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Abstract

A conceptual framework is a valuable resource for
planning by situated agents. In this paper, we discuss
the acquisition of such a framework. We take the posi-
tion that concepts are abstractions of experience that
confer a predictive ability for new situations. We also
show speci�c examples which demonstrate the utility
of abstract representations of actions, called activity

maps, for reasoning about concepts and their entail-
ments. In fact, we make the case that activity maps
are concepts themselves. Where appropriate, we draw
analogies with related work in nonlinear dynamics.

Introduction

Reasoning about one's environment, possible actions,
and desired outcomes is the basis for planning | espe-
cially interactionist or improvisational planning (Agre
& Chapman 1990). Although our current focus is not
planning per se, we do address the prerequisite prob-
lem of acquiring a conceptual structure for planning.
In particular, this research is part of an e�ort to explain
how sensorimotor agents develop symbolic, conceptual
thought, as every human child does.
Like Brooks (Brooks 1991) and others, we are trying

to \grow" an intelligent agent from minimal beginnings
by having it interact with a complex environment (the
\Baby Project" (Cohen et al. 1996)). A problem for
these projects is the transition from sensorimotor pro-
grams to symbolic concepts. It's one thing to store
a motor scheme for shaking a rattle, quite another to
have the symbolic concept rattle, with all its en-
tailments (i.e., plausible inferences), or even an exten-
sional category of rattles. Thelen and Smith (Thelen
& Smith 1994), Kiss (Kiss 1991), Smithers (Smithers
1995), and Steels (Steels 1995) suggest that concepts
(or categories, it isn't always clear which is intended)
might be represented as dynamical systems, but none
of these researchers demonstrates how such represen-
tations might be learned and used, or what their prop-
erties are.
Just as dynamicists illustrate system behavior

through the use of delay portraits and Poincar�e maps,
we have developed \dynamical" representations of ac-

tivities which we call activity maps. (We also make
the distinction between two types of activity maps:
behavior maps and interaction maps.) Our initial ex-
perimental domain is one in which two simple agents
interact in a two-dimensional �eld. The movement of
each agent is controlled by one of nine programs, and in
most programs, movement depends on what the other
agent is doing. For example, the avoid programmakes
one agent move away from another, whereas the crash
program makes an agent try to hit the other. When
one agent runs the crash program and the other runs
avoid, the emergent behavior is often chase. It is
relatively easy to recognize this combination of behav-
iors if one can see the entire interaction between the
agents, but di�cult to identify constituent behaviors
from small snippets of the interaction. Surprisingly,
activity maps can recognize what the agents are do-
ing, quite accurately, with very little data.

Are activity maps useful for planning? Surely, if
activity maps lead to a conceptual structure for rea-
soning about actions and outcomes. One hint to this
possibility comes from Agre and Chapman's (Agre &
Chapman 1990) plan-as-communication view of plans.
In this view, a plan no longer plays a central role in
specifying activity, but rather guides an agent in action
selection. An integral part of plan-as-communication
is a theory of activity which requires \two intercon-
straining parts: a theory of cognitive machinery and a
theory of the dynamics or regularly occurring patterns
of activity. (Agre & Chapman 1990)" Activity maps
provide both of these things.

Are activity maps concepts? If by concept one
means an abstraction that identi�es a category and
is invested with meaning through its predictions, then
activity maps probably qualify. This issue is discussed
further in a later section. Certainly, activity maps
meet many requirements for image schemas, just as
container, path and animate-motion, which are
thought by many researchers in philosophy, linguistics,
and psychology to be prelinguistic chunks from which
concepts are built and categories extracted (Lako�
1984; Mandler 1992; Gibbs & Colston 1995). Roughly,
the developmental argument goes like this: As we ac-



quire image schemas, we use them to classify aspects
of experience, learning schematic structures as a result.
For instance, one may learn that rattles may be shaken
by entities that display animate-motion, leading to
a scheme in which the variable that we usually label
\agent" must be �lled by an entity capable of animate
motion. To date, nobody has developed an AI program
that learns concepts this way. The current work is a
step in this direction.

