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Abstract. This paper introduces a Bayesian method for clustering dynamic processes. The method models
dynamics as Markov chains and then applies an agglomerative clustering procedure to discover the most probable
set of clusters capturing different dynamics. To increase ef£ciency, the method uses an entropy-based heuristic
search strategy. A controlled experiment suggests that the method is very accurate when applied to arti£cial time
series in a broad range of conditions and, when applied to clustering sensor data from mobile robots, it produces
clusters that are meaningful in the domain of application.
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1. Introduction

Suppose one has a set of univariate time series generated by one or more unknown pro-
cesses that have characteristic dynamics. Clustering by dynamics is the problem of group-
ing time series into clusters so that the elements of each cluster have similar dynamics.
For example, if a batch of time series represents sensory experiences of a mobile robot,
clustering by dynamics might £nd clusters corresponding to abstractions of sensory inputs
(Ramoni, Sebastiani, and Cohen, 2000a). If a batch contains a set of EKGs, clustering by
dynamics might £nd clusters corresponding to the pathologies of the heart. Sound patterns
can be clustered by dynamics, also, as a way to discover patterns corresponding to words
in speech signals.

We regard observed data as realizations of a set of underlying stochastic processes ulti-
mately responsible for what we observe. In our cardiac example, we expect to £nd a set of
time series generated by healthy hearts and some sets of time series generated by different
cardiac pathologies. As stochastic realizations of these processes, the observed data are
burdened with variability and two EKG time series may appear to be different although
they are generated by the same process. The task of a Bayesian method is to identify the
most probable set of generating processes given the observed data.

This paper presents BCD: a Bayesian algorithm for clustering by dynamics. Given a
batch of time series, BCD transforms each series into a Markov Chain (MC) and then
clusters similar MCs to discover the most probable set of generating processes. A MC

summarizes a process dynamics by a transition probability matrix, each row in the matrix
representing probabilities of transition from a state to each other state of the variable in



2 RAMONI, SEBASTIANI AND COHEN

the next time step. A transition matrix is learned for each time series in the training batch.
Next, BCD groups time series generated by the same process. The task of the clustering
algorithm is two-fold: to £nd the set of clusters that gives the best partition according to
some measure, and to assign each MC to one cluster. BCD uses the posterior probability of
a partition — i.e. the probability of a partition given the sample time series — as scoring
metric and an entropy-based heuristic search strategy to increase search ef£ciency.

Bayesian clustering methods were pioneered by Cheeseman (1996) for static databases,
i.e. under the assumption that the data are independent and identically distributed. More
recently, Poulsen (1990), Ridgeway (1997, 1998) and Smyth (1999) extended the original
method to temporal data using an approximate mixture-model approach to cluster discrete
MCs within a pre-speci£ed number of clusters. Here, we present the £rst exact Bayesian
treatment of the task of clustering time series modelled as MCs, with no assumption on
the number of clusters. A Bayesian approach is particularly well suited to clustering by
dynamics because it provides a principled way to integrate prior and current evidence.
Furthermore, because the posterior probability of a partition is our scoring metric, we avoid
the problem of increasing the overall probability of errors that plagues classical statistical
methods based on signi£cance tests.

The remainder of this paper is organized as follows. We describe the Bayesian clustering
approach in Section 2. As the search space of all possible models increases exponentially
with the number of time series, Section 3 introduces a heuristic search algorithm and an-
alyzes its computational complexity. Section 4 compares our approach to other current
treatments of time series. Section 5 contains the evaluation of our method in a controlled
experiment and presents an experimental comparison between BCD and an implementa-
tion of the mixture-model approach based on the EM algorithm. Section 6 describes the
application of BCD to the discovery of prototype dynamics of sensory inputs in a mobile
robot.

2. Clustering Markov Chains

Suppose we have a batch of m time series that record the values 1, 2, ..., s of a variable
X . The goal is to identify time series with similar dynamics. Consider, for example,
the plot of three time series in Figure 1. Each records the values of a variable with £ve
states — labeled 1 to 5 — in 50 time steps. It is not obvious that the three time series
are observations of the same process. However, when we explore the underlying dynamics
of the three series more closely, we £nd, for example, that state 2 is frequently followed
by state 1, and state 3 is followed disproportionately often by state 1. We are interested
in extracting these types of similarities among time series and, to do this, we model the
dynamics of time series’ as Markov chains (MCs). For each time series, we estimate a
transition matrix from data and then we cluster transition matrices.

2.1. Learning Markov Chains

Suppose we observe a time series x = (x0, x1, x2, ..., xi−1, xi, ..), where each xi is one
of the states 1, ..., s of a variable X . The process generating the sequence x is a MC if
the conditional probability that the variable visits state j at time t, given the sequence
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Figure 1. Plot of three time series

(x0, x1, x2, ..., xt−1), is only a function of the state visited at time t − 1 (Ross, 1996).
Hence, we write p(xt = j|(x0, x1, x2, ..., xt−1)) = p(xt = j|xt−1) for any xt in x. In
other words, the probability distribution of the variable X at time t, say Xt, is conditional
independent of the values (x0, x1, x2, ..., xt−2), once we know xt−1. This conditional
independence assumption allows us to represent a MC as a vector of probabilities p0 =
(p01, p02, ..., p0s), denoting the distribution of X0 (the initial state of the chain) and a
matrix P of transition probabilities, where pij = p(Xt = j|Xt−1 = i).

P = (pij) =

Xt

Xt−1 1 2 · · · s

1 p11 p12 · · · p1s

2 p21 p22 · · · p2s

... · · ·
s ps1 ps2 · · · pss

Given a time series generated by a MC, we can estimate the probabilities pij from the
data and store them in a matrix P̂ . The assumption that the generating process is a MC

implies that only pairs of transitions Xt−1 = i→ Xt = j are suf£cient, where a transition
Xt−1 = i→ Xt = j occurs when we observe the pairXt−1 = i,Xt = j in the time series.
Hence, the time series can be summarized into an s × s contingency table containing the
transition frequencies nij = n(i → j) where, for simplicity, we denote the transition
Xt−1 = i → Xt = j by i → j. The frequencies nij are used to estimate the transition
probabilities pij characterizing the dynamics of the process that generated the data.
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Table 1. Observed and learned transition matrices for the £rst time series in Figure 1.

1 2 3 4 5 1 2 3 4 5
1 3 12 3 0 3 1 0.15 0.55 0.15 0.01 0.15
2 11 1 2 2 0 2 0.66 0.07 0.13 0.13 0.01

N = 3 6 0 0 0 1 ⇒ P̂ = 3 0.78 0.03 0.03 0.03 0.15
4 0 0 2 0 0 4 0.07 0.07 0.73 0.07 0.07
5 0 4 0 0 0 5 0.04 0.84 0.04 0.04 0.04

However, the observed transition frequencies nij may not be the only source of infor-
mation about the process dynamics. We may also have some background knowledge that
can be represented as a hypothetical time series of length α+ 1 in which the α transitions
are divided into αij transitions of type i → j. This background knowledge gives rise to a
s× s contingency table, homologous to the frequency table, containing these hypothetical
transitions αij that we call hyper-parameters. A Bayesian estimation of the probabilities
pij takes into account this prior information by augmenting the observed frequencies nij

by the hyper-parameters αij so that the Bayesian estimate of pij is

p̂ij =
αij + nij

αi + ni

(1)

where αi =
∑

j αij and ni =
∑

j nij . Thus, αi and ni are the numbers of times the
variable X visits state i in a process consisting of α and n transitions, respectively. By
writing Equation 1 as

p̂ij =
αij

αi

αi

αi + ni

+
nij

ni

ni

αi + ni

(2)

we see that p̂ij is an average of the classical estimate nij/ni and of the quantity αij/αi,
with weights depending on αi and ni. Rewriting of Equation 1 as 2 shows that αij/αi

is the estimate of pij when the data set does not contain transitions from the state i —
and hence nij = 0 for all j — and it is therefore called the prior estimate of pij , while
p̂ij is called the posterior estimate. The variance of the prior estimate αij/αi is given by
(αij/αi)(1−αij/αi)/(αi+1) and, for £xed αij/αi, the variance is a decreasing function
of αi. Since small variance implies a large precision about the estimate, αi is called the
local precision about the conditional distribution Xt|Xt−1 = i and it indicates the level of
con£dence about the prior speci£cation. The quantity α =

∑

i αi is the global precision,
as it accounts for the level of precision of all the s conditional distributions. Further details
may be found in (Ramoni and Sebastiani, 1999).

