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Abstract

We present an unsupervised learning method that al-
lows a situated embodied agent to identify and repre-
sent qualitatively di�erent outcomes of actions. The
initiation of a particular action triggers the collection
of multivariate time series of sensor values. Those time
series are clustered using Dynamic Time Warping as
a measure of similarity, and prototypes are extracted
from the clusters. Each prototype represents a dis-
tinct experience, i.e. one possible outcome of engag-
ing in the activity. Prototypes can be used for o�-line
planning and for on-line prediction by �nding the best
partial match among the prototypes to current sensor
readings. Experiments with a Pioneer-1 mobile robot
demonstrate the utility of the approach with respect
to capturing the structure and dynamics of a complex,
real-world environment.

Introduction

If situated embodied agents are to engage in any of a
number of cognitive tasks, they must have the ability
to construct models of their physical environment.1 In
all but the simplest, static domains, such models must
represent the dynamics of environmental change. For
example, planning requires knowledge of how actions
a�ect the state of the world. Embodied agents can-
not make an assumption commonly made by classical
planners, that actions and their e�ects are instanta-
neous. They must consider actions that take substan-
tial amounts of time to complete, and e�ects that have
similar temporal extents.
This paper presents a method for unsupervised learn-

ing of models of environmental dynamics based on clus-
tering of multivariate time series. An unsupervised
learning approach to this problem is desirable because
hand-coding accurate models of dynamic, stochastic en-
vironments is a daunting, if not impossible, task. Ex-
periments with a Pioneer-1 mobile robot demonstrate
the utility of the method.
Individual time series are obtained by recording the

output of a subset of the robot's sensors. We call these
time series experiences. An example of a sensor subset

1Obviously there are those that would disagree with this
position (Brooks 1987), but it is one that we adhere to.

on the Pioneer-1 is an array of seven sonars. Each sonar
returns the distance to the closest object in the direc-
tion that it points. Recording of time series is usually
triggered by events, such as the initiation of a partic-
ular action. As shown in Figure 1, each time a given
event occurs, the time series that was recorded is added
to a bucket associated with that event. Once a su�-
cient number of time series are recorded, clusters can
be formed. Clustering requires a measure of similar-
ity between multivariate time series. One such mea-
sure that is particularly appropriate for this problem is
Dynamic Time Warping (DTW) (Sanko� and Kruskal
1983). (We discuss DTW in detail in a later section.)
Each cluster can then be represented by a prototype, ei-
ther the cluster centroid or an average of its members.
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Raw Experiences

Figure 1: The formation of prototypes of qualitatively
di�erence experiences.



Cluster prototypes formed in this manner are useful
for a variety of purposes. If the event driving the col-
lection of time series was an action, cluster prototypes
correspond to qualitatively di�erent outcomes of engag-
ing in that action. As such, they can be used for o�-line
planning and for on-line prediction by �nding the best
partial match among the prototypes to current sensor
readings.
Although our work in unsupervised clustering of time

series is driven primarily by an interest in situated em-
bodied cognition, it has many potential commercial ap-
plications as well. There is clearly utility in identify-
ing qualitatively di�erent regimes in multivariate time
series produced by �nancial markets, monitors in an
intensive care unit, and earth orbiting satellites that
measure changes in the earth's weather.
The remainder of the paper is organized as follows.

The next section describes our method for clustering
time series in detail, including a discussion of Dy-
namic Time Warping, the particular clustering algo-
rithm used, and prototype formation. We then present
an evaluation of the method as applied to the Pioneer-
1 mobile robot. The last two sections review related
work, pointing out the connection between Dynamic
Time Warping and Hidden Markov Models, and out-
line future research, respectively.

