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ABSTRACT This paper introduces a Bayesian method for unsupervised
classification of dynamic processes and applies it to the abstraction of sen-
sory inputs of a mobile robot. The method starts by transforming the sen-
sory inputs into Markov chains and then applies an agglomerative clus-
tering procedure to discover the most probable set of clusters capturing
the robot’s experiences. To increase efficiency, the method uses an entropy-
based heuristic search strategy.

REFERENCE: Fifth Workshop on Case Studies in Bayesian Statistics, Septem-
ber 24-25, 1999, Carnegie Mellon University, Pittsburgh, PA. Available at
http://kmi.open.ac.uk/projects/bkd/papers/cmu99a.pdf.

1 Introduction

Suppose one has a batch of univariate sequences generated by one or more
unknown processes, and the processes have characteristic dynamics. The
task of an unsupervised classifier consists of clustering these sequences into
mutually exclusive classes, so that the elements of each class have similar
dynamics. Suppose a batch contains a sequence of stride length for ev-
ery episode in which a person moves on foot from one place to another.
An unsupervised classifier might find classes corresponding to “ambling,”
“striding,” “running,” and “pushing a shopping cart,” because the dynam-
ics of stride length are different in these processes. Similarly, pathologies
of the heart can be characterized by the patterns of sistolic and diastolic
phases; dance steps, hand gestures and facial expressions can be character-
ized by the dynamics of movement of body parts [Joh73]; economic states
such as recession can be characterized by the dynamics of economic indi-
cators; syntactic categories can be categorized by the dynamics of word
transitions [Cha93]; and so on.

The goal of this work is to enable mobile robots to learn the dynam-
ics of their activities. If we regard the sequences of sensory inputs of the
mobile robot as time series, we can represent these time series as Markov
chain (Mc) and then clusters these MCs by their dynamics to learn proto-
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type experiences. For example, our robot has learned prototype experiences
that correspond to passing an object and moving toward an object. It is
important to the goals of our project that the robot’s learning should be
unsupervised, which means we do not tell our algorithm which Markov
chains, class and prototypes to learn.

A MC represents a dynamic process as a transition probability matrix. For
each experience the robot has, we construct one such matrix for each sensor.
Each row in the matrix represents a state of the sensor, and the columns
represent the probabilities of transition from that state to each other state
of the sensor on the next time step. The result is a set of conditional prob-
ability distributions, one for each state of the sensor, that can be learned
from the past experiences of the agent. After k experiences, the robot has
learned k transition matrices for each sensor. Next, a Bayesian clustering
algorithm groups experiences that produce similar transition probability
matrices. Each group is then characterized by its average or prototypical
dynamics. The learned model of dynamics enables the agent to classify its
current experience by computing the probability of an experience being in
a particular class of experiences given sensor readings, and to predict future
experiences, conditional on current input and class membership.

A Bayesian approach is particularly well suited to clustering by dynam-
ics because it frames the learning process as continuous updating rather
than a batch analysis of data. Furthermore, a Bayesian approach provides
a principled way to integrate prior and current evidence. As our robot
gains more experience (i.e., as its “prior” knowledge increases) it requires
proportionately more evidence to modify or discount its prior conclusions.

The rest of the paper is organized as follows. After reviewing background
material on MCs, we describe how to induce the transition probability ma-
trix of a MC from sensor readings, and then describe a Bayesian clustering
algorithm to sequentially merge similar MCs induced by episodes.