When ni is large relative to αi, so that the ratio ni/(αi + ni) is approximately 1, the
Bayesian estimate reduces to the classical estimate nij/ni. In this way, the Bayesian es-
timate of the transition probability pij is approximately 0 when nij = 0 and ni is large.
The variance of the posterior estimate pij is p̂ij(1− p̂ij)/(αi + ni + 1) and, for £xed p̂ij ,
it is a decreasing function of αi + ni, the local precision augmented by the sample size
ni. Hence, the quantity αi + ni can be regarded as a measure of the con£dence in the
estimates: the larger the sample size, the stronger the con£dence in the estimate.
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Figure 2. Markov Chain induced from data.

EXAMPLE: Table 1 reports the frequencies of transition nij i, j = 1, ..., 5 observed in
the £rst time series in Figure 1 and the learned transition matrix when the prior global
precision is α = 5 and αij = 1/5. The matrix P̂ describes a dynamic process character-
ized by transitions among states 1, 2 and 3 while states 4 and 5 are visited rarely. Note
that although the observed frequency table is sparse, as 14 transitions are never observed,
null frequencies of some transitions do not induce null probabilities. The small number
of transitions observed from state 3 (n3 = 7), state 4 (n4 = 2) and state 5 (n5 = 4)
do not rule out, for instance, the possibility of transitions from 3 to either 2, 3 or 4. A
summary of the essential dynamics is in Figure 2 in which double headed paths represent
mutual transitions. Transitions with probability smaller than 0.05 are not represented.

2.2. Clustering

The second step of BCD is an unsupervised agglomerative clustering of the set of MCs,
encoding the set S = {Si} of m time series, on the basis of their dynamics. The task of
the clustering algorithm is two-fold: £nd the set of clusters that gives the best partition
according to some measure, and assign each time series to one cluster. A partition is an
assignment of MCs to clusters such that each time series belongs to exactly one cluster.

We regard the task of clustering MCs as a Bayesian model selection problem. In this
framework, the model we seek is the most probable way of partitioning MCs according to
their similarity, given the data. We use the probability of a partition given the data, i.e.
the posterior probability of the partition, as a scoring metric and we select the model with
maximum posterior probability. Formally, this is done by regarding a partition as a hidden
discrete variable C. Each state Ck of C represents a cluster of time series, and hence
determines a transition matrix. Graphically, the partition of the transition matrices, that we
can learn from S, can be represented as in Figure 3. The directed link from the node C and
the node containing the MC represents the dependence of the transition matrix Xt|Xt−1 on
C. The number c of states of C is unknown, but the number m of available MCs imposes
an upper bound, as c ≤ m. Each partition identi£es a model Mc, and we denote by p(Mc)
its prior probability. By Bayes’ Theorem, the posterior probability ofMc, given the sample
S, is
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Figure 3. Graphical representation of a clustering model Mc.

p(Mc|S) =
p(Mc)p(S|Mc)

p(S)
.

The quantity p(S) is the marginal probability of the data. Since we are comparing all the
models over the same data, p(S) is constant and, for the purpose of maximizing p(Mc|S),
it is suf£cient to consider p(Mc)p(S|Mc). Furthermore, if all models are a priori equally
likely, the comparison can be based on the marginal likelihood p(S|Mc), which is a mea-
sure of how likely the data are if the model Mc is true.

The quantity p(S|Mc) can be computed from the marginal distribution (pk) of C and the
conditional distribution (pkij) of Xt|Xt−1 = i, Ck, where Ck is the cluster membership,
using a well-known Bayesian method (Cooper and Herskovitz, 1992). Let nkij be the
observed frequencies of transitions i → j in cluster Ck, and let nki =

∑

j nkij be the
number of transitions observed from state i in cluster Ck. We de£ne mk to be the number
of time series assigned to cluster Ck. The observed frequencies (nkij) and (mk) are the
data required to learn the probabilities (pkij) and (pk) respectively and, together with
the prior hyper-parameters αkij , they are all that is needed to compute the probability
p(S|Mc), as

p(S|Mc) = f(S,C)f(S,Xt−1, Xt, C). (3)

Intuitively, the £rst quantity is the likelihood of the data, if we assume that we can partition
the m MCs into c clusters, and it is computed as

f(S,C) =
Γ(α)

Γ(α+m)

c
∏

k=1

Γ(αk +mk)

Γ(αk)
.

The second quantity measures the likelihood of the data when, conditional on having c
clusters, we assign each time series to one and only one cluster. This quantity is given by

f(S,Xt−1, Xt, C) =
c
∏

k=1

s
∏

i=1

Γ(αki)

Γ(αki + nki)

s
∏

j=1

Γ(αkij + nkij)

Γ(αkij)
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where Γ(·) denotes the Gamma function. Equation 3 is derived directly from the results in
(Cooper and Herskovitz, 1992) by treating a MC as child variable of C, using the popular
terminology of Bayesian Networks. Once created, the transition probability matrix of a
cluster Ck can be estimated as p̂kij = (αkij + nkij)/(αki + nki).

We conclude this section by suggesting a choice of the hyper-parameters αkij . We use
uniform prior distributions for all the transition probability matrices considered at the be-
ginning of the search process. The initial m × s × s hyper-parameters αkij are set equal
to α/(ms2) and, when two MCs are similar and the corresponding observed frequencies of
transitions are merged, their hyper-parameters are summed up. Thus, the hyper-parameters
of a cluster corresponding to the merging of mk initial MCs will be mkα/(ms

2). In this
way, the speci£cation of the prior hyper-parameters requires only the prior global preci-
sion α, which measures the con£dence in the prior model. An analogous procedure can
be applied to choose the hyper-parameters αk associated with the prior estimates of pk.
Since Γ(x) is de£ned only for values greater than zero, the hyper-parameters αkij must be
non-negative. Note further that a choice of uniform hyper-parameters biases the algorithm
toward the hypothesis that the initial m time series are generated by the same MC.

3. A Heuristic Search Method

To implement the clustering method described in the previous section, we might evaluate
all possible partitions and return the one with the highest posterior probability. The number
of possible partitions growing exponentially with the number of MCs, a heuristic method
is required to make the search feasible. We use a measure of similarity between estimated
transition probability matrices to guide the search process. The resulting algorithm is called
Bayesian Clustering by Dynamics (BCD).

3.1. The Algorithm

The algorithm performs a bottom-up search by recursively merging the closest MCs (repre-
senting either a cluster or a single time series) and evaluating whether the resulting model
is more probable than the model where these MCs are kept distinct. The similarity measure
that guides the process can be any distance between probability distributions. Let P1 and
P2 be matrices of transition probabilities of two MCs. Because each is a collection of s
probability distributions, and rows with the same index are probability distributions con-
ditional on the same event, the measure of similarity that BCD uses is an average of the
symmetrized Kullback-Liebler distance between corresponding rows. Let p1ij and p2ij be
the probabilities of the transition i → j in P1 and P2. The Kullback-Liebler distance of
these two probability distributions is

d(p1i, p2i) =

s
∑

j=1

p1ij log
p1ij

p2ij

(4)

The distance in Equation (4) is not symmetric because d(p1i, p2i) 6= d(p2i, p1i). The
symmetric version of it was introduced by Jeffreys (1946) and is de£ned as D(p1i, p2i) =
[d(p1i, p2i)+d(p2i, p1i)]/2. The average distance between P1 and P2 is thenD(P1, P2) =
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∑

iD(p1i, p2i)/s. Note that this distance becomes 0 when P1 = P2 and it is otherwise
greater than zero. The current implementation of BCD is based on the symmetric Kullabck-
Liebler distance but other measures of distance, such as the mean square error, could be
used instead. The rationale behind the distance measure is that merging more similar MCs
earlier should £nd sooner more probable models and increase the marginal likelihood in 3
used as a scoring metric by the algorithm.