Clustering Experiences

This section presents our method for unsupervised
learning of models of environmental dynamics based on
clustering of multivariate time series. To ground the
discussion, consider the Pioneer-1 mobile robot. Its sen-
sors include, among others, a bump switch on the end
of each gripper paddle that indicates when the grip-
per hits an object, an infrared break beam between the
gripper paddles that indicates when an object enters
the gripper, and wheel encoders that measure the rate
at which the wheels are spinning.
Suppose the robot is moving forward at a �xed ve-

locity. Collectively, the values returned by the sensors
mentioned above can discriminate many di�erent sit-
uations. For example, if the robot runs into a large
immovable object, such as a wall, the bump sensors go
high and the wheel velocities abruptly drop to zero. If
it bumps into a trash can, which is large but movable,
the bump sensors go high and the wheel velocities re-
main constant. If it comes across an object that can
be grasped, the break beam goes high when the object
enters the gripper and there is no change in wheel ve-
locity. As observers of the robot's actions, we can label
and categorize its experiences. Our goal is to provide
mechanisms that will allow the robot to perform that
task by itself.
Let E denote an experience, a multivariate time se-

ries containing n measurements from a set of sensors
such that E = fetj1 � t � ng. The ei are vectors of
values containing one element for each sensor. Given
a set of m experiences, we want to obtain, in an unsu-
pervised manner, a partition into subsets of experiences

such that each subset corresponds to a qualitatively dif-
ferent type of experience. Given such a partition, rea-
soning with entire sets of experiences is unwieldy, so a
simpler representation such as the average experience
in a subset is required.
If an appropriate measure of the similarity of two

time series is available, clustering followed by prototype
extraction is a suitable unsupervised learning method
for this problem (see Figure 1). Finding such a mea-
sure of similarity is di�cult because experiences that
are qualitatively the same may be quantitatively di�er-
ent in at least two ways. First, they may be of di�er-
ent lengths, making it di�cult or impossible to embed
the time series in a metric space and use, for exam-
ple, Euclidean distance to determine similarity. Second,
within a single time series, the rate at which progress
is made can vary non-linearly. For example, the robot
may move slowly or quickly toward a wall, leading to
either a slow or rapid decrease in the distance returned
by its forward-pointing sonar. In each case, though,
then end result is the same, the robot bumps into the
wall. Such di�erences in rate make similarity measures
such as cross-correlation unusable.
The measure of similarity that we use is Dynamic

TimeWarping (DTW) (Sanko� and Kruskal 1983). It is
ideally suited for the time series generated by a robot's
sensors. DTW is a generalization of classical algorithms
for comparing discrete sequences (e.g. minimum string
edit distance (Corman et al. 1990)) to sequences of con-
tinuous values. It was used extensively in speech recog-
nition, a domain in which the time series are notoriously
complex and noisy, until the advent of Hidden Markov
Models which o�ered a uni�ed probabilistic framework
for the entire recognition process (Jelinek 1997).
Given two experiences, E1 and E2 (more generally,

two continuous multivariate time series), DTW �nds
the warping of the time dimension in E1 that mini-
mizes the di�erence between the two experiences. Con-
sider the two univariate time series shown in Figure 2.
Imagine that the time axis of E1 is an elastic string,
and that you can grab that string at any point corre-
sponding to a time at which a value was recorded for
the time series. Warping of the time dimension consists
of grabbing one of those points and moving it to a new
location. As the point moves, the elastic string (the
time dimension) compresses in the direction of motion
and expands in the other direction. Consider the mid-
dle column in Figure 2. Moving the point at the third
time step from its original location to the seventh time
step causes all of the points to its right to compress into
the remaining available space, and all of the points to
its left to �ll the newly created space. Of course, much
more complicated warpings of the time dimension are
possible, as with the third column in Figure 2 in which
four points are moved.
Given a warping of the time dimension in E1, yielding

a time series that we will denote E0

1, one can compare
the similarity of E0

1 and E2 by determining the area be-
tween the two curves. That area is shown in gray in the
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Figure 2: Two time series, E1 and E2, (the leftmost column) and two possible warpings of E1 into E2 (the middle
and rightmost columns).

bottom row of Figure 2. Note that the �rst warping of
E1 in which a single point was moved results in a poor
match, one with a large area between the curves. How-
ever, the �t given by the second, more complex warping
is quite good. In general, there are exponentially many
ways to warp the time dimension of E1. DTW uses dy-
namic programming to �nd the warping that minimizes
the area between the curve in time that is a low order
polynomial of the lengths of E1 and E2, i.e. O(jE1jjE2j).

