
E�cient Mining of Statistical Dependencies

Tim Oates, Matthew D. Schmill, Paul R. Cohen and Casey Durfee

Experimental Knowledge Systems Laboratory

Department of Computer Science

Box 34610 LGRC

University of Massachusetts

Amherst, MA 01003-4610

foates, schmill, cohen, durfeeg@cs.umass.edu

Abstract

The Multi-Stream Dependency Detection al-

gorithm �nds rules that capture statistical

dependencies between patterns in multivari-

ate time series of categorical data (Oates &

Cohen 1996c). Rule strength is measured by

the G statistic (Wickens 1989), and an upper

bound on the value of G for the descendants

of a node allows msdd's search space to be

pruned. However, in the worst case, the algo-

rithm will explore exponentially many rules.

This paper presents and empirically evaluates

two ways of addressing this problem. The

�rst is a set of three methods for reducing the

size of msdd's search space based on informa-

tion collected during the search process. Sec-

ond, we discuss an implementation of msdd

that distributes its computations over multi-

ple machines on a network.

1 Introduction

Multi-Stream Dependency Detection (msdd) is an al-

gorithm for �nding rules that capture statistical de-

pendencies in databases. Past applications of the al-

gorithm include �nding dependencies in multi-variate

time series (Oates & Cohen 1996c), learning proba-

bilistic planning operators (Oates & Cohen 1996b),

and acquiring rules for correlating and predicting asyn-

chronous events (Oates, Jensen, & Cohen 1998). In

this paper, we describe three methods for reducing the

size of the search space that msdd considers and em-

pirically evaluate their utility. In addition, we present

a version of the algorithm, called d-msdd, that dis-

tributes the search for rules over multiple machines on

a network. The remainder of this section discusses the

core msdd algorithm. Section 2 describes the three

search space reduction methods and section 3 summa-

rizes our empirical work with them. Section 4 presents

d-msdd. Finally, section 5 summarizes.

Let D be a database containing T records: D =

fR1; : : : ; RT g. Each record is a set of unique to-

kens taken from the alphabet �, and the number

of tokens may vary from record to record: Ri =

f�1; : : : ; �ni
j�j 2 �; 0 � ni � j�jg. Let a pattern be

de�ned in exactly the same manner as a record. We

say that pattern p occurs in record R if p \ R = p.
A rule (also called a dependency) consists of a pair of

patterns, p and s.

For any given rule, we can construct a 2x2 contingency

table that describes the frequency of co-occurrence

of the corresponding patterns in a database. Let

count(p; s) denote the number of records in D that

contain both p and s, i.e. for which (p \ R = p) ^
(s \ R = s). If either of the arguments to count is

negated, then that argument must not appear in the

records. For example, count(p; s) denotes the num-
ber of records in D that contain p but do not contain
s, i.e. for which (p \ R = p) ^ (s \ R 6= s). The

following contingency table describes the frequency of

co-occurrence of p and s:

s s Totals

p n1 n2 r1

p n3 n4 r2

Totals c1 c2 T

In the table above, n1 = count(p; s), n2 =

count(p; s), n3 = count(p; s) and n4 = count(p; s).
Also, r1 = n1 + n2, r2 = n3 + n4, c1 = n1 + n3,
c2 = n2 + n4, and T = n1 + n2 + n3 + n4.

G is a statistical measure of association, with large

values indicating that p and s co-occur more or less

frequently than one would expect by random chance

(Wickens 1989). G is computed for the table above as

follows:

G = 2

4X

i=1

nilog(ni=n̂i)



n̂i is the expected value of ni under the assumption of
independence, and is computed from the row margins

and the table total. For example, n̂1 is the probabil-
ity that p and s will co-occur in a database record,

given that they are independent, times the number of

records in the database. The probability of an oc-

currence of p is r1=T , the probability of an occur-

rence of s is c1=T , and the probability of the joint

event given independence is (r1=T )(c1=T ). Therefore,
n̂i = (r1=T )(c1=T )T = r1c1=T . Strong dependencies,

as indicated by large G values, capture structure in

the database because they tell us that there is a rela-

tionship between their constituent patterns, that oc-

currences of those patterns are not independent.