1. The algorithm takes as input a set S of m time series and returns a partition B of
times series S.

procedure BCD(S)
MCs←∅;Distances←∅;
while i ≤ |S| do MCs←MCs

⋃

{MC(Si)};
while i ≤ |MCs| do

while j ≤ |MCs| do
if i 6= j then Distances←Distances

⋃

{DISTANCE(MCsi,MCsj)};
end

end
Distances←SORT(Distances);
Pnew←ML(MCs); Best←MCs;
while Pnew > Pold do
Pold←Pnew;
while i ≤ |Distances| do
MC←MERGE(Distancesi);
Current←{MCs\{Distancesi}} ∪ {MC};
when Pnew > ML(Current) do
Best←Current; Pnew←ML(Current);
while j ≤ |Distances| do

ifDistancesi

⋂

Distancesj 6= ∅ thenDistances←Distances\{Distancesj};

end
while j ≤ |Best| do
Distances←Distances

⋃

DISTANCE(MC,Bestj);
end
Distances←SORT(Distances);
return

end
end

end
return Best

end

Initially, the algorithm transforms each of the m time series in a set S into a MC. This is
accomplished by the function MC(·), which follows the procedure described in Section 2.
Then, the algorithm sorts the setDistances of pairwise distances between them generated
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MCs into an ascending order with the function DISTANCE(·,·). This function returns a pair
of MCs indexed by a measure of their mutual distance as described above. The last step
of the initialization phase is the computation of the marginal likelihood p(S|Ms), where
Ms represents the model in which each time series is generated by a different MC is taken
as the current best model. The marginal likelihood (3) is computed by the function ML(·),
taking as its argument a set of MCs.

The iterative core of the algorithm loops on the ordered set of MC pairs and tries to
merge the two closest MCs into a single MC. The function MERGE(·) performs this merging
as described in Section 2. This function also estimates the marginal likelihood p(S|Mc),
where Mc is the model in which the two merged MCs are replaced by the MC resulting
from their merging. If the marginal likelihood of this model is higher than the marginal
likelihood of the current Best model, the model Mc is taken as current Best, all the ordered
pairs involving one of the merged MCs are removed from the set Distances, the distances
between the new MC and the other MCs in the Best model are sorted into the setDistances,
and the procedure is iterated on the new Best model. Otherwise, the procedure tries to
merge the remaining pairs of MCs in the ordered set Distances. If no merging will result
in a model with higher marginal likelihood than the current Best model, the procedure stops
and returns the Best model found so far.

3.2. Computational Complexity

We shall assume that the quantities required to compute Equation 3 in the function ML(·)
and Equation 4 in the function DISTANCE(·,·) have been pre-computed and stored in some
array. We do not consider the time required by the function SORT(·).

Recall that s is the number of states of the variable generating the m time series in the
set S. We assume that the longest time series contains n data points. The execution of
the function MC(·) requires at most ns2 applications of Equations 1. Therefore, the £rst
while statement requires O(mns2) time. The following nested while statements call the
DISTANCE(·,f)unction (mm−1

2
) times, in case of symmetric distances, and (m(m − 1))

times otherwise. As the function DISTANCE(·,·) applies Equation 4 s2 times, the cost of
this second while statement is bounded byO(s2m2). The third while statement is called, in
the worse case, m times on the (m(m− 1)) elements of Distances. As the function ML(·)
sums over a table of ms2 elements, the cost of the third while statement is bounded by
O(m4s2). When a new model is successfully created, we must also update the current set
of Distances in order to sort the new generated MC into the other elements of the sorted
list Best. As the number of new models is bounded by (m− 1), this updating requires, in
the worse case, an additional m2 + s2m2(m− 1) steps. Putting these results together, we
obtain O(nms2)+O(m2s2)+O(m4s2)+O(m2)+O(m3s2) and we can bound the cost
of the algorithm by O(m4s2).

4. Related Works

BCD models time series as £rst order MCs. More complex models involve the use of k-order
Markov chains (Saul and Jordan, 1999), in which the memory of the time series is extended
to a window of k time steps, or Hidden Markov Models (MacDonald and Zucchini, 1997),
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Figure 4. Graphical representation of a Hidden Markov Model.

in which hidden variables H are introduced to decompose the complex auto-regressive
structure of the time series into smaller pieces. Hidden Markov Model were originally
introduced in speech recognition (Rabiner, 1989) and are nowadays applied in many £elds
from DNA and protein sequencing (Lio and Goldman, 1998; Jaakkola, Diekhans, and
Haussler, 2000) to robotics (Firoiu and Cohen, 1999) and language learning (Oates, 1999).

There are signi£cant differences between BCD and Hidden Markov Models. BCD rep-
resents the process generating time series with MCs and clusters similar MCs by creating
a variable C to encode cluster membership. Conditional on each state of the variable C,
the model for the time series is a MC with transition probability p(Xt = j|Xt−1 = i, Ck).
Graphically, this assumption is represented by the model in Figure 3. The oval represents
one MC and C separates different ovals, so that, conditional on C = Ck, the transition
probability from state i to state j is p(Xt = j|Xt−1 = i, Ck) and this is independent
of other MCs. In a Hidden Markov Model, the hidden variable H (or variables) allows
one to compute the transition probabilities among states as p(Xt|Xt−1, Hk) = p(xt|Hk),
so that conditioning on the state of the hidden variable makes the dependence of Xt on
Xt−1 vanish. Figure 4 represents graphically this assumption. A detailed explanation of
the difference between a Hidden Markov Model and the model used by BCD is in (Smyth,
Heckerman, and Jordan, 1997).

The approach used in BCD is similar to the mixture-model approach proposed by Poulsen
(Poulsen, 1990) and further developed by Ridgeway (Ridgeway, 1997; Ridgeway and
Altschuler, 1998) and Smyth (Smyth, 1999). Ridgeway describes a probabilistic method
for clustering discrete MCs with a pre-speci£ed number of clusters. The algorithm models
the partition of time series into a pre-speci£ed number of clusters of MCs as a mixture
model. The EM-algorithm is used to compute the mixture weights and the transition prob-
abilities maximizing a scoring function, and then each time series is assigned to the cluster
from which it is generated with maximum posterior probability. This algorithm, that we
will refer to as EMC (EM-clustering), assumes a known number of clusters and, conditional
on this number, £nds the partition of time series into clusters. The scoring function is the
likelihood function, that is, the probability of the data given some parameters representing
the mixture weights and the transition probabilities of each cluster of MC. Compared to
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EMC, BCD £nds both the best number of clusters and the optimal assignment of time se-
ries to clusters by searching for the partition that maximizes the marginal likelihood: the
expected likelihood function in which the expectation is taken with respect to the prior dis-
tribution of the parameters. In this way, rather than using maximum likelihood estimates
of the parameters to compute a maximized score, BCD blends data and prior information
to compute an average score. Intuitively, this approach should gain robustness and, indeed,
in the next section we will show an empirical evaluation on simulated data which supports
this intuition.

5. Experimental Evaluations

This section includes two controlled experimental evaluations of BCD. The £rst experiment
aims at assessing the accuracy of BCD. The second experiment compares BCD and an EM-
based implementation of the mixture-model clustering approach.

5.1. Experimental Evaluation of BCD

Here we describe the results of a controlled experiment to evaluate the accuracy of the
algorithm when it is applied to a batch of time series generated from different MCs. The
results show an overall accuracy that appears to suffer only when the time series in the
batch are very short and have very similar dynamics.

5.1.1. Procedure To assess the accuracy of the algorithm, we varied four factors:

Factor 1 The length of each time series: 25, 50, 125 and 250 time steps.

Factor 2 The number of different MCs generating the batch of data: either 4 or 8.

Factor 3 The number of time series generated from each MC: either equal or different.

Factor 4 Global prior precision: α = 4, 8, 80.

The £rst three factors yield sixteen experimental conditions. For each condition, we gen-
erated eighty time series. Each time series included at most £ve distinct values, i.e. it was
generated by a MC with £ve states. We then tested the algorithm with these time series for
three values of the global prior precision α.

