
discovery while supplying as little innate knowledge or
structure as possible. Additionally, the ability to mea-
sure object distance is a reasonable assumption since
most mobile robots are equipped with sonar or video-
based position sensors.
The method of delays is important for this research,

not because we have attractors to reconstruct, but be-
cause we need some basis for discovering concepts with-
out detailed knowledge of the agent/environment sys-
tem. In all but the simplest applications, an agent is
unable to measure all relevant quantities in the world,
and so the intuition behind delay-space embeddings is

object-distance[t-5]
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Figure 3: Two-dimensional delay portrait with J = 5 and

trajectories illustrating contact, escape, and chase.

this: if the state of the environment at time t is uncer-
tain because the agent has, say, one sensor, then exam-
ination of sensor readings prior to time t will reduce the
ambiguity.

Concepts and Clusters

As shown earlier in Figure 1, there is a close relation-
ship between concepts and categories. Indeed, \there is
nothing more basic than categorization to our thought,
perception, action, and speech" (Lako� 1984). But be-
fore any agent can make use of concepts, it must �rst
discover the pertinent categories.
One general technique for discovering categories is to

form clusters of points in a suitable space. This was
the basis of Elman's work on learning lexical classes
from word co-occurrence statistics (Elman 1990). El-
man �rst trained a recurrent neural network to predict
successive words in a long input string. This then set
the stage for hierarchical clustering of the hidden-unit
activation space, where the result was groups of words
that coincide with classes like noun-food or verb-

percept. Similarly, Omlin and Giles described a way
to identify clusters in a network's hidden-unit space,
with each cluster representing a node in an associated
�nite-state machine (Omlin & Giles 1996).
Our approach to clustering works directly from de-

lay coordinates and proceeds with no prior training.
For the pursuit/avoidance simulator, we begin with the
�rst observed interaction and immediately create a clus-
ter consisting of this lone experience. A cluster itself is
simply a data structure that stores the number of mem-
bers, the frequency of each outcome, and a prototype
for the class. Whenever a new experience arrives, the
algorithm creates a new cluster from the data and then



attempts to merge existing clusters based on a measure
of similarity. Speci�cally, two clusters are replaced by
one formed from their constituent information when-
ever the Euclidean distance between them (in delay-
coordinate space) is less than a threshold parameter,
�s. Hence, the algorithm continually updates its list of
categories to reect new experiences. Central to this
updating procedure is the use of cluster prototypes.
Figure 4 shows the six cluster prototypes derived

from 100 agent interactions, where the movement
strategies were chosen randomly and the similarity
threshold was set to 20% of the range in the dis-
tance data. Each prototype is simply the average
object-distance time series formed from all interac-
tions that make up a given cluster. (Strictly speaking, a
prototype consists of m delay coordinates, although we
show the entire time series to illustrate distinctive pat-
terns.) This implementation is entirely consistent with
Rosch's work on prototypes (Rosch & Lloyd 1978), and
also serves two practical purposes: as a way for testing
cluster similarity, and as a way for understanding the
meaning of a cluster.
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Figure 4: Cluster prototypes formed at observation time t =

50, with similarity threshold �s = 0:2, embedding dimension

m = 5, and embedding delay J = 1.

The prototypes in Figure 4 correspond to six di�er-
ent categories of agent interactions, with each category
possessing its own entailments. Thus, the clustering al-
gorithm discovered six concepts about the experimen-
tal domain. Moreover, these prototypes reect actual
di�erences in the simulated environment. In particular,
the algorithm found concepts that one could describe as
\chase," \contact," contact after the agents �rst \over-
shoot" one another, and \escape" with short, medium,
and long escape times. But are these clusters any good
for recognition and prediction?
The agents in the pursuit/avoidance simulator have

implicit goals of contact and escape. These goals
correspond to two possible outcomes, and the exper-
imental domain a�ords a third, emergent outcome of
chase. To evaluate the usefulness of a set of clusters,
we generated 1000 additional interactions, predicted

one of these outcomes for each trial, and recorded the
percentage of correct responses. The prediction scheme
was a straightforward voting algorithm that followed
the two-step procedure for concept use: (1) Recogni-

tion. Find the cluster prototype nearest the time series
in delay-coordinate space. (2) Prediction. Report the
majority outcome for the corresponding cluster. Fig-
ure 5 illustrates the prediction performance as a func-
tion of observation time (the time when clusters are
formed). The graph shows that the algorithm's re-
sponse improves as the interaction unfolds and more
data become available. For example at observation time
t = 10 the prediction is correct only 64% of the time,
but by t = 35 prediction performance exceeds 90%.
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Figure 5: Prediction performance versus observation time

for 1000 test interactions and the clusters shown in Figure

4. Clustering was based on 100 trials with �s = 0:2, and

error bars show the standard deviation for �ve replications.