2 The Robot Platform

The Pioneer 1 robot is a small platform with two drive wheels and a trailing
caster, and a two degree of freedom paddle gripper. For sensors the Pio-
neer 1 has shaft encoders, stall sensors, five forward pointing and two side
pointing sonars, bump sensors, a pair of IR sensors at the front and back of
its gripper, and a simple vision system that reports the location and size of
color-coded objects. Our configuration of the Pioneer 1 has roughly forty
sensors, though the values returned by some are derived from others.
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3 Clustering Markov Chains

During its interaction with the world, the robot records the values of about
40 sensors every 1/10 of a second. In an extended period of wandering
around the laboratory, the robot will engage in several different activities
— moving toward an object, losing sight of an object, bumping into some-
thing — and these activities will have different sensory signatures. Because
we insist that the robot’s learning is unsupervised, we do not tell the robot
which activities it is engaging in, or even that it has switched from one ac-
tivity to another. Instead we define a simple event marker — simultaneous
change in three sensors — and we define an episode as the period between
event markers. For each episode in each sensor, we build a transition matrix
and then we cluster transition matrices with similar dynamics.

3.1 Markov Chains

The dynamics of a sequence of sensory values can be modeled by a Markov
Chain (McC). The sensor X is regarded as a random variable taking values
1,2, ...,s. The process generating the sequence £ = (o, Z1, %2, .-y Li1, Liy --)
is a MC if p(X = z¢|(z0, 21, T2, ..., Zt—1)) = P(X = x|z:—1) for any z; in
z. Let X; be the variable representing the sensor values at time ¢, then X,
is conditionally independent of Xy, X1, ..., X;—2 given X;_ ;. The assump-
tion of conditional independence allows us to represent a MC by a vector
of probabilities po = (po1,Po2, -, Pos), denoting the distribution of Xq (the
initial state of the chain) and a matrix of transition probabilities:

X
Xt—l 1 2 T S
1 bPu P12 - Pis
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where p;; = p(X: = j|X¢—1 = ). By using the Chapman-Kolmogorov
Equations [Ros96], the expected value of X; is poP? which, for increasing
values of ¢, gives the average sequence.

3.2 Learning A Markov Chain

Suppose the robot has generated a sequence of values from the sensor X for
one episode. This sequences can be summarized into a s X s contingency
table that contains the frequencies of transitions n;; = n(Xi;—1 = 7 —
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X: = j). These counts are used to estimate the transition probabilities p;;
characterizing the dynamic process that generated the data.

An intuitive way to estimate p;; is to use the relative frequencies of
transitions n;; /n;. In this way, the probability of the transition X;_; =¢ —
X; = j, that we will denote as ¢ — j, is estimated as the ratio between the
number n;; of times the transition has been observed and all observations
on the variable in state i, that is, n; = > ; Mig- This estimate is a function
of the data only and there may be other sources of information about the
process. Furthermore, this method estimates the transition probability p;;
as 0 whenever n;; = 0. Thus, when the chain is observed over a relatively
short time interval, or a transition probability is small, it is very easy to
conclude that some transition is impossible. A Bayesian estimation of p;;
overcomes this problem as well as using any prior knowledge about the
process. This is achieved by augmenting the observed frequencies n;; by
hyper-parameters a;; that encode the prior knowledge about the process in
terms of imaginary counts of a sample of size a. The Bayesian estimate of

pij is
_ Quj i

5. — 2~ "W 1.1
Pij o; +n; ( )

where a; = )_; ;. By writing Equation 1.1 as
Qjj (07 ni n;

Pij = —
R e P

(1.2)

we see that p;; is an average of the estimate n;;/n; and of the quantity
o5 /oy with weights that depend on o; and the sample size n;. Rewriting
of Equation 1.1 as 1.2 shows that a;;/a; is the estimate of p;; when the data
set does not contain transitions from the state ¢ — and hence n;; = 0 for all
j — and it is therefore called the prior estimate of p;; while p;; is called the
posterior estimate. It can be shown that the variance of the prior estimate
oy /oy is given by (as;/a:)(1 — asj/a;)/(a; + 1) and, for fixed a;;/a;, the
variance is a decreasing function of ;. Since small variance implies a large
precision about the estimate, a; will be called the local precision about the
conditional distribution X;|X; 1 = ¢ and it indicates the level of confidence
about the prior specification. The quantity a = ), a; is the global precision,
as it accounts for the level of precision of all the s conditional distributions.

