
Detecting Complex Dependencies
in Categorical Data

Tim Oates, Dawn Gregory, and Paul R. Cohen
Computer Science Department, LGRC

University of Massachusetts

Box 34610

Amherst, MA 01003-4610

foates,gregory,coheng@cs.umass.edu

Abstract

Locating and evaluating relationships among values in multiple streams
of data is a di�cult and important task. Consider the data
owing from

monitors in an intensive care unit. Readings from various subsets of the

monitors are indicative and predictive of certain aspects of the patient's

state. We present an algorithm that facilitates discovery and assessment

of the strength of such predictive relationships called Multi-stream Depen-

dency Detection (msdd).

We use heuristic search to guide our exploration of the space of poten-

tially interesting dependencies to uncover those that are signi�cant. We

begin by reviewing the dependency detection technique described in [3],

and extend it to the multiple stream case, describing in detail our heuris-

tic search over the space of possible dependencies. Quantitative evidence
for the utility of our approach is provided through a series of experiments

with arti�cially-generated data. In addition, we present results from the

application of our algorithm to two real problem domains: feature-based
classi�cation and prediction of pathologies in a simulated shipping net-

work.

1. Dependency Detection

A dependency is an unexpectedly frequent or infrequent co-occurrence of

events over time. Our goal is to �nd dependencies between tokens contained

in multiple streams. A stream is sequence of values produced over time, and a

token is one of the �nite set of values that a stream can produce. Dependencies

across multiple streams may take many forms: perhaps token a in stream 1

predicts token b in stream 2, or perhaps token a in stream 1 and token c in

stream 2 predict token b in stream 2. In general, if stream j contains tj distinct

tokens, there are [
Qn

j=1 tj + 1]2 possible dependencies between two items.

The dependency detection technique in [3] uses contingency tables to assess

the signi�cance of dependencies in a single stream of data. Let (tp; ts; �) denote

a dependency. Each dependency rule states that when the precursor token, tp,

occurs at time step i in the stream, the successor token, ts, will occur at time

step i + � in the stream with some probability. When this probability is high,

the dependency is strong.

Consider the stream acbabaccbaabacbbacba. Of all 19 pairs of tokens

at lag 1 (e.g. ac, cb, ba, : : :) 7 pairs have b as the precursor; 6 of those have

a as the successor, and one has something other than a (denoted a), as the

successor. The following contingency table represents this information:

Table(b,a,1) =

a a total

b 6 1 7

b 1 11 12

total 7 12 19

It appears that a depends strongly on b because it almost always follows b

and almost never follows anything else (b). We can determine the signi�cance

of each dependency by computing a G statistic for its contingency table:

G

0
@ n1 n2 r1

n3 n4 r2
c1 c2 t

1
A = 2

�
n1 log

n1t

r1c1
+ n2 log

n2t

r1c2
+ n3 log

n3t

r2c1
+ n4 log

n4t

r2c2

�

For example, the contingency table shown above has a G value of 12.38, which

is signi�cant at the .001 level, so we reject the null hypothesis that a and b are

independent and conclude that (b,a,1) is a real dependency.

We extend this technique to the multiple stream case by introducing the

concept of amulti-token. A multi-token represents the value of any or all streams

at any given time i. For a series with n streams, all multi-tokens will have the

form < x1; : : : ; xn >, where xj indicates the value in stream j. In order to

support the \any or all" requirement, we add a special wildcard symbol, *, to

the set of values that may appear in each stream. Thus we can indicate a \don't

care" condition by placing an * in the appropriate stream.

For a multi-stream example, consider the following streams:

acBABAccbaabacBAcBAc

baCACAbacbababCAbCAb

The dependency (<b,c>,<a,a>,1) indicated in boldface is signi�cant at the

.01 level with a G value of 7.21. The corresponding contingency table is:

Table(b,a,1) =

<a,a> <a,a> total

<b,c> 4 1 5

<b,c> 2 12 14

total 6 13 19

We now have both syntax and semantics for multi-stream dependencies.

Syntactically, a dependency can be expressed as a triple containing two multi-

tokens (a precursor and a successor) and an integer (the lag). For each of the n

streams, the multi-tokens contain either a token that may appear in the stream

or a wildcard. Dependencies can also be expressed in the form x!� y where x

and y are multi-tokens. Semantically, this says the occurrence of x is indicative

of or predicts the occurrence of y, � time steps in the future.

