
Parallel and Distributed Search for Structure

in Multivariate Time Series

Tim Oates, Matthew D. Schmill and Paul R. Cohen

Computer Science Department, LGRC

University of Massachusetts
Box 34610

Amherst, MA 01003-4610

foates,schmill,coheng@cs.umass.edu

Abstract. E�cient data mining algorithms are crucial for e�ective knowl-
edge discovery. We present the Multi-Stream Dependency Detection (msdd)

data mining algorithm that performs a systematic search for structure in

multivariate time series of categorical data. The systematicity of msdd's
search makes implementation of both parallel and distributed versions

straightforward. Distributing the search for structure over multiple pro-

cessors or networked machines makes mining of large numbers of databases
or very large databases feasible. We present results showing that msdd

e�ciently �nds complex structure in multivariate time series, and that

the distributed version �nds the same structure in approximately 1=n of
the time required by msdd, where n is the number of machines across

which the search is distributed.

1 Introduction

Knowledge discovery in databases (KDD) is an iterative process in which data

is repeatedly transformed and analyzed to reveal hidden structure. The analysis

portion of KDD, the actual search for structure in data, is called data mining.

E�cient data mining algorithms are necessary when the number of databases

to be mined is large, when the amount of data in a given database is large,

or when many iterations of the transform/analyze cycle are required. The ease

with which vast quantities of electronically available information can be gener-

ated and stored gives rise to the former two conditions. Parallel and distributed

data mining algorithms can quickly mine large amounts of data by taking full

advantage of existing hardware, both multiple processors on one machine and

multiple machines on a network. Multi-Stream Dependency Detection (msdd)

is an easily parallelized data mining algorithm that performs an e�cient sys-

tematic search for complex structure in multivariate time series of categorical

data.

msdd �nds dependencies between patterns of values that occur in multivari-

ate time series of categorical data. We call each univariate time series a stream

of data. Dependencies are unexpectedly frequent or infrequent co-occurrences

of patterns in the streams. msdd �nds the k strongest dependencies in a set of



streams by performing a systematic search over the space of all possible depen-

dencies. Systematic search expands the children of search nodes in a manner that

ensures that no node can ever be generated more than once [9{12, 14]. Because

non-redundant expansion is achieved without access to large, rapidly changing

data structures, such as lists of open and closed nodes, the search space can be

divided between multiple processes on multiple machines. Only a small amount

of inter-process communication is required to keep the list of the k strongest

dependencies globally consistent.

Because msdd returns a list of the k strongest dependencies, rather than all

of the dependencies that it encounters during the search, it is possible to use

upper bounds on the values of a node's descendants to prune. The expressiveness

of msdd's rule representation allows the algorithm to �nd complex structure in

data, but also leads to an exponential search space, making e�ective pruning

essential. We use the G statistic as a measure of dependency strength, and

develop optimistic bounds on the value of G for the descendants of a node to

prune.

The remainder of the paper is organized as follows: Section 2 discusses sys-

tematic search in detail. Section 3 presents the msdd algorithm, de�nes the space

of dependencies that the algorithm explores, and develops domain independent

pruning techniques. Section 4 shows how the systematicity of msdd's search can

be exploited to develop parallel and distributed versions of the algorithm. Sec-

tion 5 explores the ability of the core algorithm to �nd interesting and complex

structure in multivariate time series, and compares the speed of the centralized

(msdd) and distributed (d-msdd) versions of the algorithm. Section 6 reviews

related work, and Section 7 concludes.