Equation 1.2 shows the trade-off between the intuitive estimate n;;/n;
and prior estimate o;;/a;: as the sample size n; becomes large, relative to
o, the estimate p;; will approach n;;/n; and the effect of the prior input
is overcome by data. However, when ¢; is large, relative to n;, the effect
of the prior input is dominating. Note that the variance of the posterior
estimate p;; is P (1 — Pi;)/ (o +n; + 1) and, for fixed H;;, it is a decreasing
function of a; + n;, the local precision augmented by the sample size n;.
Hence, the quantity a; + n; can be taken as a measure of the confidence
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in the estimates: the larger the sample size, the stronger the confidence in
the estimate.

Example 1 The table below reports the frequencies of transition observed
in an episode of 296 readings for the sensor vis-a-x, which represents
the horizontal location of an object in the visual field. The sensor returns
continuous values in the range -140, 140. We discretized these values into
5 equally spaced bins labeled 1 to 5.

1 2 3 4 5
ilo0 0 0 o0 0
210 0 0 o0 0
310 0 228 2 0
ilo 0o 1 50 2
510 0 0o 1 11

With a prior global precision a = 25 and a uniform prior probability dis-
tribution, the learned transition matriz is:

1 2 g ] 5

0.20 0.20 0.20 0.20 0.20
0.20 0.20 0.20 0.20 0.20
0.00 0.00 0.99 0.01 0.00
0.00 0.00 0.02 0.93 0.05
0.02 0.02 0.02 0.09 0.86

SR Lo D M~

This matriz represents (to those of us familiar with the robot and its ac-
tivities) an episode in which an object was in the visual field but not near
the robot (the values 3, 4 and 5 represent the range -28,140.) The high con-
fidence on the distributions of transitions from state 8 and 4 (respectively
230 and 53 derived from the sample sizes ns and n4) essentially rules out
the possibility that either states 1 or 2 can be reached from 8 and 4. How-
ever, the small number of transitions observed from state 5 (ns = 12) does
not rule out the possibility of transitions from 5 to either 1, 2 or 3, and the
lack of information about transitions from states 1 and 2 results in these
transitions getting uniform probabilities with a large uncertainty.

A summary of the induced MC is in Figure 1 in which dotted paths rep-
resent rare transitions and the dashed paths from states 1 and 2 represent
unknouwn transitions.

3.8  Clustering

The second step of the learning process is an unsupervised agglomerative
clustering of MCs on the basis of their dynamics. The available data is a set
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FIGURE 1. The Markov Chain used in the example.

S = {5;} of m episodes (not necessarily of the same length) for each sensor
and each episode is supposed to be generated by a MC. The task of the
clustering algorithm is two-fold: find the set of classes that gives the best
partition according to some measure, and assign each MC to one class. A
partition is an assignment of MCs to classes such that each episode belongs
to one and only one class.

The novelty of our approach is to regard the task of clustering MCs as
a Bayesian model selection problem. In this framework, the model we are
looking for is the most probable way of partition MCs according to their
similarity given the data. We will use the posterior probability of a partition
given the data as scoring metric to assess its goodness of fit and we will
select the most probable model, that is, the model with maximum posterior
probability given the data.

There is then the problem of mapping each episode to one class. We
regard a partition as a hidden discrete variable C, where each state of C
represents a class of MCs. The number ¢ of states of C is unknown, but
the number m of MCs to be clustered imposes an upper bound, as ¢ will
never exceed m. Each partition identifies a model M,.. Let p(M,.) be the
prior probability of M,.. By Bayes’” Theorem, the posterior probability of
M., given the sample S is

_ p(Mc)p(SlMc)
p(S)

The quantity p(S) is the marginal probability of the data. Since we are
comparing all the models over the same data, p(S) is constant and, for the
purpose of maximizing p(M,|S), it is sufficient to consider p(M.)p(S|M.).
Furthermore, if all models are a priori equally likely, the comparison can
be based on the marginal likelihood p(S|M.), which is a measure of how

p(Mcls)
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likely the data are if the model M, is true.

