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1 Introduction

Given a source of time series data, such as the stock mar-
ket or the monitors in an intensive care unit, there is of-
ten utility in determining whether there are qualitatively
di�erent regimes in the data and in characterizing those
regimes. For example, one might like to know whether
the various indicators of a patient's health measured over
time are being produced by a patient who is likely to live
or one that is likely to die. In this case, there is a pri-
ori knowledge of the number of regimes that exist in the
data (two), and the regime to which any given time series
belongs can be determined post hoc (by simply noting
whether the patient lived or died). However, these two
pieces of information are not always present.
Consider a system that produces multivariate, real-

valued time series by selecting one of K hidden Markov
models (HMMs), generating data according to that
model, and periodically transitioning to a di�erent
HMM. Only the time series produced by the system
are observable. In particular, K and the identity of the
HMM generating any given time series are not observ-
able. Given a set of time series produced by such a
system, this paper presents a method for automatically
determining K, the number of generating HMMs, and
for learning the parameters of those HMMs.
An initial estimate of K is obtained by unsupervised

clustering of the time series using dynamic time warping
(DTW) to assess similarity. In addition to producing an
estimate of K, this process yields an initial partition-
ing of the data. As later sections will explain, DTW is
related to HMM training algorithms but is weaker in sev-
eral respects. Therefore, the clusters based on DTW are
likely to contain mistakes. These initial clusters serve as
input to a process that trains one HMM on each cluster
and iteratively moves time series between clusters based
on their likelihoods given the various HMMs. Ultimately
the process converges to a �nal clustering of the data and
a generative model (the HMMs) for each of the clusters.
The remainder of the paper is organized as follows.

Section 2 brie
y reviews HMMs and the algorithms used
to induce HMMs from data. Section 3 describes dynamic
time warping and its use as a distance measure between
multivariate time series for the purpose of unsupervised
clustering. Section 4 describes an algorithm that uses

DTW to bootstrap the process of �tting HMMs to data
containing multiple regimes. Section 5 presents the re-
sults of experiments with this approach using arti�cial
data, and section 6 concludes and points to future work.

2 Hidden Markov Models

A discrete hidden Markov model is de�ned by a set
of states and an alphabet of output symbols (Rabiner
1989). Each state is characterized by two probability
distributions: the transition distribution over states and
the emission distribution over the output symbols. A
random source described by such a model generates a
sequence of output symbols as follows: at each time step
the source is in one state, and after emitting an output
symbol according to the emission distribution of the cur-
rent state, the source jumps to a next state according to
the transition distribution of its current state. Since the
activity of the source is observed indirectly, through the
sequence of output symbols, and the sequence of states is
not directly observable, the states are said to be hidden.
A continuous HMM is di�erent from a discrete one in
that the output symbols are emitted from a probability
density instead of a distribution. We prefer the discrete
models because they are simpler. For both discrete and
continuous HMMs dynamic programming algorithms ex-
ist for:

� computing the probability of observing a sequence,
given a model

� �nding the state sequence that maximizes the prob-
ability of the given sequence, when the model is
known(the Viterbi algorithm)

� inducing the HMM that maximizes (locally) the
probability of the given sequence (the Baum-Welch
algorithm, an expectation-maximization algorithm)

The HMM model de�nition can be readily extended
to the multidimensional case, where a vector of symbols
is emitted at each step, instead of a single symbol. The
assumption that allows this immediate extension is con-
ditional independence of variables given the state. While
hidden Markov models are richer representations of time
series (they add a vocabulary of states), the induction al-
gorithm has two major weaknesses:



� the number of states must be set in advance, i.e.
the structure of the model is not �t to the data, but
given a priori

� the algorithm converges to a local maximum only

These two problems led us to using the dynamic time
warping technique for alleviating them, as presented in
section 4.