DTW returns the optimal warping of E1, the one that
minimizes the area between E0

1 and E2, and the area as-
sociated with that warping. The area is used as a mea-
sure of similarity between the two time series. Note that
this measure of similarity handles nonlinearities in the
rates at which experiences progress and is not a�ected
by di�erences in the lengths of experiences. In general,
the area between E0

1 and E2 may not be the same as
the area between E0

2 into E1. We use a symmetrized
version of DTW that essentially computes the average
of those two areas based on a single warping (Kruskall
and Liberman 1983). Although a straightforward im-
plementation of DTW is more expensive than comput-
ing Euclidean distance or cross-correlation, there are
numerous speedups that both improve the properties
of DTW as a distance metric and make its computa-
tion nearly linear in the length of the time series with
a small constant.

Given m experiences, we can construct a complete
pairwise distance matrix by invoking DTW m(m�1)=2
times (the factor of 2 is due to the use of symmetrized
DTW). We then apply a standard hierarchical, agglom-
erative clustering algorithm that starts with one clus-
ter for each experience and merges the pair of clus-
ters with the minimum average intercluster distance
(Everitt 1993). Without a stopping criterion, merging
will continue until there is a single cluster containing
all m experiences. To avoid that situation, we do not
merge clusters for which the mean intercluster distance
is signi�cantly di�erent from the mean intracluster dis-
tance as measured by a t-test.

Finally, for each cluster we select a prototype. Two

methods commonly used are to choose the cluster mem-
ber that minimizes the distance to all other members
of the cluster, or to simply average the members of the
cluster. The advantage of the latter method is that
it smooths out noise that may be present in any in-
dividual data item. Unfortunately, it is only workable
when the cluster elements are embedded in a metric
space (e.g. Cartesian space). Although we cannot em-
bed experiences in a metric space, DTW allows us to
use a combination of the two methods as follows. First,
we select the time series that minimizes distance to all
other time series in a given cluster. Then we warp all
other patterns into that centroid, resulting in a set of
patterns that are all on the same time scale. It is then
a simple matter to take the average value at each time
point over all of the series and use the result as the
cluster prototype.

Evaluation

We are interested in using the clusters produced by the
combination of DTW and agglomerative clustering for
the purposes of planning, so we would like clusters to
map to action outcomes for planning. As such, our pri-
mary means of evaluating cluster quality is to compare
them against clusters generated manually by the exper-
imenter who designed the experiences they comprise.
Data was collected for 4 sets of experiences: 102 ex-

periences with the robot moving in a straight line while
collecting data from the velocity encoders, break beams,
and gripper bumper (which we will call the tactile sen-
sors), 102 move experiences collecting data from the
Pioneer's vision system, including the X and Y loca-
tion, area, and distance to a single visible object being
tracked (which we will call the visual sensors), 50 expe-
riences with the robot turning in place collecting tactile
data, and 50 turn experiences collecting visual data. In
each experience, the robot attempted to move or turn
for a duration between 2 and 8 seconds in the labo-
ratory environment. Visible objects and objects that
impeded or obstructed the robot's path were present in
many of the trials.



move/tactile turn/tactile move/visual turn/visual

+250 unobstructed +100 unobstructed no object no object
+100 unobstructed +100 never stops heavy noise can't move
-100 unobstructed +100 bump approach on right pass left to right
-250 unobstructed +100 blocked approach disappear pass right to left
+250 temporary bump +100 temporary bump discover left reverse discover right
+100 temporary bump +100 blocked bump vanish on right discover left
+250 push delayed bump -100 unobstructed vanish on left left to right
+250 delayed bump -100 temporary bump retreat left vanish o� right
+100 delayed bump -100 impeded turn discover right vanish o� left
+250 crash beam1 -100 blocked approach ahead
+250 squash approach, gets big
+250 push blocked approach on left
+250 push approach, stays small
+100 push
+100 push shallow
+100 blocked
-100 blocked

Figure 3: Outcome labels given to the hand built clusters for each of the 4 experience sets.

The labels given to the hand-built clusters generated
are summarized in table 3. In the visual tracking prob-
lems, the clusters correspond to visible objects' rela-
tions to the agent during activity; the object may move
across the visual �eld while turning or it may loom while
being approached. In the tactile problems, clusters cor-
respond to the Pioneer's velocity and the types of con-
tact made with objects in the environment during the
activity; heavy objects halt the Pioneer's progress, and
are labeled \crash", while light, small objects merely
trigger the break beams and are labeled \push".