2. Searching for Dependencies

The problem of �nding signi�cant two-item dependencies can be framed in

terms of search. A node in the search space consists of a precursor/successor

pair, a predictive rule. The goal is to �nd predictive rules that are \good" in

the sense that they apply often and are accurate. The root of the search space

is a pair of multi-tokens with the wildcard in all n positions. The children

of a node are generated by replacing (instantiating) a single wildcard in the

parent, in either the precursor or successor, with a token that may appear in

the appropriate stream. For example, the node < a,* >!< *,x > has both

< a,y >!< *,x > and < a,* >!< b,x > as children.

The rule corresponding to a node is always more speci�c than the rules of

its ancestors and less speci�c than any of its descendants. This fact can be

exploited in the search process by noting that as we move down any branch in

the search space, the value in the top left cell of the contingency table (n1) can

only remain the same or get smaller. This leads to a powerful pruning heuristic.

Since rules based on infrequently co-occurring pairs of multi-tokens (those with

small n1) are likely to be spurious, we can establish a minimum size for n1 and

prune the search space at any node for which n1 falls below that cuto�. In

practice, this heuristic dramatically reduces the size of the search space that

needs to be considered.

Our implementation of the search process makes use of best �rst searchwith a

heuristic evaluation function. That function strikes a tunable balance between

the expected number of hits and false positives for the predictive rules when

they are applied to previously unseen data from the same source. We de�ne

aggressiveness as a parameter, 0 � a � 1, that speci�es the value assigned to

hits relative to the cost associated with false positives. For a given node (rule)

and its contingency table, let n1 be the size of the top left cell, let n2 be the

size of the top right cell, and let tS be the number of non-wildcards in the

successor multi-token. The value assigned to each node in the search space is

S = tS(an1 � (1 � a)n2). High values of aggressiveness favor large n1 and thus

maximize hits without regard to false positives. Low aggressiveness favors small

n2 and thus minimizes false positives with a potential loss of hits. Since the

size of the search space is enormous, we typically impose a limit on the number

of nodes expanded. The output of the search is simply a list of the nodes, and

thus predictive rules, generated.

3. Empirical Evaluation

In this section we evaluate the performance of the algorithm on arti�cially-

generated data sets. The goal is to answer a variety of questions regarding

the behavior of the algorithm over its domain of applications. Arti�cial data

simpli�es this task since the \real" dependencies are known, providing means

for distinguishing structure in the data from noise.

Arti�cial data sets are generated by random sampling and applying a set of

probabilistic structure rules: R = f(P; PrP ; S; PrS)g. Each series is initialized

by generating n streams of length l, sampled randomly from the token set T .

Values for n, l, T , and R are determined by the experiment protocol. Default

values are n = 5, l = 100, T = fa,b,c,d,eg, and R = f(< a,a,*,*,* >; :1; <

c,d,d,*,* >; :8); (< * c,c,*,* >; :1; < *,a,a,b,* >; :8); (< *,*,d,d,* >; :1; <

,,d,c,b >; :8)g.

Structure is then introduced into this random series in two phases: �rst, seed

the precursors P into each time-slice with probability PrP ; then, whenever a

time-slice i matches the precursor of a rule r, insert the successor into time-slice

i+ � with probability PrS(r). For analysis, we can partition the resulting series

into noise and structure by determining which components are predicted by the

dependency rules (P (r); S(r); �) for each structure rule r 2 R.

In each experiment, we run one or more iterations of the search algorithm for

each experiment condition. Unless di�erent values are speci�ed by the exper-

iment protocol, we gather 5000 predictive rules with aggressiveness set to 0.5.

These rules are post-processed as described below, and used to make predictions

in ten new data sets generated from the same structure rules. The results are

evaluated with respect to two factors: predictive power (the total number of

predictions made) and accuracy (the percentage of the predictions that were

correct). These factors are considered separately for the structure and noise

portions of the data set.