msdd performs a general-to-speci�c search in the space

of all possible pairs of patterns de�ned over � and re-

turns the k strongest dependencies found, where k is

supplied by the user. It is perhaps more correct to

say that msdd returns all of the rules associated with

the top k values of G found in the search space. The

current version of msdd, in contrast to all other imple-

mentations reported previously, may return a number

of rules much larger than k. The reason is that if mul-
tiple rules have exactly the same G value they are all

retained, regardless of how di�erent the rules them-

selves are.

The root of msdd's search tree contains two empty

patterns, fg ) fg, and all rules at depth n have the

property that jpj + jsj = n. The children of a node

are generated by adding a token from � to either the

precursor or the successor of that node. Despite the

fact that the current implementation of msdd is highly

optimized C code which is capable of processing more

than 100,000 rules per second (on some databases), the

size of the search space is exponential in j�j and simply
cannot be explored exhaustively. However, because

msdd returns a list of the k strongest dependencies, it

is possible to use an upper bound on the value of G
for a rule's descendants to prune the search. If none

of the descendants of a rule can have a G value higher

than that of any of the current k best rules, then that

rule can be pruned. In previous work we derived such

an upper bound on G, making it possible for msdd

to �nd the k strongest dependencies in an exponential

space (Oates & Cohen 1996c).

To ensure that good rules are found early in the search,

and thus that pruning becomes e�ective early as well,

msdd performs iterative deepening. This also causes

the algorithm's memory requirements to be relatively

meager.

2 Improving Search E�ciency

The �rst method for reducing the number of rules that

msdd searches is based on the observation that the size

of the fringe as a function of search depth often has the

shape shown in Figure 1. For this dataset (the vote

dataset taken from the UC Irvine collection), the num-

ber of fringe nodes initially rises sharply, reaching a

peak of 7,304,048 nodes at depth nine, and then falls

o� just as sharply. There are two competing forces

at work causing this behavior: the size of the search

space and msdd's ability to prune. As search depth

increases, the size of the search space grows dramat-

ically. At shallow depths few good rules are found

and msdd's pruning cannot stop this growth. Eventu-

ally, though, a depth is reached at which most of the

k best rules have been found, and the vast majority

of the rules at subsequent depths have low G values

due to the presence of extraneous tokens and can be

pruned. To take advantage of this phenomenon, msdd

stops performing iterative deepening when the size of

the fringe falls below a user-speci�ed fraction of its

maximum size and instead performs a single depth-

�rst search with no depth limitation. For the search

shown in Figure 1, the fact that the size of the fringe

has peaked can be determined at the end of the search

to depth ten, resulting in one �nal iteration of depth

�rst search rather than the �ve iterations required by

iterative deepening to terminate at depth �fteen.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

2 4 6 8 10 12 14 16

F
rin

ge
 N

od
es

Depth

Figure 1: The number of fringe nodes as a function of

search depth on the vote dataset.

The second method for reducing the number of rules

that msdd considers involves reordering the elements

of � at each new depth. As with most implementations

of depth-�rst search, search operators are applied in a

�xed order to generate the children of a node. In the

case of msdd, search operators add an element of � to

a rule to generate a child, and operators are ordered

so that the operator that adds �i is applied before the
one that adds �j for i < j. The result is that children



for which the last token added has a lower index in �

are expanded before children for which that index is

higher. If the tokens in � are ordered so that the ones

with low indices are the ones that appear in rules with

high G values, then those rules will be generated early

and pruning becomes more e�ective early. Under the

assumption that tokens that appeared in the k best

rules at depth d will continue to be the most useful

tokens at depth d+1, we reorder the tokens in � after

each search depth so that the most frequently used

tokens have the lowest indices in �.