3 Dynamic Time Warping

This section describes dynamic time warping, an algo-
rithm that is less well known than Baum-Welch and
Viterbi, and its use as a measure of similarity for un-
supervised clustering of time series. Let S denote a
multivariate time series spanning n time steps such that
S = fstj1 � t � ng. The si are vectors of values contain-
ing one element for the value of each of the component
univariate time series at time i. Given a set of m multi-
variate time series, we want to obtain, in an unsupervised
manner, a partition of these time series into subsets such
that each subset corresponds to a qualitatively di�erent
regime.
If an appropriate measure of the similarity of two time

series is available, clustering followed by prototype ex-
traction is a suitable unsupervised learning method for
this problem. Finding such a measure of similarity is
di�cult because time series that are qualitatively the
same may be quantitatively di�erent in at least two ways.
First, they may be of di�erent lengths, making it di�-
cult or impossible to embed the time series in a metric
space and use, for example, Euclidean distance to de-
termine similarity. Second, within a single time series,
the rate at which progress is made can vary non-linearly.
The same pattern may evolve slowly at �rst and then
speed up, or it may begin quickly and then slow down.
Such di�erences in rate make similarity measures such
as cross-correlation unusable.
DTW is a generalization of classical algorithms for

comparing discrete sequences (e.g. minimum string edit
distance (Corman, Leiserson, & Rivest 1990)) to se-
quences of continuous values (Sanko� & Kruskall 1983).
It was used extensively in speech recognition, a domain
in which the time series are notoriously complex and
noisy, until the advent of Hidden Markov Models which
o�ered a uni�ed probabilistic framework for the entire
recognition process (Jelinek 1997).
Given two time series, S1 and S2, DTW �nds the

warping of the time dimension in S1 that minimizes the
di�erence between the two series. Consider the two uni-
variate time series shown in Figure 1. Imagine that the
time axis of S1 is an elastic string, and that you can grab
that string at any point corresponding to a time at which
a value was recorded for the time series. Warping of the
time dimension consists of grabbing one of those points
and moving it to a new location. As the point moves,
the elastic string (the time dimension) compresses in the
direction of motion and expands in the other direction.
Consider the middle column in Figure 1. Moving the
point at the third time step from its original location to

the seventh time step causes all of the points to its right
to compress into the remaining available space, and all
of the points to its left to �ll the newly created space. Of
course, much more complicated warpings of the time di-
mension are possible, as with the third column in Figure
1 in which four points are moved.
Given a warping of the time dimension in S1, yielding

a time series that we will denote S0

1
, one can compare

the similarity of S0

1
and S2 by determining the area be-

tween the two curves. That area is shown in gray in the
bottom row of Figure 1. Note that the �rst warping of
S1 in which a single point was moved results in a poor
match, one with a large area between the curves. How-
ever, the �t given by the second, more complex warping
is quite good. In general, there are exponentially many
ways to warp the time dimension of S1. DTW uses dy-
namic programming to �nd the warping that minimizes
the area between the curve in time that is a low order
polynomial of the lengths of S1 and S2, i.e. O(jS1jjS2j).
DTW returns the optimal warping of S1, the one that

minimizes the area between S0

1
and S2, and the area as-

sociated with that warping. The area is used as a mea-
sure of similarity between the two time series. Note that
this measure of similarity handles nonlinearities in the
rates at which experiences progress and is not a�ected
by di�erences in the lengths of experiences. In general,
the area between S0

1
and S2 may not be the same as the

area between S0

2
into S1. We use a symmetrized ver-

sion of DTW that essentially computes the average of
those two areas based on a single warping (Kruskall &
Liberman 1983). Although a straightforward implemen-
tation of DTW is more expensive than computing Eu-
clidean distance or cross-correlation, there are numerous
speedups that both improve the properties of DTW as a
distance metric and make its computation nearly linear
in the length of the time series with a small constant.
Given m time series, we can construct a complete

pairwise distance matrix by invoking DTW m(m� 1)=2
times (the factor of 2 is due to the use of symmetrized
DTW). We then apply a standard hierarchical, agglom-
erative clustering algorithm that starts with one clus-
ter for each time series and merges the pair of clusters
with the minimum average intercluster distance (Everitt
1993). Without a stopping criterion, merging will con-
tinue until there is a single cluster containing all m ex-
periences. To avoid that situation, we do not merge
clusters for which the mean intercluster distance is sig-
ni�cantly di�erent from the mean intracluster distance
as measured by a t-test. The number of clusters remain-
ing when this process terminates is K, the number of
regimes in the time series.
Finally, for each cluster we select a prototype. Two

methods commonly used are to choose the cluster mem-
ber that minimizes the distance to all other members of
the cluster, and to simply average the members of the
cluster. The advantage of the latter method is that it
smooths out noise that may be present in any individual
data item. Unfortunately, it is only workable when the
cluster elements are embedded in a metric space (e.g.



S1

S2

Figure 1: Two time series, S1 and S2, (the leftmost column) and two possible warpings of S1 into S2 (the middle
and rightmost columns).