3.1 Selecting the Best Dependency Rules

The msdd search algorithm generates a large set of dependencies, from which

we would like to select the most accurate and predictive rules. Since all our ex-

periments depend on the quality of this selection process, the �rst question we

wish to answer is, \what post-processing strategy will select the best predic-

tive rules?" Although more sophisticated techniques may be needed to resolve

redundancy, the simplest approach is to �lter and sort the rules, �rst discard-

ing rules that do not conform to certain criteria, and then prioritizing them

according to some precedence function.

In this experiment, four di�erent �lter criteria are combined with six di�erent

sort functions for a total of 24 experiment conditions. The �lter options discard

rules under the following conditions: (1) never; (2) G not signi�cant at the 0.05

level (G < 3:84); (3) n1 < 5; and (4) n1 < n2. The remaining rules are then

sorted according to one of these six functions: (1) a randomly selected number;

(2) the G statistic (computed over the training data); (3) the number of true

instances n1; (4) the approximate number of true predictions n1 � tS ; (5) the

percentage of instances that are true n1
n1+n2

; and (6) the approximate percentage

of predictions that are true, n1
n1+n2

� tS .

We ran �ve iterations of each condition on data sets with default structure.

The results indicate that the highest predictive power and accuracy are achieved

when discarding rules with less than 5 true instances (�lter condition 3), and

sorting them according to the G statistic (sort condition 2). This result is as

expected: the rules that remain are unlikely to be spurious dependencies, and

they are applied in order of their signi�cance.

3.2 Comparison of Search Heuristics

Now that we know how to e�ectively use the output of msdd, we can ad-

dress important issues regarding the performance of the algorithm. In this

experiment, we compare the performance of the S heuristic to other heuristics

and across di�erent levels of aggressiveness.

All the search heuristics used in this experiment are based on contingency

table analysis of the dependency rules. In addition to the S heuristic, we also

use:

1. A normalized S value S
(n1+n2)(n1+n3)

, where S is normalized by its expected

count.

2. The aggressiveness-weighted ratio of hits to false-positives, an1
(1�a)n2

.

3. The agressiveness-weighted fraction of the instances that are hits, an1
n1+n2

.

The results (which are not included here due to space constraints) con�rm

that S is the best of these heuristics: it produces good accuracy and predictive

power while allowing the user to tune the performance with the aggressiveness

parameter; the other heuristics are not a�ected by tuning. As expected, high

aggressiveness favors predictive power while low values favor accuracy.

3.3 E�ects of Inherent Structure

Perhaps the most important question to be resolved is: How strong must

a dependency be in order for it to be found by the algorithm? In practical

terms, this involves two issues: how frequently a dependency occurs and how

often the precursor multitoken appears but the successor multitoken does not.

In this experiment, we generated 243 data sets of default size, with 1, 3, or

5 structure rules spanning all combinations of: precursor size tP 2 f1; 3; 5g,

precursor probability PrP 2 f:1; :2; :3g, successor size tS 2 f1; 3; 5g, successor

probability PrS 2 f:1; :5; :9g.

The results of this experiment are very encouraging. They indicate that the

successor probability is the only limitation on the accuracy of the algorithm,

even though the number of rules, the size and probability of the precursor pat-

terns determine the amount of structure that is available to be predicted. Fur-

ther exploration is required to con�rm these results.

3.4 E�ects of Problem Size

The �nal issue to be resolved is the in
uence of the problem size on the

performance of the algorithm. In this experiment, we are primarily concerned

with the level of performance attained for a given number of predictive rules as

the problem size increases. Ideally, we can bound performance as a polynomial

function of the input size.

In this experiment, we generate 27 data sets spanning all combinations of:

number of streams n 2 f5; 10; 20g, stream length l 2 f100; 1000; 5000g, and

number of tokens j T j2 f5; 10; 20g. For each data set, we let msdd generate

1000, 5000, 10000, and 20000 predictive rules, with aggressiveness set to 0.5.

This experiment has several interesting results. First, performance actually

improves as the number of tokens increases; intuitively, this is due to the proba-

bility of each token decreasing as their numbers increase. Second, the accuracy

of the algorithm is basically constant as the stream length increases. This is due

to the probability distributions remaining constant as the length increases. The

time requirement of the algorithm does increase with stream length. Finally, it

appears that msdd need only generate n � 1000 search nodes to discover the

signi�cant dependencies; this is a very strong claim that needs to be supported

by further experimentation.