The �nal performance enhancement takes advantage of

the fact that the size of msdd's search space is expo-

nential in j�j. Let � be the set of tokens that appear at

least once in the �nal set of the k best rules. If � could

be determined a priori, then the other tokens could be

eliminated from �, leading to a potentially large re-

duction in the size of the search space. Although it is

impossible to determine � prior to searching, it is of-

ten possible to identify that set by iteratively looking

at subsets of �. Even when � is very large, exhaustive

search to a shallow depth is feasible. The tokens that

appear in the k best rules found during that search

serve as an initial approximation to �, which we will

denote �0. Hereafter, all searches are performed us-

ing �0 as the token set rather than �. After the ini-

tial shallow search, the following procedure is repeated

some �xed number of times:

1. Perform a depth-unlimited run of the standard

iterative deepening search (using �0).

2. Remove all variables in �0 that do not appear in

any of the k best rules.

3. Add some small number of randomly selected

variables in ���0 to �0.

The search in step 1 is very fast because j�0j is typically
much smaller than j�j, making it possible to perform

many iterations of this procedure in the time normally

required to perform one search on the space de�ned

by �. Unless the true k best rules individually con-

tain very large numbers of tokens and rules containing

subsets of those tokens all have low G scores, the pro-

cedure outlined above will eventually converge on �.

There is no guarantee of such convergence in practice,

especially when the number of iterations through the

procedure is small. However, empirical results show

that it performs quite well both in terms of CPU re-

quirements and ability to �nd a good approximation

to the set of rules found when searching over �.

3 Experiments

To evaluate the utility of the performance enhance-

ments described above, we ran msdd on several

datasets taken from the UC Irvine collection. For each

dataset, we ran msdd �ve times in each of the condi-

tions below, with each iteration using a di�erent ran-

dom ordering of the variables:

standard - no performance enhancements

turned on

fringe - switching from iterative deepening to

depth-unlimited DFS when the fringe falls below

75% of its maximum size

order - reordering � after each search

sample - �ve iterations of random sampling of

�ve tokens in ���0

all - applying each of fringe, order and sam-

ple at the same time

All experiments were run on a 500MHz DEC Alpha,

and in each case k = 10.

Results for six di�erent datasets taken from the UC

Irvine repository are shown below. Table 1 lists those

datasets along with the number of records and the

number of unique tokens (j�j) they contain. For each

dataset, Table 2 shows the mean number of CPU sec-

onds and search nodes required to �nd the k best rules.
In addition, the number of rules returned and their

mean length (as measured by the sum of the number

of tokens in their constituent patterns) is reported. Fi-

nally, the disparity between the true k best rules and

the actual rules found is shown, where disparity is the

mean number of tokens by which each rule in the true

rule set di�ers from its best match in the actual rule

set returned. Note that the standard, order and

fringe conditions are all guaranteed to �nd the opti-

mal rule set, and thus always have a disparity of zero.

Dataset Records Unique Tokens

flare 323 45

lymphography 148 64

mushroom 8124 128

promoters 106 230

tic-tac-toe 958 29

vote 435 45

Table 1: Datasets and their features that are relevant

to msdd's run time.

On the vote dataset, standard expanded nearly one

quarter of a billion nodes on average, requiring a little

over one hour of CPU time. Interestingly, the amount

of search required by order and standard were vir-

tually identical on this dataset. However, compared to

standard, fringe was more e�cient by a factor of

two, and both sample and all were more e�cient by

an order of magnitude. t tests comparing mean CPU



seconds and mean nodes expanded con�rm these re-

sults, with all di�erences being highly signi�cant. De-

spite the fact that sample and all are not guaranteed

to �nd the same rule set as the other conditions, they

did so unfailingly (i.e. had a disparity of zero).