The choice of values of Factor 1 follows from the fact that our time series are generated
by MCs with £ve states. For a given number of states, we require a minimum sample
size to ensure that states are visited often enough to yield good estimates of transition
probabilities. A time series of n + 1 steps generated from a MC on s states with uniform
probabilities yields n/s2 expected transitions i→ j, for any i and j. When the time series
is not generated from a MC with uniform transition probabilities, some observed transition
frequencies will be smaller than n/s2, others will be larger. Hence, if n is not suf£ciently
larger than s, we expect to have several null transition frequencies. We decided to £x the
number of states of each MC to £ve and to generate, from each MC, time series of length
25=“very short”, 50=“short”, 125=“medium” and 250=“long”. Very short and short time
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Table 2. Kullback Liebler distance between pairs of transition prob-
ability matrices used to generate the test sequences.

P1 P2 P3 P4 P5 P6 P7 P8

P1 0.00 1.85 1.44 1.57 1.16 1.79 1.56 1.62
P2 − 0.00 1.35 1.61 1.54 1.79 1.52 1.27
P3 − − 0.00 1.81 1.19 1.54 1.21 0.75
P4 − − − 0.00 1.86 1.78 1.40 1.85
P5 − − − − 0.00 1.86 1.68 0.90
P6 − − − − − 0.00 1.50 1.60
P7 − − − − − − 0.00 0.83

series give an expected number of one and two transitions in the uniform case, so that
we expect to have several zeros when the generating MCs are not uniform. The expected
number of transitions are £ve and ten in the other two cases.

The time series in each experimental batch are generated by either four or eight MCs.
We constructed the MCs as follows: Each of £ve rows of a transition matrix is a proba-
bility distribution with masses on £ve states. When we think of probability distributions,
we imagine symmetric, uniform or skew-symmetric distributions. Uniform distributions
aside, the other patterns are characterized by changing the concentration of probability
masses — without changing the shape of the distributions — to have different degrees of
variability. We might construct an in£nite number of transition matrices whose rows mix
these different distributions. To avoid selection bias, we generated a set of sixteen prob-
ability distributions given by a uniform distribution and symmetric and skew-symmetric
distributions. We then generated eight transition probability matrices P1, ..., P8 by sam-
pling, in each case, £ve distributions from this set. For the cases in which we generated the
time series from four MCs, we sampled the four matrices P1, P4, P5 and P7.

The symmetric Kullback-Liebler distance between pairs of transition probability matri-
ces so generated is displayed is Table 2 and ranges between 0.75, in which the two tran-
sition probability matrices have three identical rows, and 1.86. In the latter case, the two
transition probability matrices represent very different dynamics, as in one case the chain
is expected to visit all states 1–5 while, in the other case, transitions are mainly limited to
states 1 and 4.

We suspected that having generating processes equally represented in the batch of time
series can help the algorithm to cluster MCs correctly. Hence, for each of the eight com-
binations of length and number of generating MCs, we created two batches of time series
in which the number of time series generated from each MC is either constant or variable.
In the constant conditions, each of four (or eight) MCs generated 20 (or 10) time series. In
the unequal conditions, each of four MCs generates 18, 10, 33 and 19 time series, respec-
tively; and each of eight MCs generated 12, 23, 2, 4, 5, 12, 16, 6, series. These unequal
distributions were generated randomly. We also decided to start each simulated time series
from the same initial point. However, since some initial point can be more advantageous
for some time series than others, we choose the common initial point at random. Thus we
generated eighty time series for each of the sixteen combinations of levels of the factors.
We £rst generated four sets of eighty time series of length 250 time steps, and then we
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Table 3. Number of clusters created in the sixteen data sets.

Number of generated time series per MC

Equal Proportions Different Proportions
Length 25 50 125 250 25 50 125 250

4 MCs 4 4 4 4 4 4 4 4
8 MCs 8 8 8 8 4 7 7 8

extracted four sets given by the £rst 25 steps, four sets given by the £rst 50 time steps, and
four sets given by the £rst 125 time steps. In this way, the comparisons of the results for
time series of varying lengths are not confounded with the fact that we observe different
processes, although generated by the same MC.

We then applied the BCD algorithm to the sixteen data sets for three different values
of the global prior precision. Values of α = 4 or 8 give a small adjustment to the ob-
served frequency, as the initial values of the prior hyper-parameters are αkij = 0.002 and
αkij = 0.004 and they become at most αkij = 0.16 in the worst case in which the algo-
rithm merges the eighty time series into one cluster. We note that, since several transition
frequencies are zeros, small values of αkij are supposed to affect the precision of the pos-
terior probability. A choice of α = 80 corresponds to setting αkij = 0.20 initially and,
when the algorithm begins to assign time series to clusters, these values increase.

5.1.2. Evaluation Measures Recall that the task of the clustering algorithm is two-fold:
Find the set of clusters that gives the best partition of time series, and assign the time series
to clusters. Therefore, we evaluate the algorithm using three performance measures: the
number of clusters found in each data set; the number of time series correctly assigned to
clusters; and a measure of the loss of data information induced by clustering. For each
cluster Cj found by the algorithm, we £nd the generating MC with transition matrix Pi

that has minimum Kullback-Liebler distance from the transition probability matrix of the
cluster. We then compute the number of time series generated by the MC with transition
matrix Pi that are assigned to the cluster Cj . The cumulative sum of time series assigned,
correctly, to all clusters is the value of the second performance measure. The £rst perfor-
mance measure ranges between 1, when the algorithm creates only one cluster, and 80, if
no time series are clustered. The correct value is 4 when the time series are generated by 4
MCs and 8 in the other case. The second performance measure ranges between 0 — when
the algorithm does not assign correctly any time series — and 80 — when all time series
are assigned correctly to their generating MCs.

The rationale behind the third performance measure is that clustering by dynamics in-
volves two levels of abstraction. First, the transitions in a time series are summarized in
a transition matrix, or MC; second, time series are grouped into clusters, and the cluster
MCs are averages of the constituent MCs. Both operations lose information. The log-score
of a transition helps us evaluate these losses (Hand, 1997). For each time series Sk, we
estimate the transition probability matrix of the MC generating the series Sk by using the
estimation method described in Section 2. Let (p̂o,kij) be the transition probability ma-
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Table 4. Number of time series correctly assigned to clusters in
the sixteen data sets.

Number of generated time series per MC

Equal Proportions Different Proportions
Length 25 50 125 250 25 50 125 250

4 MCs 79 80 80 80 80 80 80 80
8 MCs 77 80 80 80 63 76 77 80

trix estimated from series Sk. We use the estimated transition probabilities to compute
the score so,kij = − log p̂o,kij of the transition i → j, and this is done for all transitions
observed in the kth time series. This score penalizes a MC by assigning large values to ob-
served transitions when the MC assigns them small probabilities. We sum this score over
all transitions in the time series to get a cumulative score so,k for the loss incurred by sum-
marizing the observed time series Sk into a MC. Now, instead of computing losses for the
time series Sk based on the MC with transition probabilities p̂o,kij , we compute them based
on the estimated transition probability matrix of MC for the cluster to which the time series
belongs. We let (p̂c,kij) be the transition probability matrix of the cluster C to which Sk

belongs, and we compute the score sc,kij = − log p̂c,kij assigned to the transition i → j
observed in the time series. As before, we sum sc,kij over the transitions within the time
series Sk to get a cumulative score sc,k for the loss incurred by summarizing the observed
time series into a cluster of MCs. With a batch of m time series, this procedure determines
m pairs of cumulative scores (so,k, sc,k). For each time series, the data-score so,k will
be inferior to the cluster-score sc,k, since the latter is computed after two summaries of
the data, while the former is computed after just one summary of the data. A scatter plot
of the scores sc,k versus so,k provides a simple description of the loss of information due
to clustering time series. A numerical summary of this loss is then computed by £tting a
regression line sc = a+ bso. The magnitude of the intercept term a is the average loss of
information due to summarizing the data into clusters of MCs, compared to summarizing
the data into MCs. The slope b is the rate at which information is lost, consequent to cluster-
ing. The coef£cient of determination R2, which measures the ratio between the variability
explained by the regression line and the overall variability of the scores, is used to decide if
the loss of information due to clustering can be suf£ciently described by a linear function.
The ratio (sc − so)/so measures the loss of information due to clustering, relative to the
data-score, and its average (a + (b − 1)so)/so can be used to quantify the relative loss of
data information incurred by clustering.