The Simulator

A type of billiard ball simulator was created in which
the balls may be viewed as reexive agents endowed
with one of nine possible behaviors:

1. none. Like conventional billiard balls, the agent's
path is a line determined by its initial velocity. No
attention is paid to the agent's \opponent."

2. avoid. The agent attempts to move away from
its opponent and avoid contact. Actually, we im-
plemented three versions of this behavior: weak
(avoid-), normal (avoid), and strong (avoid+).

3. crash. The agent attempts to move toward its op-
ponent and initiate contact. As with avoid there are
weak, normal, and strong versions (crash-, crash,
and crash+, respectively).

4. kiss. Similar to crash except that the agent slows
down before making contact. The appearance is that
of a light touch.

5. random. The agent performs a smoothed random
walk without regard to its opponent.

Figure 1 shows two examples from the simulator.
For each trial, the playing �eld is an in�nite plane and
the graphical display pans to give an indication of the
agents' relative positions. Two circles mark the bound-
aries for the region of interest (the outer circle) and
the region of interaction (the inner circle). Within the
region of interaction, the agents exhibit their predeter-
mined behaviors; otherwise, they move with constant
(randomly chosen) velocity, i.e., they behave as none.
A trial terminates when 1) the trial duration exceeds
a time limit which is large compared to the duration
of a typical interaction, 2) the agents make contact, or
3) the agents exit the region of interest.
The simulator implements each behavior by varying

the acceleration of one agent relative to the other. Ac-
celeration, in turn, is given by a deterministic function
of proximity (the distance between two agents) and di-

vergence (the rate of change in proximity). Hence, one
may interpret acceleration as the agent's attempt to
change proximity. It follows that a behavior in the
billiards domain is simply an equation of the form

attempt = f(proximity; divergence); (1)

where we de�ne a positive attempt as an acceleration
away from an opponent or, equivalently, an attempt
to increase the gap between agents. (See Table 1 for
details.)

(a) (b)

Figure 1: Simulator screen dump showing a representative

trial of: (a) avoid vs. crash; (b) kiss vs. kiss.

Behavior Implementation

none a = 0

avoid a = 0:001=p2 � 0:05�min(0; d)
avoid- a = 0:5 � avoid
avoid+ a = 2:0 � avoid
crash a = �0:0075� p2 � 0:05�max(0; d)
crash- a = 0:5 � crash
crash+ a = 2:0 � crash

kiss a =

8
<
:
crash if p > 0:5;

avoid if p < 0:5 and d < 0:12;

0 otherwise:

random a = Uniform(�0:01;+0:01)

Table 1: Simulated behaviors and their implementation,

where p is proximity, d is divergence, and a is attempt.

Distances are normalized by the diameter of the region of

interaction, and one unit of time corresponds to one itera-

tion of the simulation equations.

Behavior Representation

The functions in Table 1 are compact representations
of agents' behaviors, but in general such functions are
unknown and must be estimated from observations of
an agent's interaction with its environment. In fact, it
is considerably easier to describe behavior by plotting
attempt with respect to proximity and divergence than
it is to estimate f in (1). Essentially, this is the pur-
pose of attractor reconstruction methods which take
time series and produce a topologically equivalent spa-
tial representation of the underlying dynamical system.
(See (Rosenstein, Collins, & De Luca 1994) and refer-
ences therein.) The remainder of this section describes
the construction of such representations, which we call
behavior maps.
One could certainly devise a number of visualiza-

tion techniques (e.g., vector �elds, 3D surface plots)
for creating activity maps|behavior maps in particu-
lar. For the present work, a decision was made to use
grayscale images in which dark regions of the image in-
dicate weak attempts by the agent and bright regions
indicate strong attempts. Positive and negative signs
distinguish attempts in favor of divergence from those
aimed at shrinking the distance between the agents.
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(Unvisited territory is shown in white with no sign.)
Figures 2 and 3 illustrate the behavior maps for

avoid and crash. These maps con�rm our intu-
ition about each behavior: For avoid the attempt
to increase proximity is greatest when the agents are
near, although we see an abatement as the divergence
changes from closing to separating. Conversely, crash
is most aggressive when the agents are distant and sep-
arating.
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Figure 2: Behavior map for avoid.
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Figure 3: Behavior map for crash.