The quantity p(S|M,.) can be computed from the marginal distribu-
tion (pg) of C and the conditional distribution (pgi;) of X¢|Xi—1 = i,Ch
— where C}, represents the class membership of the transition matrix of
X¢| X¢—1 — using a well-known Bayesian method [CH92]. Let ng;; be the
observed frequencies of transitions ¢ — j in class Ck, and let ng; = > j Mokij
be the number of transitions observed from state i in class Cj. We also
define my to be the number of episodes that are merged into class Cf.
The observed frequencies (ng;;) and (my) are the data required to learn
the probabilities (pri;) and (pg) respectively and, together with the prior
hyper-parameters ag;;, they are all is needed to compute p(S|M,) as

p(S|M.) = p(S|C)p(S|X¢, Xt—1,C)

where

a+m
p(8]C) = a+mH 7 J

k=1

and

(o) T(ogi; + nwiz)
p(S| X, Xi—
(51X, X1, C kl_Illl_[lFa]“ + ngi) 1;[ [(oki)

where I'(-) denotes the Gamma function. Once created, the transition prob-
ability matrix of a class Cp — obtained by merging my episodes — can be
estimated as

L O+ Ny
Phij Qi + Nhi

In principle, we just need a search procedure over the set of possible par-
titions and the posterior probability of each partition as a scoring metric.
However, the number of possible partitions grows exponentially with the
number of MCs to be considered and, therefore, a heuristic method is re-
quired to make it feasible. The solution we propose is to use a measure of
similarity between estimated transition probability matrices to guide the
search process. The algorithm performs a bottom-up search by recursively
merging the closest MCs (representing either a class or a single episode) and
evaluating whether the resulting model is more probable than the model
where these MCs are separate. When this is the case, the procedure replaces
the two MCs with the cluster resulting from their merging and tries to clus-
ter two other MCs. Otherwise, the algorithm tries to merge the second best,
the third best, and so on, until the set of pairs is empty and, in this case,
returns the most probable partition found so far. The rationale behind this
ordering is that merging closer McCs first should result in better models
and increase the posterior probability sooner. Note that the agglomerative
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nature of the clustering procedure spares us the further effort of assigning
each single episode to a class because this agssignment comes as a side effect
of partitioning process.

For each sensor X, the algorithm applies the following procedure:

Input: A set S of sensor readings episodes.

Output: A set of clusters and cluster agsignments.

Initialization: Initialize as follows:

MATRIX ESTIMATION: For each episode S; € S, estimate the transi-
tion probability matrix P; as described above and define the set
T. = {F;} of all transition probability matrices.

LikeLIHOOD: Compute the marginal likelihood p(S|M.), where M,
represents the model in which each episode is generated by a
different Mc, and set B = p(S|M,.). Note that, in this initial
step, c =m = |S|

Di1sTANCE: Create the set D of the pairwise distances between each
transition probability matrix in 7, according to some measure.

SORT: Sort the set D in descending order.

Iteration: Iterate until B does not increase any longer, then return T7:

CLUSTERING: Create the cluster C} by summing the transition fre-
quencies corresponding to the two closest transition probability
matrices P; and P;. Estimate the resulting transition probabil-
ity matrix P;. Create the set 7!, by replacing P; and P; by Py
Create the set D’ by inserting each distance between B, and
each other P; in T, in the ordered set D and by removing the
distances involving either P; or P;.

LikeLIHOOD: Compute the marginal likelihood p(S|M.), where M,
represents the model in which the episodes S; and S; are sup-
posed to be generated by Fg.