5.1.3. Results and Discussion The number of clusters created by the BCD algorithm in
each of the sixteen experimental conditions is shown in Table 3 (global prior precision is
α = 8. The results were not sensitive to changes of the global prior precision). Table 4
represents the accuracy with which the algorithm assigns time series to clusters. For condi-
tions in which the batch of 80 time series was generated by four MCs, exactly four clusters
were always found, and in all but one condition, all time series were correctly assigned to
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Figure 5. Scatter plot of the data (x-axis) and cluster (y-axis) scores in the group of experiments, in which the
time series were generated by four different MCs, and each MC is equally represented. Values within brackets are
respectively the regression line £tted to each group of scores.

their generating MCs. In one condition, when the time series are only 25 steps long, the
algorithm wrongly assigns a single time series generated from matrix P7 to a cluster of
series generated from matrix P5. Thus, in the conditions in which we used four generating
MCs neither the lengths of the time series nor the fact that the generating MCs are repre-
sented unevenly in the data set has any effect. Figure 5 displays scatter plots of the data and
cluster-scores computed in the 4 experimental conditions in which equal numbers of time
series were generated by four different MCs. The plots show a large correlation between the
data and cluster-scores. The correlation becomes stronger as the length of the originated
time series increases. When the time series are 25 time steps long, the £tted regression
line explains 67% of the overall variability of the cumulative scores, and the coef£cient
of determination R2 increases to 94%, when the time series are 250 time steps long. The
slopes of the four regression lines are 1.23, 1.29, 1.07, and 1.01, thus showing that the
loss of information decreases with the length of the time series. The intercept terms are
all small, ranging from 3.29 to 7.69, so that the overall loss of information is never large.
The average losses of data information due to clustering, relative to the data-scores, are
(3.29+ .23so)/so; (−1.13+ .29so)/so; (3.63+ .07so)/so; (7.69+0.01so)/so. The ratios
(3.29+ .23so)/so, (3.63+ .07so)/so, and (7.69+ 0.01so)/so are decreasing functions of
so, and are bounded below by 0.23, 0.07 and 0.01, so that, for example, when so is large
and the time series are long 250 steps, clustering determines a loss of data information of
1%. The ratio (−1.13 + .29so)/so is increasing and bounded above by .29. The plots in
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Figure 6. Scatter plot of the data (x-axis) and cluster (y-axis) scores in the group of experiments, in which the
time series were generated by four different MCs, and the MCs are unevenly represented. Values within brackets
are respectively the intercept term, the slope and the coef£cient of determination of the regression line £tted to
each group of scores.

Figure 6 show similar results for the data and cluster cumulative scores in the 4 experimen-
tal conditions in which different numbers of time series were generated by four different
MCs. When eight MCs are used to generate the 80 time series, we observe, as expected, a
slight decrease in accuracy, because fewer time series are available to represent each MC.
Consider £rst the four conditions in which each MC generates exactly ten time series. Table
3 shows that, in these cases, the algorithm generated the correct number of clusters, one for
each generating MC. Table 4 shows that in three of these four conditions, the assignment
of time series to clusters was perfect. Only when the time series were very short problems
arise: One cluster in this condition contains just eight time series, albeit generated by the
same MC; two clusters contain ten time series generated by the same MC and one series
wrongly assigned. One cluster contains nine time series generated from the same MC and
one wrongly assigned.

Globally, three time series are mis-assigned so that the second performance measure is
77. The scatter plots of the cumulative cluster-scores against the cumulative data-scores in
Figure 7 show again a large linear association, which becomes stronger with the increasing
length of the time series. The average losses of data information due to clustering, relative
to the data-scores, are (2.27+ .26so)/so; (4.08+ .12so)/so; (3.77+ .07so)/so; (−1.13+
0.06so)/so. The ratios (2.27 + .26so)/so; (4.08 + .12so)/so; (3.77 + .07so)/so are
increasing functions of so and, therefore, the largest loss of data information is incurred
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Figure 7. Scatter plot of the data (x-axis) and cluster (y-axis) scores in the group of experiments, in which the
time series were generated by eight different MCs, and each MC is equally represented. Values within brackets
are respectively the intercept term, the slope and the coef£cient of determination of the regression line £tted to
each group of scores.

when the data-score so is small. For example, with series 25 steps long, the relative loss of
data information due to clustering compared to the loss of data information due to using MC

is 64%, when the data-score is 6, and the cluster-score is 9.83. The same fraction reduces
to 32% when the time series are long 50 steps, and to 12% when the series are long 125
steps. With longer series, the relative change of data information is (−1.13 + 0.06so)/so

which is increasing in so. In this case, the largest relative change of information is 6%. The
results in the last group of conditions, in which we generated an uneven number of time
series from eight MCs is indicative of a possible weaknesses of the BCD algorithm. This is
the only situation in which the algorithm fails to create the correct number of clusters until
the time series are 250 steps long. The assignment of time series to clusters also fails to
be optimal until the time series are long enough. The data set contains eighty time series
generated in numbers 12, 23, 2, 4, 5, 12, 16, 6 by eight MC transition matrices P1, ..., P8.
The algorithm creates 4 clusters when the time series are 25 steps long, 7 clusters when
the time series are either 50 or 125 steps long and identi£es the correct number of clusters
when the time series are 250 steps long.

Table 5 shows the details of the clusters and of the assignment of time series to clusters.
When the sequences are very short, the algorithm merges time series generated from matri-
ces P3, P7 and P8 in one cluster. Time series generated from P1 and P5 are also assigned
to one cluster, as are P2 and P4. Only the series generated from P6 are correctly identi-
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Table 5. Cluster identi£cation and assignments in the experiments. A
dot represents a correct cluster identi£cation. Curly brackets put to-
gether time series generated from different MCs and assigned to one
single cluster by the algorithm. A +n denotes that the time series n is
assigned to the wrong cluster, a −n denotes that the times series n is
not included in the right cluster.

Time Series Length

MC Time Series 25 50 125 250

P6 47–58 • • • •

P1 1–12 •+ 46 • •

P5 42–46

}

• – 46 • •

P2 13–35 • • •

P4 38–41

}

• • •

P3 36–37 •

P8 75–80

}

+ 67
}

+ 67
•

P7 59–74

}

• – 67 • – 67 •

Total Time Series: 80 80 80 80

Classi£cation Errors: 17 4 3 0

£ed. Although the amount of information about the generating process is not suf£cient to
let the algorithm identify the correct generating MCs, the clusters generated in these con-
ditions have meaningful features. For instance, the matrices P3 and P8 have the smallest
Kullback-Liebler distance of any pair of matrices (0.75), while the matrices P7 and P8 have
the second smallest distance (0.83). The matrix P7 is frequently represented in the data set,
sixteen time series generated from it, whereas just two and six time series were generated
from P3 and P8, respectively. Apparently, the cluster containing the sixteen series gener-
ated from P7 absorbs the series generated from P3 and P8. Similarly, the cluster containing
the twelve time series generated from P1 absorbs the £ve time series generated from P5,
just as the cluster containing the twenty-three time series generated from P2 absorbs the
four series generated from P4. We note that the Kullback-Liebler distance D(P1, P4) is
greater than D(P1, P5), so that the assignment of time series to clusters re¤ects features of
the generating processes. The only cluster that is correctly identi£ed contains twelve time
series generated from P6. This matrix is maximally different from the seven other matri-
ces. As the time series become longer, the algorithm accuracy increases. With time series
of 50 steps, the algorithm is able to distinguish series generated from P2 and P4, as well as
P1 and P5 — although series 46 is still assigned to the wrong cluster. Similarly, the time
series generated from P3, P7 and P8 are assigned to two clusters. One of these contains
all but one series generated from P7, and this series is assigned to the cluster merging the
series generated from P3 and P8. This merging is the worst error incurred by the algorithm
when the time series are 50 and 125 steps long. For series of length 250, the accuracy of
the algorithm is 100%. The scatter plots of the cluster-scores against the data-scores in
Figure 8 show again a large linear association, which becomes stronger with the increasing
length of the time series. Compared to the previous groups, the cluster-scores appear to be
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Figure 8. Scatter plot of the data (x-axis) and cluster (y-axis) scores in the group of experiments, in which the
time series were generated by eight different MCs, and the MCs are unevenly represented. Values within brackets
are respectively the intercept term, the slope and the coef£cient of determination of the regression line £tted to
each group of scores.

slightly worse than the data-scores when the time series are not enough long. With time
series of 25 steps, the regression line of the cluster-scores versus the cumulative data-score
has slope 1.33 and intercept term 4.87. Therefore, a data-score of 10 is expected to de-
grade to 18.17 when the score is computed using the cluster MC. For comparison, in the
second experimental group with 80 time series generated by four MCs in different number,
a data-score of 10 is expected to deteriorate to 15.46.