On the promoters dataset, standard expanded al-

most 300 million nodes on average, requiring a lit-

tle under 23 minutes of CPU time. Each of order,

fringe, sample and all were signi�cantly more e�-

cient (as indicated by t tests) than standard. Again,
all was the least expensive condition, requiring 1/6

the amount of search required by standard. Al-

though the rules found in the sample and all con-

ditions di�ered from the rules found in the other con-

ditions on this dataset, there was substantial overlap.

The mean G of the rules returned in the former two

conditions was 63:09 and 64:37 respectively, whereas

the mean G of the true k best rules was 68:25. On

average, the rules returned in the sample and all

conditions di�ered from the optimal rule set by 2.5

and 3.23 tokens respectively.

Results for the lymphography dataset show similar

results, with signi�cant speedups and low disparity

(less than one token per rule). However, the re-

sults are rather di�erent for flare, mushroom and

tic-tac-toe. In each of these datasets, the order

condition was virtually identical to the standard con-

dition, with fringe performing signi�cantly better. In

each case, though, both sample and all performed

signi�cantly worse. The reason for this is made ob-

vious by inspecting the �nal rule sets. Almost every

token in � appears in the list of rules returned. There-

fore, j�0j rapidly approaches j�j, causing each iteration
of the sampling procedure to be almost as costly as

a single run of standard. Future work will include

attempting to detect this condition as the search pro-

ceeds so as to stop iterating through the sampling pro-

cedure.

4 Distributed Search

Expansion of a node by msdd requires knowledge of

the node itself (to determine which search operators

are valid), � (the list of all search operators), the

dataset (to build contingency tables), and the current

list of the k best nodes (to prune). Only the list of the
k best nodes changes dynamically during the search,

making it possible to distribute the search space over

multiple machines on a network as long as those ma-

chines have access to the same k best list. However,

an out-of-date k best list will only result in underesti-

mates of the pruning threshold, so the algorithm will

not su�er a loss of admissibility if local copies of the

k-best list are updated lazily. In the subsections that

follow, we describe the design of the d-msdd algorithm

and our criteria for evaluating it, and then move on to

the more challenging issue of e�ciently balancing the

distributed search.

4.1 DMSDD

d-msdd uses a centralized model of communication to

coordinate its distributed search. A single server acts

as a hub for communication and user control, with one

or more clients connecting via TCP/IP to o�er their

computational resources to the search.

The distributed search begins with the server initiating

the distribution of data. Once complete, the server ex-

pands the root of the search space to generate a single

ply of the search space, and distributes it among the

connected clients. Work can begin at a searching ma-

chine as soon as there are nodes to be evaluated, and

continues until all participating searchers report that

they have processed their entire workloads. During the

search, should a participant decide to add a rule to it's

k-best list, the rule and its rating are broadcast to all

of the other participants.

The major advantage to distributing the search for

dependencies across multiple computing resources is

obvious: in the ideal case, a computation requiring


 milliseconds of computing time would take 


n
mil-

liseconds to complete on n machines. Due to message

passing and other overhead, this idealized speedup is

di�cult to obtain, but it is the goal of parallel and dis-

tributed computation to come as close to it as possible.

The key to realizing this goal is to keep all of the dis-

tributed resources as busy as possible while reducing

message passing and other overhead to a minimum.

Some studies have been made of provably optimal

load-balancing policies. Most, if not all such stud-

ies, such as (Gao, Rosenberg, & Sitaraman 1995), re-

quire a priori knowledge about the structure of the

search space. The msdd search space can indeed be

enumerated and reasoned about, but due to pruning,

the e�ective search space (that space which is actually

searched) cannot be determined a priori. For this rea-

son, optimality results based on tree sweep procedures

do not directly apply to d-msdd.

Many solutions to the load balancing problem have

been proposed for problems for which optimality re-

sults do not apply, such as IDA* search (Cook 1996).

In general, these load balancing algorithms can be dis-

tinguished in two ways. The �rst distinction can be

made based on what is partitioned (and subsequently

distributed): the computational space, or the data.