2 Systematic Search

msdd's search for the k strongest dependencies in a set of streams is system-

atic, leading to search e�ciency and parallelizability. Systematic search non-

redundantly enumerates the elements of search spaces for which the value or

semantics of any given node are independent of the path from the root to that

node. Webb calls such search spaces unordered [14]. Consider the space of dis-

junctive concepts over the set of literals fA;B;Cg. Given a root node containing

the empty disjunct, false, and a set of search operators that add a single literal

to a node's concept, a non-systematic elaboration of the search space contains

(among other redundancies) six variants of a single concept { A_B_C,A_C_B,
B _A _ C, B _C _A, C _A _B and C _B _A. Each variant is semantically

the same as the other �ve, yet syntactically distinct. In the space of disjunctive

concepts, the semantics of any node's concept is una�ected by the path taken

from the root to that node. For example, the two paths below yield semantically

identical leaf nodes:

false ! A! A _B ! A _B _ C

false ! C ! C _B ! C _B _A



Clearly, naive expansion of nodes in unordered search spaces leads to redundant

generation and wasted computation.

Systematic search of unordered spaces generates no more than one syntactic

form of each semantically distinct concept. That is accomplished by imposing

an order on the search operators used to generate the children of a node, and

applying only those operators at a node that are higher in the ordering than

all other operators already applied along the path to the node. Let opA; opB
and opC be the operators that add the literals A;B and C respectively to a

node's concept. If we order those operators so that opA < opB < opC , then the

corresponding space of disjunctive concepts can be enumerated systematically

so that each semantically distinct concept appears exactly once. For example,

the concept A is obtained by applying operator opA to the root node. Because

opB > opA and opC > opA, both opB and opC can be applied to the concept

A, generating the child concepts A _ B and A _C. In contrast, the concept C,

which is obtained by applying opC to the root node, has no children. Because

all other operators (opA and opB) are lower in the ordering than opC , none will

be applied and no children will be generated.

The fact that unordered search spaces can be explored without redundant

node generation through systematic search is the key to parallelizing msdd.

Given any search node in the tree, the only information required to simultane-

ously generate that node's children and avoid redundant node generation is the

operator ordering (e.g. opA < opB < opC). For example, each of the subtrees

rooted at the three children of the root node, A, B and C, could be expanded

by systematic search algorithms running on di�erent machines. The machine

expanding node B would generate its children by applying all operators higher

in the ordering than opB , yielding the single child B_C through the application

of operator opC . Because no operators are higher in the ordering than opC , the

node B _ C has no children, and the subtree rooted at B has been completely

explored. Not only was no communication with the search algorithms running

on the other machines required to expand that subtree, there was no need to

know that they even existed or that other portions of the search space were

being explored.

3 The MSDD Algorithm

msdd accepts as input a set of streams that are used to de�ne the space of depen-

dencies the algorithm will search and to evaluate the strength of dependencies.

The set of m input streams is denoted S = fs1; : : : ; smg, and the ith stream is

composed of categorical values, called tokens, taken from the set Vi. All of the
streams in S must have the same length, and we assume that all of the tokens

occurring at a given position in the streams were recorded synchronously.

msdd searches for dependencies expressed as rules of the following form: \If

an instance of pattern x begins in the streams at time t, then an instance of

pattern y will begin at time t + � with probability p." Such rules are denoted

x
�
) y. We call x the precursor and y the successor. p is computed by counting the



number of time steps on which an occurrence of the precursor is followed � time

steps later by an occurrence of the successor, and dividing by the total number

of occurrences of the precursor. To keep the space of patterns and the space

of dependencies �nite, we consider patterns that span no more than a constant

number of adjacent time steps. Precursors can span at most wp time steps, and

successors can span at most ws time steps. Both wp and ws are parameters of

the msdd algorithm.

Patterns of tokens (precursors and successors) are represented as sets of 3-

tuples of the form � = (v; s; d). Each 3-tuple speci�es a stream, s, a token

value for that stream, v, and a temporal o�set, d, relative to an arbitrary time t.