How Many Concepts?

Our previous work using three intensity levels, i =
f0:5; 1:0; 2:0g, required 36 interaction maps and, there-
fore, 36 concepts. With our present e�ort, we made
things more di�cult and selected i randomly from the
interval [0:5; 2:0]. Nevertheless, clustering in delay-
coordinate space resulted in far fewer concepts with no
substantial di�erences in prediction performance. Even
when we increased the number of trials to 10; 000, we
observed little change in the number of clusters formed.
(See Figure 6.) In fact, very few trials | and, therefore,
very few clusters | were needed to achieve a reason-
able level of performance, after which the algorithm im-
proved prediction performance by �ne-tuning the exist-
ing clusters rather than creating new ones. Our expla-
nation is that the algorithm discovered all the concepts
that were available for discovering in the �rst place.
One caveat about clustering is that the results can be-

come skewed by making a poor choice for the similarity
threshold. For example, Figure 7a shows the number of
clusters formed for several values of �s. When the sim-
ilarity threshold is too small, trials seem to have little
in common with one another and the number of clus-
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Figure 6: Semi-log plot of the number of clusters formed

versus number of trials, where �s = 0:2. Error bars show

the standard deviation for �ve replications.

ters is roughly the same as the number of trials. As
expected, an increase in �s yields a shorter cluster list,
with the total number approaching the limiting value
of 1. Figure 7b illustrates the other half of the story.
When �s is too large, too few concepts are discovered
and prediction performance is poor. But once the num-
ber of clusters exceeds a value of about �ve, prediction
performance saturates and there is no bene�t to learn-
ing a more detailed breakdown of \concept space." Put
di�erently, plots such as Figure 7 o�er a way to de-
termine the number of concepts worth learning in the
given domain.

Delay Coordinates

In this section we demonstrate the bene�ts of delay
coordinates for reducing ambiguity in sensor readings.
Our results thus far rely on the choice of observation
time, not the dynamics, to tease apart di�erent inter-
actions. In particular, Figure 4 suggests that by time
t = 20 we could classify most interactions correctly from
a single sensor reading. To make the task more di�cult
(and more realistic) we now show clustering at a given
value for object-distance. In other words, we �x the
�rst delay coordinate so all trials appear the same to
a naive algorithm that performs clustering without ac-
counting for the dynamics. Moreover, we make use of
delay coordinates forward in time, with Eq. (2) replaced
by

X
T

i
= [xi xi+J xi+2J ::: xi+(m�1)J ]: (3)

In practice, delay coordinates | both forward and
backward in time | require the agent to wait until
the data become available. The di�erence is simply a
matter of perspective. For the forward view, the agent
bu�ers its sensor readings when triggered by an event,
such as the proximity of an opponent. For delay coor-
dinates backward in time, the agent updates its sensor
bu�er continuously and associates an event with the
most recent delay coordinate, rather than the oldest
one.
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Figure 7: E�ects of similarity threshold on (a) number

of clusters and (b) prediction performance, for observation

times t = 10; 50. Clustering was based on 100 trials and

error bars show the standard deviation for �ve replications.

Figure 8a shows the result of clustering in a �ve-
dimensional delay-coordinate space with delay J = 1.
One prototype is similar to the category for contact in
Figure 4, whereas the other is an amalgam of all three
basic outcomes. For Figure 8b, we increased the em-
bedding delay to J = 3 so the delay-coordinate vector
described by Eq. (3) spans a larger portion of the sen-
sor stream (for the same �xed dimension). The e�ect is
clusters of greater homogeneity since the algorithm is
able to capture many of the subtle distinctions between
two interactions.