Clearly the algorithm can be extremely accurate when the batch of data contain roughly
equal numbers of time series generated by different MCs. The fact that series are short
does not seem to jeopardize accuracy when only four generating MCs are involved. How-
ever, when time series are short and their generating MCs are quite similar, and some of
these MCs contribute many more series to a batch of data than the others, then one cluster
may be formed from time series from the heavily-represented MC as well as a few series
from similar MCs. Our algorithm may not distinguish similar MCs when one contributes
many more time series to a batch of data than another, very similar one, and the series are
short. This potential problem may be exacerbated by the fact that uniform priors bias the
clustering algorithm toward the hypothesis that the time series in a data set are generated
from a common MC. However, BCD shows an interesting property, which we will term
monotonic discrimination ability: when the time series are too short to allow proper dis-
crimination, it groups entire clusters together rather than mixing time series from different
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Table 6. Number of time series correctly assigned to clusters by EMC in the sixteen data sets, when
EMC is given the number of clusters found by BCD. Number in brackets are the time series correctly
assigned to clusters by BCD.

Number of generated time series per MC

Equal Proportions Different Proportions
Length 25 50 125 250 25 50 125 250

4 MCs 79 (79) 79 (80) 80 (80) 80 (80) 74 (80) 71 (80) 76 (80) 62 (80)
8 MCs 56 (77) 77 (80) 58 (80) 70 (80) 64 (63) 69 (76) 70 (77) 52(80)

clusters. When the time series are long enough to allow discrimination, BCD will prop-
erly break down the clusters. This monotonic discrimination ability supports the idea that,
indeed, short sequences do not really convey enough information to be discriminated and
ensures that time series too short will typically result only in a loss of granularity of the
partitioning.

5.2. Experimental Comparison of BCD and EMC

The similarity of BCD and EMC discussed in Section 4 calls for a comparison between the
two clustering algorithms. Both BCD and EMC model the dynamic of a time series via
a MC and then seek the partition of a batch of time series into clusters that maximizes a
scoring function. EMC assumes the number of clusters known, while BCD seeks the optimal
number of clusters and the optimal partition. Given the methodological similarities, it
may seem that EMC should determine the same clusters of MCs as BCD when provided
with the number of clusters found by BCD. Furthermore, if some prior knowledge about
the number of clusters is available, then EMC would be a faster clustering algorithm than
BCD. However, as discussed in Section 4, the scoring function used by BCD — marginal
likelihood — seems to be more robust than the one used by EMC — maximum likelihood.
The goal of the experimental comparison in this section is to investigate further this claim.

For the comparison, we use the sixteen groups of time series generated for the experi-
mental evaluation in Section 5. On each group, we use the program implementing EMC

(Ridgeway and Altschuler, 1998), to £nd clusters of MCs. Given that EMC £nds a pre-
speci£ed number of clusters of MCs, in each experimental group we use the algorithm by
assuming a number of clusters equal to the number of MCs used to generate the data. With
the exception of the last experimental group — eighty time series generated unevenly by
eight MCs — this number equals the number of clusters found by BCD. For a fair com-
parison, in this group we also run EMC with the number of pre-speci£ed clusters equal
to the number of clusters found by BCD. We evaluate the results of EMC with two of
the three performance measures used in the experimental evaluation: the number of time
series correctly assigned to clusters, and the measure of the loss of data information in-
duced by clustering. The £rst performance measure is computed as in the previous section.
To determine the second performance measure, we compute cluster-scores for each time
series using the transition probability matrices of the cluster to which the series belongs,
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Figure 9. Scatter plot of the data (x-axis) and cluster (y-axis) scores in the group of experiments, in which the
time series were generated by four different MCs, and the MCs are unevenly represented. Values within brackets
are respectively the intercept term, the slope and the coef£cient of determination of the regression line £tted to
each group of scores.

in the clustering produced by EMC. The number of time series correctly assigned to clus-
ters compares the accuracy of EMC with that of BCD. Furthermore, the comparison of the
cluster-scores shows whether EMC is more or less lossy than BCD.

Table 6 reports the number of time series that EMC correctly assigns to clusters in the
sixteen groups, when given the number of clusters found by BCD. In those conditions in
which four MCs are used to generate the time series, BCD always £nds the correct num-
ber of clusters, so that EMC £nds the best partition knowing the correct number of gen-
erating processes. When the generating MCs are represented equally in the data set, the
accuracy of EMC and BCD are essentially the same. Only in one case — time series of
length 125 generated from four MCs — EMC assigns one time series to the wrong clus-
ter. In the same case, BCD assigns correctly all time series to clusters. When the time
series are represented unevenly, however, the accuracy of EMC is inferior to that of BCD.
BCD £nds the correct number of clusters and assigns correctly time series to the four clus-
ters. Despite the advantage given to EMC, which is provided with the correct number of
clusters, some time series are assigned to the wrong cluster. Recall that, in this group,
we generated eighty time series from the four MCs with transition probability matrices
P1, P4, P5, and P7. Each of the four MCs generated 18, 10, 33, and 19 time series.
The clusters found by EMC, when the length of time series is 25 steps, group the origi-
nated time series into C1 = {17 from P1, 2 from P7}; C2 = {1 from P1, 10 from P4};
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Table 7. Assignment of time series to cluster by EMC, when
the 80 time series are generated by 8 groups of 10 MCs.

Generating MCs
EMC P1 P2 P3 P4 P5 P6 P7 P8

C1 0 4 0 0 0 0 1 0
C2 0 5 0 0 5 0 0 0
C3 3 0 7 0 0 0 0 0
C4 0 1 0 9 0 0 0 0
C5 0 0 0 0 5 2 0 0
C6 7 0 0 1 0 8 0 0
C7 0 0 0 0 0 0 8 0
C8 0 0 3 0 0 0 1 10

Total 10 10 10 10 10 10 10 10

C3 = {30 from P5}; C4 = {3 from P5, 17 from P7}, for an overall number of six time
series assigned to the wrong cluster. These clusters are similar to those found with time
series of length 125. In this case, the clusters found by EMC are C1 = {14 from P1};
C2 = {4 from P1, 10 from P4}; C3 = {33 from P5}; C4 = {19 from P7}, for an over-
all number of four time series assigned to the wrong cluster. However, the number of
errors is larger with time series of length 50, and even larger with time series of length
250. In the £rst case, the clusters found by EMC are C1 = {17 from P1, 8 from P7};
C2 = {1 from P1, 10 from P4}; C3 = {33 from P5}; C4 = {19 from P7}, for an
overall number of nine time series assigned to the wrong cluster. In the second case,
the clusters found by EMC are C1 = {18 from P1, 10 from P4}; C2 = {8 from P7};
C3 = {33 from P5}; C4 = {11 from P7}, for an overall number of eighteen time series
assigned to the wrong cluster. It is worth noting here that the £rst cluster merges the time
series generated by two distinct MCs. However, the fact that EMC knows there are 4 clusters
to generate, forces the algorithm to split the time series generated by the MC with transition
probability matrix P7 into two groups. These large number of errors results in a loss of
data information which is higher than that of BCD. Figure 9 plots the cluster-scores, com-
puted with the cluster transition probability matrices found by EMC, versus the data-scores.
Compared to the plots in Figure 6, the cluster-scores based on EMC exhibit a larger vari-
ability than those based on BCD, smaller coef£cients of determination, and result in a larger
average loss of data information. The regression line £tted with the group of time series
of length 50 in Figure 9, for example, has intercept term 5.10 and slope 1.20. Thus, the
expected cluster-score is 5.10+ 1.20so. In the same conditions, the expected cluster-score
computed with the cluster transition probability matrices found by BCD is −1.88+ 1.36so

(from Figure 6), and the difference is 5.10 + 1.20so + 1.88 − 1.36so = 6.98 − 0.16so.
This line is positive in the range 0 < so < 43.6, which is the range of observed data-
scores, thus showing that the loss of data information induced by EMC is uniformly larger
than that induced by BCD. Similar is the result for the group of time series of length 250.
The two regression lines for the cluster-scores based on EMC and the cluster-scores based
on BCD are 45.44 + 0.91so and 2.07 + 1.05so, with a difference in expected scores of
45.44+0.91so− 2.07+1.05so = 43.37− 0.14so. Again, this line is positive in the range
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Figure 10. Scatter plot of the data (x-axis) and cluster (y-axis) scores in the group of experiments, in which the
time series were generated by eight different MCs, and the MCs are equally represented. Values within brackets
are respectively the intercept term, the slope and the coef£cient of determination of the regression line £tted to
each group of scores.