Because such patterns can specify token values for multiple streams over multiple

time steps, they are called multitokens.1 Tuples that appear in precursors are

drawn from the set Tp = f(v; s; d)j1 � s � m; v 2 Vs; 0 � d < wpg. Likewise,
tuples that appear in successors are drawn from the set Ts = f(v; s; d)j1 � s �
m; v 2 Vs; 0 � d < wsg.

msdd performs a general-to-speci�c search over the space of possible depen-

dencies, starting with a root node that speci�es no token values for either the

precursor or the successor (fg ) fg). Search operators either add a term from Tp
to a node's precursor or add a term from Ts to a node's successor. To perform a

systematic search over the space of possible dependencies between multitokens,

we impose the following order on the terms in Tp and Ts: All of the terms in Tp
are lower than all of the terms in Ts. For any �i; �j 2 Tp, �i is lower than �j if

di < dj or if di = dj and si < sj . That is, terms in Tp are ordered �rst by their

temporal o�set, and then by their stream index. Likewise for terms in Ts.

Because msdd returns a list of the k strongest dependencies, if we can derive

an upper bound on the value of the evaluation function f for all of the descen-

dants of a given node, then we can use that bound to prune the search. Suppose

the function fmax(N ) returns a value such that no descendant of N can have an

f value greater than fmax(N ). If at some point during the search we remove a

node N from the open list for expansion, and fmax(N ) is less than the f value

of all k nodes in the current list of best nodes, then we can prune N . There is

no need to generate N 's children because none of the descendants of N can have

an f value higher than any of the current best nodes; none of N 's descendants

can be one of the k best nodes that will be returned by the search. The use of an

optimistic bounding function is similar to the idea behind the h function in A*

search. That is, if a goal node is found whose cost is less than underestimates of

the cost-to-goal of all other nodes currently under consideration, then that goal

node must be optimal. Pruning based on optimistic estimates of the value of the

descendants of a node has been used infrequently in rule induction algorithms,

with itrule [13], opus [14] and progol [7] being notable exceptions.

In practice, we use the G statistic computed for 2x2 contingency tables to

measure dependency strength, and we have derived bounds on the value of G

for the descendants of a node, making it an ideal candidate for f . The interested

1 The de�nition of a multitoken given here is an extension of the one given in previous

descriptions of the algorithm [9].



reader is referred to [8] for more details.

4 Parallel and Distributed MSDD

In the same way msdd guarantees non-redundant generation of search nodes,

msdd guarantees that distinct nodes at the same depth in the search tree are par-

ent to completely disjoint sets of children. The result is a search space that can be

trivially partitioned into computationally independent subsets, and consequently

msdd is an algorithm well suited for parallel and distributed implemetation. We

begin by discussing a parallel implementation of msdd

The easy partitioning of msdd's search space allows us to treat any interme-

diate search node as a root of a new search tree. Consider the goal of \basic"

msdd; search for elaborations on the completely general rule fg ! fg that maxi-

mize the evaluation function f . A more general, parallelized approach is to search

for elaborations on an arbitrary rule that maximize f . In this way, we treat each

node as an \island", independent of anything else msdd has learned, spawning

a new thread to perform the search as if the node were the root.

An e�cient parallel implementation of msdd is possible because the search

at any given node does not require access to previously elaborated search tree.

The threads of p-msdd need only non-exclusive read access to the time series

and exclusive write access for insertions into the queue of k best nodes. Using

a semaphore to provide exclusive writes to the k best list, the computation of

msdd can be e�ectively balanced over many processing elements.

4.1 Distributed MSDD

The implementation of parallel msdd can be translated easily to an e�cient

distributed algorithm. This algorithm, d-msdd, makes use of a client-server TCP

tools to perform d-msdd's search over a network of cooperating systems.

The d-msdd algorithm begins with the server. The server is responsible for

initiating the search, mediating communication, and declaring the search �n-

ished. Any number of client machines may contact the server to declare them-

selves as eligible for aiding in the search. This declaration process is called reg-

istration, where the server takes note of each client machine, issuing it a unique

identi�er for future communication. Once a desirable number of clients have

registered, the server is ready to initiate the search process.