Behavior Recognition

To bridge the gap between behavior representation and
behavior recognition, we need a technique for compar-
ing pairs of maps. We compute a di�erence map by

subtracting the values in corresponding cells of two
maps. The resulting image depicts regions of simi-
larity with dark gray values and di�ering regions with
light values. For instance, the di�erence maps for kiss
& crash and for kiss & avoid suggest that kiss and
crash are more alike than kiss and avoid. Moreover,
one easily identi�es the portions of each map where
there is the most, or least, similarity. To quantify these
e�ects, we compute the mean gray value, gv, for the
di�erence map:

gv(map1;map2) =
1

N

NX
i

jgv
(map1)
i � gv

(map2)
i j;

(2)

where gv
(map1)
i and gv

(map2)
i are corresponding gray

values from the two original maps, and i indexes into
the desired cells. Note that for the aforementioned dif-
ference maps, the normalized values for gv are 0.2140
(kiss - avoid) and 0.0851 (kiss - crash), with ex-
treme values of 0 and 1 indicating identical and com-
pletely dissimilar maps, respectively.
For behavior recognition, the task is to compare not

one behavior map with another, but rather an agent's
behavior trajectory with the maps from known behav-
iors. Here, a behavior trajectory refers to a sparse
behavior map constructed from a limited period of ob-
servation. One may still use Eq. (2) with i indexing
over the cells of the trajectory.
Just as humans are thought to acquire image

schemas over time, the billiards simulator accumulates
a library of behavior maps, one for each of the nine
agent behaviors. Each constituent map is built up
through experience by having one agent type interact
repeatedly with the behavior program for random.
Then, for every post-training trial, a recognizer mea-
sures the time-varying positions of the agents, com-
putes a pair of trajectories, and evaluates Eq. (2) for
each trajectory and every image in the behavior library.
For each trajectory, the recognizer's response is simply
the behavior that results in the smallest value for gv.
Table 2 shows the responses | along with the true
behaviors | from numerous trials where the agent be-
haviors were selected randomly.
Table 2 is a confusion table that demonstrates the

recognizer's misinterpretations between all eighty-one
possible pairs of behaviors. For example, when the
agent is of type avoid, the recognizer makes the cor-
rect response for 72% of the trials and chooses one of
the other forms of avoid almost all other times. Note
that these data were derived in the presence of simu-
lated measurement noise; not shown is the noise-free
case where we see correct responses (values along the
diagonal) much closer to 100%. Interestingly, the rec-
ognizer performs better when the actual behavior is
any avor of avoid than it does when the true be-
havior is one of the crash variants. Our explanation
is this: For an interaction to occur in the �rst place,
two agents must approach one another, i.e., they must
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have negative divergence. Moreover, when one agent
exhibits a crash behavior, the initial gap closes at an
even greater rate | rapidly placing the crash tra-
jectory into the left half of the behavior map where
proximity is small. For all behaviors except the avoid
programs, a small value for proximity corresponds to a
weak attempt. Hence, these behaviors look very much
alike in the left half-plane. In contrast, the agents' ini-
tial convergence facilitates the identi�cation of avoid
programs by placing the trajectory in the most discrim-
inating region of those maps. Though not shown by
these data, we suspect that the least confusion among
crash behaviors occurs when the interaction is with
one of the avoid agents; in these instances, the tra-
jectory remains in the right half-plane for a greater
portion of the observation time.