4. Applications

4.1 Feature Based Classi�cation

In the interest of generality, we applied msdd to a task for which it was not

explicitly designed: feature-based classi�cation. We present results for twelve

datasets from the UC Irvine collection. Eleven of those datasets were selected

from a list of thirteen presented in [8] as being a minimal representative set that

covers several important features that distinguish problem domains. The pre-

cursor multi-tokens were n-ary feature vectors and the successor \multi-tokens"

contained only the class label. These pairs of multi-tokens serve as input to

the msdd algorithm. The results are presented below in Table 1. The accuracy

shown in the table is the mean obtained over ten trials where the data was ran-

domly split on each trial into a training set containing 2/3 of the instances and

a test set containing the remaining 1/3. The exceptions are NetTalk (training

data was generated from a list of the 1000 most common English words, and

accuracy was tested on the full 20,008 word corpus), Monks-2 (a single trial

with 169 training instances and 432 test instances to facilitate comparison with

results contained in [6]), and Mushroom (500 training instances and 7624 test

instances). We compared msdd's performance with other published results for

each dataset [2, 6, 7]. On ten datasets for which we had multiple published

results, msdd performance exceeds half of the reported results on six datasets.

In no case did it perform badly, and it often performed extremely well. For a

more complete comparison, refer to [4].

Mean Search

Data Set Accuracy Nodes

Breast Cancer 95.15% 10,000

Diabetes 71.33% 10,000

Heart Disease 79.21% 20,000
Hepatitis 80.77% 10,000

LED-7 70.54% 5,000

LED-24 71.28% 5,000
Lymphography 78.16% 15,000

NetTalk 70.11% 50,000

Monks-2 79.17% 5,000

Mushroom 99.49% 30,000

Thyroid 95.46% 20,000

Waveform-40 73.02% 15,000

Table 1: Performance of MSDD as a feature-based classi-

�er on 11 datasets from the UC Irvine collection

4.2 Pathology Prediction

We applied msdd to the task of predicting pathologies in a simulated ship-

ping network called TransSim. When several ships attempt to dock at a single

port at the same time, most will be queued to await a free dock, resulting in

a bottleneck. We built a pathology demon that predicts the potential for bot-

tlenecks before they actually form, and we built an agent that modi�es the

shipping schedule in an e�ort to keep predicted pathologies from materializing.

Using the demon as an oracle, we gathered data from a single run of the sim-

ulator and used msdd to generate rules to predict bottlenecks. To assess the

utility of the previously generated rules, we ran ten simulations in each of two

conditions; one with the existing demon and another with the demon replaced

by the rules. We used t tests to determine whether or not the means of various

costs associated with each simulation were lower in the rule condition as com-

pared to the demon condition. The results are presented below in Table 2. Note

that the number of pathologies predicted (PP) by the demon is almost twice

the number predicted by the rules and, therefore, the agent made about twice

as many schedule modi�cations (SM). However, of the �ve cost measures (QL,

IC, CT, SU, and SD) only SD was signi�cantly lower in the demon condition

when compared to the rule condition. That is, even though the agent is taking

a much more active role, performance is not signi�cantly better. Inspection of

execution traces shows that the demon is much more likely than the rule set

to predict short-lived pathologies. The rules are good at forecasting substantial

pathologies, ones that will not go away of their own accord, but miss the more

eeting pathologies. Said di�erently, MSDD rules are not misled by small, noisy

uctuations in the state of the simulation. This behavior is bene�cial when we

view disruption to the original schedule as a cost that we want to minimize.

Cost Demon Mean Rule Mean p Value

PP 184.2 94.6 0.0001
CT 2289.3 2377.9 0.0689

IC 1149.8 1202.1 0.1844

QL 637.7 640.5 0.9177
SD 131.1 141.6 0.0019

SU 188.8 202.2 0.3475

SM 21.6 9.2 0.0001

Table 2: Comparison of simulation costs using demon and

MSDD rules for pathology prediction

This experiment points to the fact that msdd is capable of discovering in-

dicators of pathological states in TransSim from high level domain information.

msdd can identify relevant state information to emulate the objective function

of an external oracle. One limitation of this approach, as compared with the

demon, is that an initial run of the simulator is required to gather data to drive

the rule generation process. However, the domain knowledge supplied to the

msdd algorithm was minimal in comparison to the demon.