Cartesian space). Although we cannot embed experi-
ences in a metric space, DTW allows us to use a com-
bination of the two methods as follows. First, we select
the time series that minimizes distance to all other time
series in a given cluster. Then we warp all other patterns
into that centroid, resulting in a set of patterns that are
all on the same time scale. It is then a simple matter to
take the average value at each time point over all of the
series and use the result as the cluster prototype.

4 Clustering with DTW and HMMs

This section presents an algorithm for clustering time
series using only HMMs, and then shows how the utility
of that algorithm is greatly enhanced by the information
obtained by �rst clustering the time series with DTW.

4.1 Clustering with HMMs

The assumption underlying our method of clustering
with HMMs is that all of the sequences that belong in a
cluster were generated by the same HMM and, as such,
have high probabilities under this HMM. If a sequence
has a high probability under a model, we consider it to
be generated, or \accepted", by the model. If it has a
low probability we consider it to be \rejected". We ap-
ply a simple statistical test to check whether an observed
sequence O is generated by a given model �. We gener-
ate a large sample of sequences from the model �. From
this sample we calculate the empirical probability dis-
tribution (see \Computer Intensive Methods" in (Cohen
1995)) of log(P (oj�), the log-likelihood of the sequences
generated by the model. Let L be the log-likelihood of
O under the model, i.e. L = log(P (Oj�). We then test
the hypothesis that L is drawn from the probability dis-
tribution of the log-likelihood of the sequences generated
by the model �. Speci�cally, we test that:

P�(log � likelihood � L) > threshold

and reject the null hypothesis if the probability is be-
low the threshold. If the hypothesis is rejected and L is
considered not to be drawn from the probability distri-
bution of the log-likelihood of the sequences generated

by �, then we infer that the sequence O is not accepted
by the model �.
Due to the above assumption, the task of clustering

the sequences is equivalent with the task of �nding a set
of hidden Markov models that accept disjoint subsets
of the original set of sequences. A set of sequences can
be clustered by �tting an HMM to all the sequences in
the set and then applying a �xed point operation that
re�nes the HMM and \shrinks" the initial set to the sub-
set of sequences accepted by the resulting HMM. Given
a set S of sequences and a model HMM, the �xed-point
operation is:

� S0, S
0

0
 � S

� repeat

{ S0  � S
0

0

{ re-train the HMM with S

{ S
0

0
 � the sequences in S0 accepted by the

HMM

� until S0 = S
0

0

Clustering of the set S proceeds then by repeating the
�xed point operation for the set (S n S0) of remaining
sequences and so forth, until no sequence remains unas-
signed.
The �xed-point operation converges because at each

iteration, S can either shrink or stay the same. In the
extreme case, S is reduced to one sequence only and not
to the empty set, because it is unlikely that an HMM
trained exactly with that sequence will not accept it.

4.2 Clustering with DTW + HMMs

When �tting an HMM to a set of sequences, the induc-
tion algorithm will try to �t all the sequences in the set
equally well. Because the number of states is set in ad-
vance and not learned from the data, it is not clear how
the states are \allocated" to the di�erent sequences. It
is likely that the states' observation probability distri-
butions will cover the regions in the observation space
most often visited by the given sequences and that the
state probability transitions will be changed accordingly.



This means that if the set contains sequences generated
by distinct models, it is likely that the induced HMM
will be a \compromise" between the original models (the
most frequent states of either generating model will ap-
pear in the learned model). It is not clear what this
compromise model is. Because the training algorithm
converges to a local maximum, the resulting HMM is
highly dependent on the initial model from which the
training algorithm starts.
Therefore, if we assume that the sequences in a train-

ing set were generated by some hidden Markov models
and our task is to identify these models, then it is ad-
vantageous to start the HMM clustering algorithm with
even an approximate initial clustering. If the majority
of sequences in the initial cluster come from the same
model, then it is likely that the learned compromise
HMM will be closer to this one model. Since the DTW
clustering technique can provide a good initial partition,
the HMM clustering algorithm is initialized with it. For
each cluster in the DTW partitioning, an HMM is cre-
ated by applying the �xed-point operation described in
the previous section to the sequences of the cluster. The
remaining sequences from each DTW cluster are then
checked against the HMMs of the other DTW clusters.
Finally, if any sequences are still unassigned to an HMM,
they are placed in a set that is clustered solely by HMM
clustering.