Figure 9 illustrates more clearly the role of the em-
bedding dimension. When m is too small, there is little
time to observe a change between the �rst and last de-
lay coordinates, and so many interactions fall near one
another in delay-coordinate space. This situation yields
relatively few clusters and poor prediction performance,
much like Figure 7 for large values of �s. As m in-
creases, points spread apart in embedding space since
the additional coordinates reveal latent di�erences in
the corresponding time series.
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Figure 8: Cluster prototypes for object-distance=0.7,

with �s = 0:1, embedding dimension m = 5, and embed-

ding delay (a) J = 1 and (b) J = 3. Labels show the

makeup of each cluster. For instance, (29:18:26) indicates

that the prototype was formed from 29 interactions ending

in contact, 18 ending in chase, and 26 ending in escape.

Interaction Maps

With the pursuit/avoidance simulator, the clustering
approach to concept acquisition a�orded a prediction
performance exceeding 95%. However, in more compli-
cated, possibly noisy, environments it may not be pos-
sible to achieve this level of success with a prediction
algorithm based solely on outcome frequencies. Our so-
lution is to exploit the dynamics in the environment
and store more detailed information about entailments
in the form of interaction maps. We avoid the combina-
torial drawbacks of map libraries by creating just one
interaction map per cluster.
Interaction maps are similar to diagrams that show

basins of attraction, or sets of initial conditions that
lead to di�erent limit sets (long-term outcomes). One
way to build an interaction map involves the partition-
ing of delay-coordinate space into cells, where every cell
contains a counter for each interesting outcome. As
two agents interact, they generate a trajectory in this
space, and once the outcome is known, the correspond-
ing counter is incremented in each cell visited by the
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Figure 9: E�ects of embedding dimension on (a) number

of clusters and (b) prediction performance, for embedding

delays J = 1; 3. Clustering was based on 100 trials, where

�s = 0:1 and object-distance=0.7. Error bars show the

standard deviation for �ve replications.

trajectory. The map is then colored as a function of
the counter values in each cell.
Figure 10 shows the interaction map for the extreme

case where all trials are placed into just one cluster.
(For graphical purposes, we split the map into three
grayscale images, one for each outcome, although one
color diagram is often more informative.) Whenever
a trajectory enters a dark region of a map, one can
con�dently predict the corresponding outcome. With
interaction maps we saw a boost in prediction perfor-
mance from 48% to 78% at t = 10 and to 88% at t = 50.
Notice that these results compare favorably to those for
six clusters as in Figure 5.

Conclusions

Perhaps the most promising aspect of this work is the
possibility of an agent discovering concepts for itself.
An emphasis on the agent not only aids our understand-
ing of human cognitive development, but also inuences
the design of autonomous agents for more pragmatic
purposes. In practical applications, someone, either
agent or designer, must carve up the world in some
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Figure 10: Interaction maps from one cluster with outcomes (a) contact, (b) escape, and (c) chase. Darker shades of gray

indicate a greater likelihood of the associated outcome. Also shown is an overlay of the delay portrait in Figure 3.

appropriate way, but what one deems relevant is quite
dependent on one's perceptions of the world and one's
ability to a�ect those percepts through action. For in-
stance, as part of another project in our lab (Schmill et
al. 1998), a mobile robot discovered an unexpected so-
lution to the problem of being jammed between two
objects. Whereas a programmer might instruct the
robot to rock back-and-forth | as an automobile driver
caught in mud or snow | the robot found on its own
that opening its gripper could push itself far enough
away from one of the objects. The point of this ex-
ample is that a solution was found through interaction
with the world. Indeed, Lako� (Lako� 1984) and John-
son (Johnson 1987) provide cogent arguments that more
advanced symbolic thought is founded upon this very
sort of sensorimotor interaction.

Although it may be a bit of a stretch to say that our
pursuit/avoidance agents perform \sensorimotor" inter-
action, the results in this paper provide a beginning for
future work with mobile robots. At the heart of the ap-
proach is the discovery of sensor reading patterns, and
the speci�c contribution of this paper is a technique for
deducing such patterns, i.e., clusters, from time series
data. These clusters, together with their entailments,
then provide a means for recognizing situations and pre-
dicting outcomes in the agent's world.
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