The distributed search proceeds on each participant machine according to a

local agenda. Each machine's agenda is an independent partition of the unex-

plored msdd search space. As with p-msdd, the only shared strucutres are the

list of k best dependencies and the dataset itself. Each machine participating in

a d-msdd search maintains local copies of these structures, keeping them syn-

chronized through network message passing. We simulate the accessing of shared

data by sending best messages to describe a candidate node for the k best list.

We emulate the load balancing that goes on on a parallel machine by passing

node messages that transfer nodes from an overloaded machine's agenda to a

machine with a lighter agenda.



5 Empirical Results

In this section we compare the performance of msdd and d-msdd. For each of

three datasets, the two algorithms found the k = 20 strongest dependencies. We

ran d-msdd on both two and three machines connected via a local area network.

The datasets, which were all taken from the UC Irvine repository, included

chess end-games, solar ares, and congressional voting records. The results are

summarized below in Table 1. The table shows the number of nodes expanded,

CPU cycles consumed, and the number of messages sent to keep the list of the k

best dependencies consistent. When d-msdd ran on two and three machines (the

d-msdd { 2 and d-msdd { 3 cases respectively), the table contains the sum of

the value over all machines participating in the search. Note that relatively few

search nodes were required to �nd the 20 strongest dependencies in exponential

spaces; pruning based on optimistic estimates of G is e�ective. Because the

distributed search may be at di�erent depths on di�erent machines, the total

number of nodes expanded may vary depending on when strong dependencies

are found and used for subsequent pruning. However, in each case the total

number of CPU cycles required to complete the search remains fairly constant,

independent of the number of participating machines. Because load-balancing

between the machines is �ne grained, n machines can complete the search for

structure roughly n times faster than one machine.

Dataset Algorithm Search Nodes CPU Cycles Messages

vote msdd 107,858 6,911,826 0

d-msdd { 2 124,234 7,915,858 7024

d-msdd { 3 115,375 7,963,435 6697

chess msdd 22,346 1,507,160 0

d-msdd { 2 27,073 1,573,309 1321

d-msdd { 3 31,955 1,793,743 2964

solar msdd 12,199 805,920 0
d-msdd { 2 13,544 906,188 457

d-msdd { 3 17,941 1,095,695 1,706

Table 1. Comparison of msdd and d-msdd on three dataset.

6 Related Work

Several systematic search algorithms have appeared in the literature [9{12, 14],

all of them variations on the basic idea of imposing an order on search operators,

and applying only those operators at a node that are higher in the order than all

other operators that have been applied on the path from the root to the node.



Our use of optimistic bounds on the value of the node evaluation function for

pruning systematic search spaces is similar to the opus algorithm [14], which in

turn is a generalization of the same idea as applied to non-systematic search in

the itrule induction algorithm [13]. msdd and itrule return the k best rules,

whereas opus returns a single goal node or the single node with the highest

value.

Both parallel algorithms and consideration of data with a temporal compo-

nent are rare in the KDD and data mining literature. Holsheimer and Kersten

describe a system for inducing rules from large relational databases that per-

forms a parallelized beam search over the space of possible rules and accesses

the data through a parallel DBMS [5]. However, their system is limited to clas-

si�cation rules (a conjunct of literals predicting a single literal), and it can miss

high quality rules due to the use of beam search. Aronis and Provost developed

a parallel algorithm that builds new features from existing features in relational

databases [2]. The newly constructed features are then passed to a standard (se-

rial) inductive learning algorithm. While parallelism speeds the search for new

features, it does not a�ect the speed with which rules using those features can

be learned. Agrawal and Shafer [1] explore several parallel algorithms for min-

ing association rules from very large databases, and Dehaspe and De Raedt [4]

present a parallel implementation of the claudien clausal discovery system.

Berndt and Cli�ord describe a dynamic programming algorithm for �nding re-

curring patterns in univariate time series [3], and Mannila et al. [6] developed an

algorithm that �nds frequently occurring episodes in event-based data (e.g. event

logs generated by telecommunications networks).