5 Experiments

We tested our algorithm on an arti�cial dataset gener-
ated as in (Smyth 1997), from two hidden Markov mod-
els. The two hidden Markov models that generated the
arti�cial dataset each have two states, one that emits
one symbol from the normal density with mean 0 and
variance 1, N (0; 1), and one that emits one symbol from
N (3; 1). The two models di�er in their transition prob-
ability matrices. These matrices are:

AHMM1
=

�
:6 :4
:4 :6

�

AHMM2
=

�
:4 :6
:6 :4

�

As explained in (Smyth 1997) this is only apparently an
easy problem.
Because the output of the states is continuous and

we implemented our clustering algorithm with discrete
HMMs, we discretized the output values with a Kohonen
network with 20 units (so the output alphabet has 20
symbols in our experiments). Again as in (Smyth 1997),
the training set consists of 40 sequences. The �rst 20 are
generated by HMM1 and the last 20 by HMM2. Each
sequence has length 200.
The clusters resulting from DTW alone are shown

below. For each cluster the indices of the time series
belonging to that cluster are shown. Ideally, cluster 1
would contain indices 0 through 19 and cluster 2 would
contain indices 20 through 39.

� cluster 1: 1 2 3 4 5 6 9 10 11 12 13 15 17 18 19 23
24 33 35 37

� cluster 2: 0 7 8 14 16 20 21 22 25 26 27 28 29 30 31
32 34 36 38 39

The resulting DTW+HMM clustering is:

� cluster 1: 1 2 3 4 5 6 9 10 11 13 14 15 16 18

� cluster 2: 20 21 22 24 26 27 29 30 31 34 36 37 38 39

� cluster 3: 0 8 12 17 19 23 25 28 33

� cluster 4: 7 32 35

The transition matrices of the four HMMs are:

AHMM1
=

�
:69 :30
:38 :61

�

AHMM2
=

�
:29 :70
:64 :35

�

AHMM3
=

�
:55 :44
:53 :46

�

AHMM4
=

�
:49 :50
:46 :53

�

It can be noticed that the HMM clustering \cleans"
the clusters obtained by DTW. For example, the se-
quences 33, 35, 37, that appear in the �rst cluster in the
DTW partitioning, are removed by the HMM cluster-
ing, and the resulting DTW+HMM cluster has only se-
quences generated by the �rst model. The second cluster
has only sequences generated by the second model, too.
It can also be noticed that when HMM clustering alone
is applied for the sequences removed from the DTW
clusters, the resulting clusters, 3 and 4, have mixed se-
quences. Thus, HMM clustering alone does not work
well: when trained with mixed sequences a compromise
HMM is learned, rather than an HMM close to one of
the true models. The transition matrices for the �rst
two models are very di�erent: each HMM �ts the id-
iosyncrasies of the sequences emitted by the true models.
As for the last two models, each of them is a compro-
mise between the two original HMMs. The above results
indicate that further improvement is achievable by two
ways:

� by alternating DTW and HMM clustering in re-
peated iterations

� by trying to apply the �xed point operation to
\grow" each resulting HMM in the DTW+HMM
partitioning with sequences from other clusters;
in preliminary experiments, the �rst HMM would
\steal" good sequences from the last two clusters,
but the process does not always converge; we intend
to explore this further

We also applied the technique to clustering time series
of robot sensor values. The time series were collected
during several simple experiences: the robot was ap-
proaching, pushing or passing an object. While we do
not know the true clusters in the robot data, we con-
sidered a good clustering one which re
ects the kinds of



experiences enumerated above. We observed the same
e�ect of \cleaning" the DTW clusters by the HMM, but
the set of sequences removed by the HMM �xed-point
operation was large and poorly clustered by the HMM
clustering method. We think that the problem of the
unknown number of HMM states must be solved before
trying to cluster and represent real data with HMMs.
We plan to apply the minimum description length prin-
ciple for tackling this di�cult problem.

6 Conclusion

We presented a hybrid time series clustering algorithm
that uses dynamic time warping and hidden Markov
model induction. The algorithm worked well in experi-
ments with arti�cial data. The two methods complement
each other: DTW produces a rough initial clustering and
the HMM removes from these clusters the sequences that
do not belong to them. The downside is that the HMM
removes some good sequences along with the bad ones.
We suggested possible ways of improving the method
and are currently working on validating them.
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