Recognizer Response

Actual N A- A A+ C- C C+ K R

N 31 16 5 2 20 2 0 0 23

A- 17 50 18 5 5 0 0 0 5

A 2 15 72 8 0 0 0 0 3

A+ 0 2 8 90 0 0 0 0 1

C- 18 4 2 1 24 16 0 4 30

C 2 2 0 1 18 21 18 23 14

C+ 0 0 0 0 1 9 76 13 1

K 7 1 0 0 18 17 22 22 12

R 12 13 9 11 10 11 3 13 15

All 10 11 12 14 11 9 14 9 12

Table 2: Confusion table for 500 interactions with agent be-

haviors chosen randomly. Shown are response percentages

for each behavior given an observation time of 5 simula-

tion cycles. Position measurement noise was simulated by

superposition of uniformly distributed noise with a mean

of zero and a range equal to 1% of the diameter of the re-

gion of interaction. Behavior names are shortened to �rst

letters only, and - and + indicate weak and strong forms,

respectively.

Interactions and Category Prediction

To make the case that activity maps are concepts, as
we do in the next section, we must show that activity
maps provide the \infrastructure" for predictive infer-
ences. Speci�cally, behavior maps help us recognize a
particular set of circumstances, and this sets the stage
for reasoning about categories and outcomes. To ac-
complish the latter task, we make use of basins of at-
traction.
Figure 4 is a schematic of the basins of attraction

for interactions between avoid and crash. (We call
this diagram the avoid/crash interaction map.) A
basin of attraction is the set of all initial conditions

which lead to a particular limit set, i.e., post-transient
system behavior. The billiards system has three stable
limit sets where net attempt|the sum of the attempts
of the two agents|eventually becomes zero. We la-
bel these sets, respectively, contact, chase, and es-

cape. Also shown in Figure 4 are representative inter-
action trajectories leading to each limit set. (Readers
concerned by the trajectory crossings should note that
these particular maps are projections of eight dimen-
sions onto two and uniqueness is not violated in the
higher-dimensional map.)
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Figure 4: Interaction map for avoid interacting with

crash. Positive and negative signs indicate, respectively,

no-contact and contact as the �nal outcomes, and gray

cells connote uncertainty.

Interaction maps are learned in a similar fashion as
for behavior maps. In numerous trials, one agent type
interacts with another (avoid versus crash in this ex-
ample), a trajectory is computed for each interaction,
and the cells in the trajectory are colored not by at-
tempt, but by �nal outcome. For simplicity, chase
and escape are combined in a limit set called no-

contact. Every cell in a trajectory that determinis-
tically ends in a no-contact situation is labeled \+".
Conversely, \-" denotes the limit set where agents de-
terministically make contact. Gray values represent
probabilistic outcomes: lighter grays represent higher
probabilities for the outcome denoted by the sign in
the cell.

Interaction maps allow agents to reason about two
entailments of each scenario, namely, whether or not
they will make contact. We built an interactions li-

brary with one entry for each possible pair of behaviors.
Reasoning then becomes a two-step process: �rst, rec-
ognize the agents' behaviors and select the correspond-
ing entry in the interactions library; second, predict
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contact or no contact based on the information in the
interaction map. As they provide two opportunities
for error, we discuss these steps in turn.
Figure 5 shows the recognizer's performance for in-

teractions between avoid+ and crash+. When the
observation time is short, the recognizer confuses the
di�erent crash programs roughly one-third of the time.
Notice, however, that recognition performance im-
proves as the situation unfolds; this suggests another
dimension along which an agent might reason: act now
or wait for more de�nitive information which may or
may not appear? The data in Figure 5 seem to make
the case for waiting; recognition is nearly perfect af-
ter 20 simulation cycles. However, these data only tell
half the story. Figure 6 shows that the predictive power
gleaned from the interaction maps also varies as a func-
tion of observation time. Accuracy actually drops and
then recovers. In a future experiment, we will combine
these two pieces of information, with the goal of cre-
ating an agent that can reason about its environment
and modify its behavior accordingly. For example, we
would like an avoid agent to predict a future contact
situation and take the necessary action (at a cost to the
agent) to \jump" itself out of an undesirable basin of
attraction.
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Figure 5: Recognizer responses for avoid+ vs. crash+.

Each curve gives the frequency that the recognizer re-

sponded with a particular pair of behaviors.