7 Conclusion

In this paper we presented the msdd data mining algorithm which performs a

systematic search for structure in multivariate time series. msdd discovers the k

strongest dependencies between pairs of multitokens, arbitrary patterns of values

that can span multiple streams and multiple time steps. msdd prunes the search

space with an upper bound on the value of the descendant of a given node, and

we derived such a bound on the value of G. We recognized that systematic search

over unordered spaces is easily parallelized, and developed d-msdd, a distributed

version of msdd. msdd is a powerful tool for discovering complex structure in

very large databases due to the e�ciency and expressiveness of the core algorithm

and the ease with which the search for structure can be distributed over multiple

machines on a network via d-msdd.

Acknowledgements

This research was supported by ARPA/Rome Laboratory under contract num-

bers F30602-91-C-0076 and F30602-93-0100, and by a National Defense Science

and Engineering Graduate Fellowship. The U.S. Government is authorized to



reproduce and distribute reprints for governmental purposes not withstanding

any copyright notation hereon. The views and conclusions contained herein are

those of the authors and should not be interpreted as necessarily representing

the o�cial policies or endorsements either expressed or implied, of the Advanced

Research Projects Agency, Rome Laboratory or the U.S. Government. We thank

the anonymous reviews for helpful suggestions.

References

1. R. Agrawal and J. C. Shafer. Parallel mining of association rules: Design, imple-
mentation and experience. Technical Report RJ 10004, IBM, 1996.

2. John M. Aronis and Foster J. Provost. E�ciently constructing relational features

from background knowledge for inductive machine learning. In Working Notes of

the Knowledge Discovery in Databases Workshop, pages 347{358, 1994.

3. Donald J. Berndt and James Cli�ord. Using dynamic time warping to �nd pat-

terns in time series. In Working Notes of the Knowledge Discovery in Databases

Workshop, pages 359{370, 1994.

4. Luc Dehaspe and Luc De Raedt. Parallel inductive logic programming. In Pro-

ceedings of the MLnet Familiarization Workshop on Statistics, Machine Learning

and Knowledge Discovery in Databases, 1995.

5. Marcel Holsheimer and Martin L. Kersten. Architectural support for data mining.

In Working Notes of the Knowledge Discovery in Databases Workshop, pages 217{
228, 1994.

6. Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovering frequent

episodes in sequences. In Proceedings of the First International Conference on

Knowledge Discovery and Data Mining, pages 210{215, 1995.

7. S. Muggleton. Inverse entailment and progol. New Generation Computing, 13:245{

286, 1995.
8. Tim Oates and Paul R. Cohen. Searching for structure in multiple streams of data.

In Proceedings of the Thirteenth International Conference on Machine Learning,

pages 346 { 354, 1996.

9. Tim Oates, Dawn E. Gregory, and Paul R. Cohen. Detecting complex dependen-

cies in categorical data. In Preliminary Papers of the Fifth International Workshop

on Arti�cial Intelligence and Statistics, pages 417{423, 1994.

10. Patricia Riddle, Richard Segal, and Oren Etzioni. Representation design and brute-

force induction in a boeing manufacturing domain. Applied Arti�cial Intelligence,

8:125{147, 1994.

11. Ron Rymon. Search through systematic set enumeration. In Proceedings of the

Third International Conference on Principles of Knowledge Representation and

Reasoning, 1992.
12. Je�rey C. Schlimmer. E�ciently inducing determinations: A complete and sys-

tematic search algorithm that uses optimal pruning. In Proceedings of the Tenth

International Conference on Machine Learning, pages 284{290, 1993.
13. Padhraic Smyth and Rodney M. Goodman. An information theoretic approach

to rule induction from databases. IEEE Transactions on Knowledge and Data

Engineering, 4(4):301{316, 1992.

14. Geo�rey I. Webb. OPUS: An e�cient admissible algorithm for unordered search.

Journal of Arti�cial Intelligence Research, 3:45{83, 1996.