We evaluate the clusters generated by DTW and ag-
glomerative clustering with a 2 � 2 contingency table
called an accordance table. Consider the following ta-
ble:

te :te

tt n1 n2

:tt n3 n4

We calculate the cells of this table by considering all
pairs of experiences ej and ek, and their relationships
in the target (hand-built) and evaluation (DTW) clus-
terings. If ej and ek reside in the same cluster in the
target clustering (denoted by tt), and ej and ek also
reside in the same cluster in the evaluation clustering
(denoted by te), then cell n1 is incremented. The other
cells of the table are incremented when either the tar-
get or evaluation clusterings places the experiences in
di�erent clusters (:tt and :te, respectively).

Cells n1 and n4 of this table represent the number of
experience pairs in which the clustering algorithms are
in accordance. We call n1 + n4 the number of agree-
ments and n2 + n3 the number of disagreements. The
accordance ratios that we are interested in are n1

n1+n2
,

accordance with respect to tt, and
n4

n3+n4
, accordance

with respect to :tt.

Table 4 shows the breakdown of accordance for the
combination of dynamic time warping and agglomera-
tive clustering versus the ideal clustering built by hand.
The column labeled \#" indicates the di�erence be-
tween the number of hand-built and automated clus-
ters. In each problem, the automated algorithm clus-
tered more aggressively, resulting in fewer clusters. The
columns that follow present the accordance ratios for
experiences grouped together, apart, and the total num-
ber of agreements and disagreements.
The table shows very high levels of accordance. Ra-

tios ranged from a minimum of 82.2% for experiences
clustered together (tt) in the move/visual set to 100%
for experiences clustered together in the turn problems.
For the turn problems, the aggressive clustering may
account for the high tt accuracy, causing slightly lower
accuracy in the :tt case.
The disparity in the number of clusters suggests that

tuning the parameters of the clustering algorithm to
produce more clusters might boost :tt accuracy while
preserving the tt accuracy. The table for this condition
is omitted for the sake of brevity, but our �ndings were
that tuning the clustering algorithm in this way leads
to a reduction in accuracy in all but the turn/tactile
dataset, whose :tt accuracy increased 7 points.
The failure of this strategy to increase :tt accuracy

by tuning the clustering algorithm to terminate with
more clusters indicates that it is not simply a matter of
the number of clusters. Exploration of the tt disagree-
ments in the move/visual data, the problem with the
highest error rate, indicates that 132 out of the 156 er-
rors can be traced to two clusters in the automatically
generated set that were distributed di�erently in the
target set. The target clusters were \no object" (no vis-
ible object being tracked, some minor noise) and \heavy
noise" (noise makes it unclear whether anything was
being tracked). The automated set had made the split
di�erently; experiences with any noise were grouped to-



# tt tt^te % :tt :tt^:te % Agree Disagree %

Move visual -5 876 720 82.2 4275 4125 96.4 4845 306 94.0

Move tactile -7 443 378 85.3 4708 4468 95.0 4846 305 94.0

Turn visual -5 262 262 100.0 599 571 95.3 833 28 96.7

Turn tactile -6 163 163 100.0 698 593 85.0 756 105 87.8

Figure 4: Accordance statistics for automated clustering against the hand built clustering.

gether from those that had none. The remaining 24
errors were covered by a handful of six or seven expe-
riences that were also attracted into clusters by experi-
ences the hand builder did not feel were similar.

d2

d1

(a)

(b)

(c)

Figure 5: (a) A 2d representation of experiences. (b)
The ordering e�ect of greedily merging based on the
shorter distance d2 than the group average distance d1.
(c) The most desirable clustering.