Crosure: If p(S|M,) > B, set B = p(S|M.), replace T, by T., D
by D’ and iterate. Otherwise, remove the first element of D and
iterate on T.

The distance measure guiding the process can be any distance between
probability distributions. Let P; and P, be matrices of transition proba-
bilities of two MCs. Since they are both a collection of s probability distri-
butions, and rows with the same index are probability distributions condi-
tional on the same event, a measure of similarity can be an average of the
Kulback-Liebler distance between corresponding rows. Let p1;; and ps;; be
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FIGURE 2. MC representing the first class.

the probabilities of the transition ¢ — j in P; and P,. The Kulback-Liebler
distance of these two probability distributions is

s
D(pri,p2i) = »_ prijlog P,
= D2ij
The average distance between P; and P, is then D(Py, Py) = >~ D(p1i,p2i)/s.
Note that this distance becomes 0 when P, = P, and it is otherwise greater
than zero.

We conclude this section by suggesting a choice of the hyper-parameters
aij. We can use uniform prior distributions for all the transition prob-
ability matrices considered at the beginning of the search process. The
initial m X s X s hyper-parameters ay;; are set equal to a/(ms?) and,
when two MCs are similar and the corresponding observed frequencies of
transitions are merged, their hyper-parameters are summed up. Thus, the
hyper-parameters of a cluster corresponding to the merging of my, initial
Mcs will be mya/(ms?). In this way, the specification of the prior hyper-
parameters requires only the prior global precision «, which measures the
confidence in the prior model. An analogous procedure can be applied to
the hyper-parameters ay associated with the prior estimates of p,. We will
denote by o' the global prior precision associated to pg.

4 Prototypical Dynamics

In an experimental trial lasting about 30 minutes, the robot’s activities
were divided into 42 episodes by the following criterion: An episode ends
when three or more sensors’ values change simultaneously. The data include
11,118 values for each sensor. OQur prior hyper-parameters are computed by



10 Paola Sebastiani, Marco Ramoni, Paul Cohen

FIGURE 3. MC representing the second class.

uniformly distributing the global prior precision, where « = 5 and o/ = 42.

Figures 2 and 3 depict the MCs representing the two classes learned for
the sensor vis-a-x, the horizontal location of an object in the visual field.
The first class captures the sensor dynamics when the robot is not close to
an object. The transitions are limited to states 3, 4 and 5 that correspond
to the range -28, 140. The initial state 1 can be reached from state 5, which
represents the fact that the object appears and disappears from the visual
field. However, since the estimate of the probability of transitions 5 — 1 and
1 — 5 are derived from only two cases observed in all the episodes merged
into class 1, the confidence in these estimate is very low. The second class,
on the other hand, represents the sensor dynamics for an object not far
from the robot, since transitions are essentially limited among the first 4
states. The prior specification does not rule out the possibility that either
state 1 or 5 be reached from state 4. However, in the 12 episodes merged to
create class 2, the transitions 4 — 5 and 4 — 1 were never observed, while
state 4 was reached only once from state 3.

Our analysis can be extended to provide the robot with tools for recog-
nizing the class it is in, given sensor data. Suppose the robot sensor related
to vis-a-x records the new transition 1 — 2. It can infer class member-
ship by applying Bayes theorem. The first cluster is obtained by merging
30 episodes. Since the global precision adopted is o' = 42, we can estimate
that, conditional on the data, the probability of C; — i.e. that class mem-
bership is 1 and hence the object is not near the robot — is 0.7. Hence,
the probability that C = 2 — i.e. that class membership is 2 and hence
the object is not far from the robot — is 0.3. The probability of observing
the transition 1 — 2 when C =1 is 0.05, and becomes 0.013 when C = 2.
A simple application of Bayes Theorem returns p(C = 1]0.2 — 0.4) = 0.90
so that the robot is able to detect that, conditional on this new observed
transition, it is more likely that it is in class 1.
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Clustering by dynamics involves two levels of abstraction. First, the tran-
sitions in an episode are summarized in a transition matrix (MC); second,
episodes are grouped into classes, and the MC representing a class is an
averages of the constituent episode MCs. Both operations lose information.
The log-score of a transition helps us evaluate these losses [Han97]. Let
Sekij = — logPri; be the score of the transition i — j observed in an
episode e. This score penalizes an episode MC by assigning large values
to observed transitions when the MC assigns them small probabilities. We
sum this score over all transitions in an episode, and sum again over all
episodes, to get a score for the loss incurred by summarizing the time series
of episode transitions into episode McCs. Now, instead of computing losses
for episode e based on the episode MC, we can compute them based on the
MC for the class to which e belongs. We let s. ri; = —logpr; be the score
assigned to the transition ¢ — j observed in an episode that belongs to
class C. As before, we sum s, 3;; over the transitions within an episode,
and sum again over episodes.