5. Conclusion

In this paper we described how the problem of �nding signi�cant dependen-

cies between the tokens in multiple streams of data can be framed in terms of

search. The notion of dependencies between pairs of tokens introduced in [3]

was extended to pairs of multi-tokens, where a multi-token describes the con-

tents of several streams rather than just one. We introduced the Multi-stream

Dependency Detection (MSDD) algorithm that performs a general-to-speci�c

best-�rst search over the exponentially sized space of possible dependencies be-

tween multi-tokens. The search heuristic employed by MSDD strikes a tunable

balance between the expected number of hits and false positives for the depen-

dencies discovered when they are applied as predictive rules to previously unseen

data from the same source. We presented results from an empirical evaluation

of MSDD's performance over a wide range of arti�cially generated data. In

addition, we applied MSDD to the task of pathology prediction in a simulated

shipping network and to a number of classi�cation problems from the UC Irvine

collection. The results that we obtained are very encouraging.

We are currently working on an incremental version of MSDD that can

identify dependencies by processing data as it is generated, and that adapts to

changing probability distributions. Also, we are working to remove the need for

a �xed sized multi-token and a �xed time interval between multi-tokens.

Acknowledgments

This work is supported by ARPA/Rome Laboratory under contract #'s

F30602-91-C-0076 and F30602-93-C-0010. The U.S. government is authorized

to reproduce and distribute reprints for governmental purposes notwithstanding

any copyright notation hereon.

The heart disease data was gathered by Andras Janosi, M.D. at the Hungar-

ian Institute of Cardiology, Budapest; William Steinbrunn, M.D. at the Univer-

sity Hospital, Zurich, Switzerland; Matthias P�sterer, M.D. at the University

Hospital, Basel, Switzerland; Robert Detrano, M.D., Ph.D., V.A. Medical Cen-

ter, Long Beach and Cleveland Clinic Foundation. The lymphography data was

obtained from the University Medical Centre, Institute of Oncology, Ljubljana,

Yugoslavia from M. Zwitter and M. Soklic. The breast cancer data was ob-

tained from the University of Wisconsin Hospitals, Madison from Dr. William

H. Wolberg [1].

REFERENCES

[1] Bennett, K. P. and Mangasarian, O. L. "Robust linear programming dis-

crimination of two linearly inseparable sets", Optimization Methods and

Software 1, 1992, 23-34 (Gordon and Breach Science Publishers).

[2] Holte, Robert C. Very simple classi�cation rules perform well on most com-

monly used datasets. In Machine Learning, (11), pp. 63-91, 1993.

[3] Howe, Adele E. Accepting the inevitable: The role of failure recovery in

the design of planners. Ph.D. thesis, Department of Computer Science,

University of Massachusetts, Amherst.

[4] Oates, Tim. MSDD as a Tool for Classi�cation. Memo 94-29, Experi-

mental Knowledge Systems Laboratory, Department of Computer Science,

University of Massachusetts, Amherst, 1994. Available via the WWW at

http://eksl-www.cs.umass.edu/papers/msdd-classi�cation.ps.

[5] Oates, Tim and Cohen, Paul R. Toward a plan steering agent: experi-

ments with schedule maintenance. In Proceedings of the Second Interna-

tional Conference on Arti�cial Intelligence Planning Systems, pp. 134-

139, 1994. Also Department of Computer Science Technical Report 94-

02, University of Massachusetts, Amherst. Available via the WWW at

ftp://ftp.cs.umass.edu/pub/eksl/tech-reports/94-02.ps.

[6] Thrun, S.B. The MONK's problems: A performance comparison of di�erent

learning algorithms. Carnegie Mellon University, CMU-CS-91-197.

[7] Wirth, J. and Catlett, J. Experiments on the costs and bene�ts of window-

ing in ID3. In Proceedings of the Fifth International Conference on Machine

Learning, pp. 87-99, 1988.

[8] Zheng, Zijian. A benchmark for classi�er learning. Basser Department of

Computer Science, University of Sydney, NSW.