Concepts and Categories

Here we argue the case that activity maps are concepts.
At �rst this equivalence is hard to accept, especially if
one thinks of concepts as collections of necessary and
su�cient, objective features. On the other hand, if one
thinks of concepts as abstractions of regularities in ex-
periences which may be used for classi�cation and pre-
diction, then activity maps qualify. Let us de�ne expe-
riences to be trajectories through a space of very high
dimension; for example, the experience of positioning
oneself and sitting in a chair involves visual, somatic,
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Figure 6: Classi�cation performance for avoid+ vs.

crash+. The \overall" curve represents the percentage

of correct predictions irrespective of whether recognition

was correct.

kinesthetic and a�ective dimensions. Perhaps we store
all these streams|perhaps we maintain internal repre-
sentations of the �ne details of speci�c experiences|
but for the purposes of di�erentiating and predicting
experiences, this isn't necessary. One can imagine an
internal representation of sitting in chairs su�cient to
di�erentiate it from, say, sitting in saddles. The pre-
dictions associated with these representations are dif-
ferent, too: Chairs tend to hold still whereas saddles
(on horses at least) bounce around, and di�erent parts
of one's anatomy are apt to get tired. Similarly, one
can imagine an internal representation of perching on
dining chairs that is su�cient to di�erentiate it from,
say, relaxing in arm chairs; and these representations
also would predict di�erent things about the activities.
Which abstractions should an agent acquire? The

answer has two components: First, which distinctions
and predictions are important to the agent, and sec-
ond, which abstractions of experience provide a good
basis for making these distinctions and predictions? In
polite society, one is rewarded for observing a distinc-
tion between dining chairs and easy chairs|for main-
taining a Victorian posture in the former|but not for
�ner distinctions within either class. It su�ces to have
abstractions \how I sit in a dining chair" and \how I re-
lax in an easy chair." These abstractions must contain
dimensions that di�erentiate activities; for instance,
postural information. And equally signi�cant from the
standpoint of rewards, the abstractions should contain
dimensions that help the agent predict outcomes. Im-
portantly, agents in di�erent environments with di�er-
ent reward structures won't acquire the same abstrac-
tions. They maximize reward if abstractions are good
bases for distinctions and predictions, but abstractions
themselves depend on the agents' experiences. This
is just another way of saying we favor an interaction-
ist rather than objectivist epistemology (Lako� 1984;
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Johnson 1987).

Abstractions of experience immediately identify cat-

egories of experience and, thus, categories of entities
that play roles in experiences. Indeed, objects and
experiences seem to be duals: A category of experi-
ences can identify a category of objects, or vice versa.
The concept \chair" identi�es sitting experiences, and
if one wishes to di�erentiate these experiences then one
must often di�erentiate the chairs.

Now we would like to substitute the word \concept"
for \abstraction." Concepts, then, are abstract repre-
sentations of experience that are acquired (over other
concepts) for their ability to make important discrimi-
nations and predictions, and which identify categories
of experiences and objects. Some would protest that
this de�nition doesn't say what a concept means, but
we would disagree. We propose a predictive seman-

tics where the meaning of a concept is the predic-
tions it makes. In fact, predictiveness underlies our en-
tire approach to concept acquisition: Concepts are ab-
stractions selected for their ability to di�erentiate and
predict, and their meanings are just their predictions.
This is one interpretation of Mandler's claim (Mandler
1992) that concepts are \minitheories" (i.e., predic-
tive statements) and Lako�'s (Lako� 1984) and John-
son's (Johnson 1987) observations that image schemas
(abstractions of experience) support entailments (i.e.,
predictive inferences).

On this account, activity maps are concepts and
their meanings are the predictions they support. To
complete the analogy with nonlinear dynamics, con-
cepts and entailments are like the topological invari-
ants we wish to preserve when we decide upon a visual
representation for activity. A behavior map is an ab-
straction in two senses: �rst, it represents experiences
in a projection of just two of many dimensions (prox-
imity and divergence); second, a map selects a class
of experiences that is larger than the union of the ex-
periences recorded in the map. It is possible to plot
a trajectory through a map that has never been ob-
served. It is also possible to observe a new trajectory
and assess its degree of match to a given map (with
gv). The meaning of a map, say crash, is the pre-
dictions it makes about whether or not the balls will
collide. Necessarily, meaning will depend on the con-
text provided by an experience. For instance, if the
experience takes the agent into a basin of attraction
in which collision is inevitable but hasn't yet occurred,
then the meaning of the associated concept, crash,
is that a collision is inevitable. Just as the concept
chair means di�erent things in di�erent contexts, so
does the meaning of crash.