0 < so < 309.79 which contains the range of observed data-scores, and hence shows that
the loss of data information induced by EMC is uniformly larger than that induced by BCD.

When eight MCs are used to generate the time series, and each MC is equally represented
in the batch of eighty, BCD £nds the correct number of eight clusters so that, again, EMC

£nds the best partition knowing the correct number of generating processes. The fact that
each MC generates only ten time series in this group has a negative effect on the accuracy of
EMC as shown in Table 6. The number of time series assigned to the wrong cluster ranges
between 56 and 77, and in none of the four groups EMC £nds the correct partition. Recall
that, in this group, we generated eighty time series from the eight MCs with transition
probability matrices P1—P8, and each of the eight MCs generated ten time series. The
clusters found by EMC, when the length of time series is 25 steps, group the originated
time series into the eight clusters described in Table 7. Except for cluster C7, which only
contains time series generated by P7, all the other clusters mix time series generated by
two or three different MCs. Results are similar when the time series are long 125 steps,
and better when the time series are long 50 steps or 250 steps. Figure 10 plots the cluster-
scores, computed with the cluster transition probability matrices found by EMC, versus
the data-scores. The scatter plots show that the cluster-scores produced by EMC compare
unfavorably to BCD, as their range is larger than the range of cluster-scores induced by
BCD. A comparison of the regression lines also shows a systematically larger loss of data
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Figure 11. Scatter plot of the data (x-axis) and cluster (y-axis) scores in the group of experiments, in which the
time series were unevenly generated by eight different MCs, and EMC was given the number of clusters found by
BCD. Values within brackets are respectively the intercept term, the slope and the coef£cient of determination of
the regression line £tted to each group of scores.

information when EMC is used. For example, with eighty time series of length 250, the
expected cluster-score of BCD is −1.13 + 1.06so and the expected cluster-score of EMC

is 35.89 + 0.97so. Their difference is 35.89 + 0.97so + 1.13 + 1.06so = 37.02 − 0.09
which is always positive for 0 < so < 411.33. As this range includes the observed range
of data-score, the loss of data information of EMC is always larger than the loss of BCD.

In the last experimental set, with eighty time series generated unevenly from the eight
MCs with transition probability matrices P1-P8, BCD fails to identify the correct number
of clusters when the time series are not long enough. Table 3 shows that BCD £nds four
clusters when the time series are long 25 steps, seven clusters when the time series are
long 50 or 125 steps, and identi£es the correct number of eight clusters only when the time
series are long 250 steps. In this case, we used EMC in two ways. For a direct comparison
with the accuracy of BCD, we run the algorithm with the number of clusters found by BCD.
The numbers of correct time series assigned to clusters found by EMC in this condition
are reported in Table 6, and it is directly comparable to the number of correct time series
assigned to clusters by BCD. With time series long 25 steps, EMC clusters correctly 64 time
series, while BCD clusters correctly 63 time series. With longer time series, the accuracy of
BCD is better than that of EMC and increases with the length of the time series, while EMC

seems to be incapable of using the larger information provided by the data to gain accuracy.
Furthermore, while BCD maintains the correct grouping of time series, except for one or
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two — time series number 46 and 67 in Table 5— which are assigned to the wrong cluster,
EMC mixes a larger number of time series generated by different MCs. For example, when
seeking seven clusters of time series in the batch of time series of length 50, EMC merges
in one cluster the 23 time series generated by P2 with the four time series generated by P4,
and assigns to different clusters the time series generated by P1, P7 and P8. Similar is the
result with time series of length 125, but the clustering becomes worse with time series of
length 250, in which EMC merges into the same cluster time series generated from P2 and
P7, and merges into the same cluster time series generated from P1 and P6. Note that in
this case, BCD identi£es the correct number of clusters and therefore EMC seeks the correct
number of clusters. The inaccuracy of EMC results again in a larger loss of information and
the cluster-scores of EMC — Figure 11 — are worse than the cluster-scores of BCD.

We also run the algorithm by assuming the correct number of eight clusters with the
three batches of time series of length 25, 50 and 125. The numbers of correct time series
assigned to clusters found by EMC in this condition are 60, when the series are long 25
steps, 57 with series long 50 steps, and 63 with series long 125 steps. Compared to the
case in which EMC is given the number of clusters found by BCD, accuracy is sensibly less.
This surprising result is explained by the fact that, despite EMC knows the correct number
of generating MCs, it fails to recover them correctly from the data, and assigns time series
generated by the same MC to different clusters. For example, with time series of length 50,
three of the eight clusters found by EMC contain only time series generated by the same
MC. These areC1 with £ve series generated by P1; C2 with six time series generated by P2

and C7, with £ve time series generated by P7. All the remaining clusters contain a mixture
of time series generated by two or three different MCs. When the time series are long 125
steps, the number of “pure” clusters rises up to four, and the remaining four clusters mix
time series generated by at most two different MCs.

However, all time series generated by P2 and P7 are now merged into the same cluster,
so that the number of time series mistakenly classi£ed is larger. One possible explanation
of this loss of accuracy may be that, indeed, data do not provide enough information to
identify the correct number of clusters thus explaining the fact that BCD £nds a number of
clusters which is inferior to the number of generating MCs. With exception of the £rst group
of 25 steps time series, cluster-scores are more lossy than in the other case. The regression
lines are 6.37 + 1.14so when the series are 25 steps long, 14.23 + 1.03so,and 30.57 +
0.99so when the length of the series are 50 and 125 respectively. Direct comparisons of the
regression lines shows that, with time series of 25 steps, the reduction in loss of information
when EMC assumes the correct number of clusters is 6.37 + 1.14so − 8.24 − 1.18so− =
−1.87 − 0.04so. So, compared to the results found by EMC when the number of clusters
sought is four, the loss of information is contained, and it is also smaller than that induced
by BCD. Compared to BCD, the difference in cluster-scores is 6.37 + 1.14so − 4.87 −
1.33so = 1.5− 0.19so, which is negative for so > 7.89, thus showing the BCD is expected
to produce more lossy clusters than EMC. However, with time series long 50 or 125 steps,
the loss of information incurred in using EMC with the correct number of clusters is larger
than that induced by BCD.

A further difference highlighted by these experiments is that EMC does not enjoy the
monotonic discrimination ability of BCD. When the sequences are too short to discrimi-
nate, they are mixed across the clustering partition with no apparent criterion. Hence, a
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CLUSTER 1 CLUSTER 2

Figure 12. MC representing the £rst and the second cluster of sequences of sensory inputs.

loss in discrimination ability will not result in a loss of granularity but rather in a set of
clusters unrelated to the generating ones.

6. Clusters of Sensory Inputs

The original motivation behind BCD was the development of a method to enable mobile
robots to learn classes of activities without supervision. Our robot — a Pioneer 1 — is a
small platform with two drive wheels and a trailing caster, and a two degree of freedom
paddle gripper. Our con£guration of the Pioneer 1 has roughly forty sensors including
sonars, gripper and velocity sensors, and a primitive vision system, although the values
returned by some sensors are derived from others. During its interaction with the world,
the robot records sensors’ values every 1/10 of a second, and in an extended period of
wandering around the laboratory, it will engage in several different activities — moving
toward an object, losing sight of an object, bumping into something — and these activities
will have different sensory signatures to be clustered. The goal is to enable the robot to
recognize similar activities by the similarity of the dynamics of the sensors’ inputs. It is
important, to the goals of our project, that the robot’s learning should be unsupervised so
that we do not tell the robot when it has switched from one activity to another. Instead,
we de£ne a simple event marker — a simultaneous change of at least three sensors — to
segment a time series of sensor values into episodes.