In functional decomposition, distinct portions of the

computational space are distributed among process-

ing elements. In data decomposition, the data is dis-



tributed. With msdd, the systematic nature of the

search space allows disjoint sets of nodes to be eval-

uated independently. The same process if the data

were partitioned would not allow the searchers to op-

erate independently; every result generated by a host

would need to be synchronized with every other host.

As such, the logical approach to partitioning (and the

one we take) with d-msdd is functional decomposition.

The second distinction among distributed algorithms

is made between static load balancing and dynamic

load balancing. Static load balancing attempts to

divide the data prior to the beginning of the dis-

tributed computation. For d-msdd, static load bal-

ancing equates to dividing the �rst ply of the search

space among the distributed processing elements. Dy-

namic load balancing takes place while the search is

in progress. An example of dynamic load balancing in

d-msdd would be a processor with a large agenda of-


oading some of its work to a processor with few nodes

on its agenda. Good static analysis can make dynamic

load balancing unnecessary, reducing communication

overhead and idle CPU cycles.

4.1.1 Evaluation Criteria

The basic msdd algorithm has been shown to be ef-

fective in terms of the quality of the rules it discov-

ers (Oates & Cohen 1996a; Oates et al. 1996) and

e�cient in its search of very large spaces. Our goal in

evaluating d-msdd is to test the hypothesis that ef-

�ciency increases proportionally to the computing re-

sources that are added to the search.

We measure performance gain (or loss) through four

variables: the total number of nodes expanded, CPU

time, CPU utilization, and the number of messages

generated. The number of nodes considered in the

search is a raw measure of computational expense.

CPU time is measured in milliseconds as the sum of

system and user time spent on behalf ofMsdd . All re-

sults reported here are for machines in which d-msdd

is the primary load. CPU utilization measures the per-

centage of real time that the open list of a machine is

non-empty. In our experiments, we record the mean

CPU utilization across the nodes in a search as well

as the minimum utilization. Finally, the number of

messages generated is simply a tally of the TCP/IP

messages sent from any searcher to another during the

search.

The datasets used for evaluation of d-msdd were the

solar 
are dataset and the chess endgame dataset, both

from the UC Irvine repository. In all cases, k was set

to 20. The number of machines involved in the search

varied from one to �ve, and included one 500MHz Al-

pha, three 175MHz Alphas, and one 40MHz Sparc10.

It should be noted that d-msdd was built on an old

version of msdd that was implemented in Lisp. There-

fore, direct comparisons of running times and numbers

of nodes expanded between d-msdd and the current

implementation of msdd are impossible. However, we

believe that the results in this section will be quali-

tatively the same when d-msdd is re-implemented on

the C version of msdd.

4.1.2 Static Load Balancing

Static load balancing is an approach to load balancing

that attempts to evenly distribute work up front, by

static analysis of the initial problem space. In the prior

discussion of load balancing, the remark was made that

optimality results do not directly apply to d-msdd.

This is not to say that devoting e�ort to static load

balancing is not a worthwhile task; however, one can-

not expect optimal static load balancing for tasks that

involve dynamic changes to the problem space.

Our �rst o�ering for a static load balancing policy con-

siders the relative speeds of the machines when divid-

ing the initial problem space. This capacity sensitive

policy ensures that each searcher receives a number of

nodes proportional to its processing capacity by con-

sulting a database of known clients and architectures

containing estimates of their processing capacity. The

capacity estimates in the database re
ect the mean

number of nodes expanded per second over a �xed ref-

erence trial.

The graphs in Figures 2 and 3 show the e�ects of

adding processors to the search using static load bal-

ancing. The plots labeled \capacity" correspond to d-

msdd operating using only the capacity sensitive load

balancing policy. Each data point represents the mean

of �ve trials with 90% con�dence intervals.

The number of nodes expanded increases a small

amount as a result of distributing the search. The

e�ects are very small, and most likely due to the fact

that the k-best list is subject to latency in updating.