Let us comment on some other aspects of concepts
and categories and how they correspond to aspects of
activity maps. Some instances of concepts are judged
by humans to be \better examples" than others; Rosch
discovered that robins, for example, are good proto-
types for birds whereas turkeys are not (Rosch & Lloyd

1978). A corresponding notion is that some trajec-
tories through activity maps occur more often than
others. Perhaps such a trajectory would be judged a
prototypical crash, say. Rosch also discovered that
humans organize categories into basic, superordinate

and subordinate levels (e.g., dog is basic, pet is su-
perordinate, spaniel is subordinate). We think that
the underlying theme of predictiveness can explain the
distinction: Basic level categories contain objects that
are speci�ed in enough detail to predict experience,
thus because dogs di�er from cats in their behavior,
\pet" is not a su�ciently predictive designation and
\spaniel" doesn't provide enough additional predictive
power (for most people in most contexts) to be a dis-
tinction worth making.
One aspect of concepts is yet to be accounted for

by activity maps. Concepts are related to others in
thematic structures, and one can pick out the roles in
these structures. For example, two youths fall in love,
their parents object, both youths die, and we call this a
classical tragedy. When we see it written down, we can
point to the actors and their relationships; tragedies
have rich internal structure. Activity maps are ab-
stractions of experience, and while we might be able to
identify roles (e.g., the ball that crashes, the one that
avoids), it is not yet clear whether we can compose the
experiences captured by a map with other experiences
and still be able to point to the components. That is,
we have yet to learn whether activity maps can have
rich internal structure that we can point to and rea-
son about. Nevertheless, this work has taken us a step
closer to an understanding of \concept." Indeed, we
are encouraged by how far we've come with activity
maps from such a simple experimental domain.

Planning

Under Agre and Chapman's (Agre & Chapman 1990)
plan-as-communication paradigm, one views an agent
as a exible participant in the world. Planning occurs
during the course of action and requires the repeated
evaluation of the current situation with respect to fu-
ture outcomes. Behavior maps and interaction maps
provide a means for this very sort of participatory plan-
ning.
As an example, consider an interaction between

avoid- and crash. After behavior recognition, sup-
pose the avoid- agent �nds itself in the state labeled
A in the interaction map of Figure 7a. Without a
change in circumstances this state assures a contact
outcome|something avoid agents dislike. As a re-
sponse, avoid- has two qualitatively di�erent options:
state perturbation or parameter adjustment. (These
possibilities are labeled states B and A' in Figures
7a and 7b, respectively.) State perturbation refers to
a short-lived e�ort by avoid- to alter its location in
the interaction map. For example, a rabbit may slow
its predator temporarily by darting through a small
opening in the brambles. Parameter adjustment, on
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(a) (b)

A'A
B

Figure 7: Interaction maps for crash interacting with (a) avoid- and (b) avoid. Positive and negative signs indicate,

respectively, no-contact and contact as the �nal outcomes. Given current state A, the avoid agent may attain no-

contact by qualitatively di�erent actions leading to state B or to state A'.

the other hand, is akin to a surge in adrenaline which
transforms our bunny into virtual jackrabbit, i.e., a
more intense avoid agent which brings a di�erent in-
teraction map into play.
In the previous example, we say nothing about how

an agent actually decides what actions to follow. This
problem is beyond the goals of this paper, although we
are about to build agents that select actions by visu-
alization (Agre & Chapman 1990), i.e., by imagining
the states and trajectories produced by available ac-
tions. Behavior maps and interaction maps naturally
lend themselves to visual manipulation (e.g., gv, clus-
ter analysis) and are ideal representations for planning
by visualization.
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