The problem is rooted in the tendency of greedy clus-
tering algorithms to su�er from ordering e�ects (Fisher
et al. 1992). In clustering schemes based on sorting, the
order in which instances are considered biases the clus-
ters that result. In agglomerative clustering algorithms,
the clusters that result are biased by the algorithm's
greedy choice of always considering merging the lowest
distance clusters. Figure 5 illustrates how the ordering
e�ect works on a 2d representation of the move/visual
data. Because two of the noisy data are very similar
(distance=d2), they are clustered together early in the
clustering process. This early decision creates two clus-
ter centers that individually attract members based on
the local greedy policy, where a global view (like our
hand-builder's) would cluster them together.
Fortunately, optimization techniques exist that can

re�ne initial clusterings to better reect a global
view (Fisher 1996). We have implemented a simple op-
timization technique which iteratively reassigns experi-
ences to neighboring clusters if a cluster is found with a
smaller group average distance than to the one the expe-
rience is in. After applying this optimization technique
to the clusters used to generate table 4, many of the
errors in the tt cases disappeared: accordance climbed
to 91.9% or better in all cases except the :tt case of

turn/tactile, which decreased to below 80%, which re-
ects the disparity between the number of clusters gen-
erated by our algorithm and the hand built clustering.

E1

E2

E1

Figure 6: Two time series, E1 and E2, and a possible
warping of E1 into E2 that obscures the salient di�er-
ence.

The remaining few percent of misses appear to be re-
lated to dynamic time warping's ability to manipulate
the time dimension. Figure 6 illustrates two time series
that correspond to the horizontal location of an object
on the Pioneer's visual plane. In experience e1, the ob-
ject comes into view from the right, passes across, and
disappears o� the left side of the visual plane. Experi-
ence e2 represents an object moving in the opposite di-
rection across the visual plane. Clearly, this is a salient
distinction for many purposes, including planning, but
it is one that DTW is able to obscure by sliding a single
point of e1 backward in time.

Related Work

The use of DTW as a measure of similarity between
multivariate time series dates back a number of years
to early work in speech recognition (Sakoe and Chiba
1978), although it was ultimately displaced by HMM's
(Jelinek 1997). HMM's are actually a powerful gener-
alization of DTW, and recent years have seen renewed
interest in DTW for applications where the full power
of HMM's may not be required (Berndt and Cli�ord
1994). That fact notwithstanding, it is unclear how
one would apply standard HMM algorithms (such as
Baum-Welch and Viterbi) directly to clustering time
series. One recent attempt (Smyth 1997) at that prob-
lem is much more complex, both computationally and
descriptively, than our application of DTW and requires
a priori knowledge of the number of clusters (although
a method for attempting to determine that number is
presented).
Other approaches to measuring similarity between

continuous time series have been proposed in the liter-
ature (Agrawal et al. 1995; Keogh and Pazzani 1998).



However, these approaches are limited to univariate
time series and are therefore not applicable to our prob-
lem, in which one sensor alone is insu�cient to discrim-
inate between experiences.

Conclusion

We have presented an approach to clustering the ex-
periences of a mobile robot in a complex, stochastic
environment. Using Dynamic Time Warping as a mea-
sure of the similarity between time series sensor data,
we are able to use agglomerative clustering to produce
clusters based on the dynamics of experiences, rather
than static features.
We evaluated the e�ectiveness of the unsupervised

clustering algorithm by measuring the accordance of the
clusters it generated with cluster sets generated by hand
as an answer key. Accordance statistics are based on
pairwise comparisons of experiences; they measure the
number of times the two clusterings agree on whether
pairs of experiences ej and ek should be clustered to-
gether or apart. Using only Dynamic Time Warping
and agglomerative clustering on 150 trials of real Pi-
oneer data in a variety of experiences, we measured
82-100% accordance between the automated and hand-
built clusterings. By applying a simple iterative opti-
mization algorithm to the initial clusterings, accordance
measures increased to 91.9% and better.
Still, pathological cases exist where Dynamic Time

Warping was able to �nd a temporal mapping that
glossed over signi�cant di�erences in time series exist.
Though these cases cover only a small percentage of the
robot's practical experiences, it is possible to cosntrain
DTW so that these di�erences will be felt through the
distance metric.
Future work will extend the approach described

above in two ways. First, rather than using each experi-
ence in its entirety, we will develop methods for identi-
fying subsequences within the experiences that are rel-
evant to the clustering process. Second, we intend to
leverage the relationship between DTW and HMM's to
develop a method of clustering time series in which the
output is a set of HMM's, one for each cluster.
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