Finally, if episode e belongs to class Cg, we can ask how much predictive
accuracy would be lost by using a randomly selected class to predict the
episode transitions. This amounts to a test of whether classes retain any
predictive power at all: if not, then a randomly selected class will incur
the same losses as class Cj for episode e. The score s, 3;; = — logpPri; is
given to transition ¢ — j observed in episode k but predicted by a ran-
dom classification. Once again, these scores are summed over transitions
in an episode and over episodes. We have now described three cumulative
scores, Se, S, and s,, which, for the dataset described earlier, have values
se = 120.5, s, = 212.2 and s, = 449.5. The loss is least for episode MCs,
intermediate for the MCs of our generated classifications and highest for
randomly-select MCs. Apparently, the MC for episode e does a better job
of predicting transitions in e than does the MC for class Cp to which e
belongs, and both are better than using a randomly selected MC to make
predictions.

Sign tests can tell us whether s, = 120.5, s, = 212.2 and s, = 449.5 are
significantly different. Let ss i = Se,kij — Sc,kij De the difference in scores
assigned to episode and cluster MCs for the transition ¢ — j in episode k.
Under the null hypothesis that the episode and cluster MCs make equally
lossy predictions, half these differences should have a positive sign, half
negative. In fact, 1567 differences are positive, 9950 are negative. We can
compare predictions based on the generated classification with predictions
based on randomly-selected MCs in the same way; 2799 differences are pos-
itive, 4445 are negative, and 3993 are zero. The sampling distribution for
the number of positive differences is binomial and is well approximated
by the normal distribution for this sample size. We find that episode MCs
are significantly less lossy than the MCs representing the classes, which are
themselves significantly less lossy than randomly-selected McCs.
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5 Conclusions

This paper describes a new approach to discovering the dynamics of proto-
typical sensory experiences as a Bayesian unsupervised classification prob-
lem. The method represents the dynamic processes resulting from the in-
teraction between the robot and its environment as MCs, and then groups
these MCs into prototypical experiences. As described, the method uses
first order MCs and univariate distributions but it can be easily extended
to higher order MCs and multivariate distributions.

Acknowledgments

This research is supported by DARPA/AFOSR under contract(s) No(s)
F49620-97-1-0485. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copy-
right notation hereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily repre-

senting the official policies or endorsements either expressed or implied, of
DARPA/AFOSR or the U.S. Government.

6 REFERENCES

[CH92] G.F. Cooper and E. Herskovitz. A Bayesian method for the in-
duction of probabilistic networks from data. Machine Learning,
9:309-347, 1992.

[Cha93] Eugene Charniak. Statistical Language Learning. MIT Press,
1993.

[Han97] D.J. Hand. Construction and Assessment of Classification Rules.
Wiley, New York, 1997.

[Joh73] Gunnar Johansson. Visual perception of biological motion and a
model for its analysis. Perception and Psychophysics, 14(2):201-
211, 1973.

[Ros96] S.M. Ross. Stochastic Processes. Wiley, New York, 1996.