In this section we describe the results obtained with BCD on a data set of 42 episodes for
each of the eight sensors comprising left and right wheel velocity, front and rear grippers,
bumper, and x, y coordinates and area of an object in the robot visual £eld. The sensors
recording the left and right wheel velocity, as well as the sensors of the vision system take
continuous values and were discretized into 5 equal bins of equal length, labeled 1, . . . , 5.
The data were collected during an experimental trial that lasted about 30 minutes. After
discretizing the time series of continuous values, the set of eight time series was segmented
into 42 episodes by the event marker. The length of an episode ranges between 6 and
2917 time steps, with an average length of 316 time steps. Our prior hyper-parameters
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Figure 13. Cluster-scores (y-axis) and data-scores (x-axis) cumulated in the 42 episodes of the robot sensory
experience. Circles represents the scores for the episodes assigned to cluster C1, and crosses are scores for the
episodes assigned to cluster C2.

are computed by uniformly distributing the global prior precision. We used α′ = 42 and
α = 40.

Figure 12 depicts the MCs representing the two clusters C1 and C2 learned for the sensor
vis-a-x, the horizontal location of an object in the visual £eld. The £rst cluster captures
the sensor dynamics when the robot is not close to an object. The transitions are limited to
states 3, 4 and 5 that correspond to the range -28, 140. The initial state 1 can be reached
from state 5, which represents the fact that the object appears and disappears from the
visual £eld. However, since the estimate of the probability of transitions 5→ 1 and 1→ 5
are derived from only two cases observed in all the episodes merged into cluster C1, the
con£dence in these estimate is very low. The second cluster, on the other hand, represents
the sensor dynamics for an object not far from the robot, since transitions are essentially
limited among the £rst 4 states. The prior speci£cation does not rule out the possibility
that either state 1 or 5 be reached from state 4. However, in the 12 episodes merged to
create cluster C2, the transitions 4 → 5 and 4 → 1 were never observed, while state 4
was reached only once, from state 3. Figure 13 plots cluster-scores against data-scores in
the 42 episodes. Circles represents the scores for the episodes assigned to cluster C1, and
crosses are scores for the episodes assigned to cluster C2. Both cluster and data-scores
are small, thus showing that the abstraction of data into MCs induces a relative small loss
of data information, which is then contained when the 42 episodes are merged into two
clusters. This second claim is con£rmed by the regression line of the cluster-scores versus
data-scores which is sc = 1.068+1.085so, with a coef£cient of determination R2 = 82%.
The individual analysis of the two clusters shows that there is no signi£cant difference
between the cluster and data-scores in the two clusters.

Similarly, the 42 episodes for the sensor vis-a-y, the vertical location of an object
in the visual £eld, were merged into two clusters both inducing a contained loss of data
information. The 42 episodes of the sensor vis-a-area recording the area — in number
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of pixels — of an object in the visual £eld were merged into six clusters. For example, the
MC learned from the episodes assigned to the £rst cluster represents a dynamic process
concentrated on the £rst three states of the sensor. The £rst state represents the presence,
in the robot’s visual £eld, of an object of size varying between 0 and 1600 pixels, state 2
represents the presence of an object of size between 1600 and 6400 pixels, while state 3
represents the presence of an object of size between 6400 and 14,400 pixels. The maximum
size is given by 40,000 pixels so that values between 0 and 14,400 represent an object that,
at most, takes 1/4 of the visual £eld. As the dynamics between these three states is that
either the sensor value is constant or decreases because it visits a state preceding itself, the
overall dynamics is that of an object of decreasing size in the visual £eld that eventually
disappears. Cluster 2, on the other hand, represents the dynamics of an object of increasing
size in the robot visual £eld, but without reaching the maximum. Episodes in which an
object of increasing size is in the robot visual £eld and terminate with the encounter of the
robot with the object are assigned by BCD to a different cluster. Again, merging MCs into
clusters induce a small loss of information.

We found three clusters of MCs for both the sensors l.vel and r.vel — left and right
wheel velocity. The three clusters represent dynamics concentrated on null or negative
values of the velocity, null or positive values of the velocity and a mixture of those. We
found two clusters for the sensor grip.f — front gripper — the £rst one representing
a process in which the gripper front beam stays off with high probability and with small
probability goes on and stays on, while, in the second one, there is a larger probability of
changing from the off to the on state. Hence, the second cluster represents more frequent
encounters with an object. The episodes for the sensor grip.r — rear gripper — were
partitioned in three clusters, one representing rapid changes from the on to the off state,
followed by a large probability of staying off; one representing rare changes from the off to
the on state, or the other way round, followed by a large probability of staying in that state;
the last one representing the sensor in the on state. The episodes for the sensor grip.b
— grip bumper — were partitioned in two clusters, one representing rare changes from
the off to the on state, or the other way round, followed by a large probability of staying
in that state; the last one representing the sensor in the on state. So, for example, the £rst
cluster represents the sensor dynamics when the robot is not near an object but, when it
does, it pushes it for some time. The second cluster is the sensor dynamics when the robot
is pushing an object. Again, in all these cases, merging MCs into clusters induces a small
loss of information, although short episodes exhibit large scores.

The clusters found by BCD assign a label to each episode so that, after this initial cluster
analysis, the robot can replace each episode with a label representing a combination of
the eight sensors’ dynamics. Now, episodes labeled with the same combination of sensor
clusters represent activities characterized by the same dynamic signature. For example,
one such activity is characterized by the combination cluster 1 for r.vel, cluster 3 for
l.vel, cluster 1 for grip.f, grip.r and grip.b, cluster 2 for vis.a and vis.x
and cluster 1 for vis.y. This activity is repeated in 7 of the 42 episodes and represents the
robot that rotates and moves far from an object (the velocity of the wheels are discordant,
and the size of the object in the visual £eld decreases and becomes null). Similarly, our
robot has learned activities that correspond to passing an object or moving toward an object.
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In fact, such activities are learned from the raw sensors’ values, assuming that the sensors
are independent. We have also used BCD for clustering episodes described by propositions
produced by the robot perceptual system (Ramoni et al., 2000a), and since these time
series are not independent, we are developing a multivariate version of BCD for clustering
multivariate set of time series. Preliminary results are in (Ramoni, Sebastiani, and Cohen,
2000b).

7. Conclusions

This paper presented an unsupervised Bayesian method to cluster time series and, in gen-
eral, sequential data. The method recasts the task of clustering time series as a Bayesian
model selection problem and searches for the most probable set of clusters given the ob-
served time series. The method is based on an exact - closed-form - scoring function and
a heuristic search algorithm, based on the mutual distance between time series, to explore
in polynomial time feasible an exponential space of possible partitions. We are currently
using this method for the temporal pro£ling of genomic data and we have found it able
to handle thousands of time series on relatively inexpensive equipment. We have reported
the results of a controlled experiment showing that high reliability of BCD and the graceful
degradation of its performance when the available data do not convey enough information
to discriminate among different clusters. This graceful degradation is mainly due to the
monotonic discrimination ability of the algorithm which, in absence of suf£cient infor-
mation, tends to group together entire clusters rather than randomly mixing time series.
We have compared this algorithm to the approximate, mixture-model method EMC and we
have found that EMC is systematically outperformed by BCD and that it does not enjoy a
monotonic discrimination ability.

We have also shown the application of BCD to the task of clustering sensory inputs of a
mobile robot in order to generate compact representation of the robot’s experiences. Many
natural processes and engineered artifacts similarly generate masses of time series data.
BCD reduces data to a few prototypical time series. Explaining half a dozen clusters is
much easier than explaining the original time series. So whether one’s task is to cluster
robot experiences into an ontology of activities, or to reduce data preparatory to explana-
tion, BCD has a role.

Current limitations of BCD are that it is univariate, and can cluster discrete time series.
A multivariate generalization of BCD is outlined in (Ramoni et al., 2000b), while we are
currently developing a generalization of the algorithm to cluster time series of continuous
values. The intuition behind this development is to model time series of continuous values
as autoregressive models and preliminary experiments suggest that the algorithm can be as
accurate as BCD.
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