Because update messages to local k-best lists may ex-
perience propagation delays, a small number of nodes

may temporarily escape pruning. Time to completion,

shown in Figures 2b and 3b, behaves somewhat di�er-

ently than expected, though. The time to completion

can actually increase as processors are added to the

search!

One need only look to the graphs of CPU utilization

to get an indication of how the search could actually

take longer when additional resources are available.

As processors are added, overall CPU utilization de-

clines, indicating that mistakes are being made in the

static partitioning phase. The problem stems from the

systematic expansion of the search space. The capac-



rank

capacity

SEARCHERS

5000

10000

2 3 41

SEARCHERS

1.0E+6

2 3 4

R
E
A
L
-
T
I
M
E

0.5E+6

1

rank

capacity

rank

capacity

SEARCHERS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4

M
E
A
N
-
U
T
I
L

1

SEARCHERS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4

M
I
N
-
U
T
I
L

rank
capacity

1

N
O
D
E
S

Figure 2: The e�ects of adding more workstations to

the search of the solar 
are dataset with the capac-

ity sensitive and rank sensitive load balancing policies.

Each data point is based on 5 samples and is shown

with 90% con�dence intervals. (a) the e�ect on the

total number of nodes expanded (b) the e�ect on the

time to completion for unloaded machines (c) the ef-

fect on mean CPU utilization (d) the e�ect on the

minimum CPU utilization.

ity sensitive algorithm does not take into account how

proli�c each o�oaded node may be { the number of

children can vary greatly from search node to search

node. The result is a search that lasts as long as it

takes the machine allocated the most overall work to

complete, leaving the other processors idle for as much

as 70% of the total time to completion. In our ex-

periments, the machine in the 1 processor case is the

fastest of the bunch. Thus, adding slower machines to

the search can lengthen the overall search time.

The static policy should improve, then, if it would only

take into account the number of children a search node

can parent. We will call the number of search opera-

tors that apply at a rule its rank. Rank can be used

to compute the size of the unpruned search space par-

ented by rule r. Let spacesize be the maximum number

of nodes a searcher will have to expand if it is given rule

r as its workload. Certainly, the maximum amount of

work a searcher could have to do is much greater than

the work a search will do on most datasets. Rank and

spacesize, however, are statistics that can be computed

a priori, while e�ective spacesize is not. d-msdd's

rank-based policy attempts to balance, in a capacity

sensitive manner, the total spacesize it allocates to dif-

ferent searchers.

The plots labeled \rank" of Figures 2 and 3 show the

e�ects of adding processors to the search with rank-

based load balancing. The performance of rank-based

load balancing appears to scale somewhat better than

SEARCHERS

10000

20000

30000

2 3 4

N
O
D
E
S

1

SEARCHERS

1.0E+6

2.0E+6

3.0E+6

4.0E+6

2 3 4

R
E
A
L
-
T
I
M
E

1

rank

capacity

rank

capacity

SEARCHERS

M
E
A
N
-
U
T
I
L

SEARCHERS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4

M
I
N
-
U
T
I
L

1

rank
capacity

rank

capacity

0.5

1

2 3 41

Figure 3: The e�ects of adding processors to the search

of the chess endgame dataset. (a) the e�ect on the to-

tal number of nodes expanded (b) the e�ect on the

time to completion for unloaded machines (c) the ef-

fect on mean CPU utilization (d) the e�ect on the

minimum CPU utilization.

the capacity-based policy for the solar 
ares set. In the

case of four processors, the rank based scheme shows

an improvement in mean CPU utilization of roughly

20% over capacity-only load balancing, and has less

variance in the results. Results on all other measures

are mixed. The persistent problem appears to be re-

lated to the location of the k best rules in the unpruned
search space. The working assumption of the rank-

based policy is that rules are uniformly distributed

across the working search space, a seemingly unsafe

assumption.

4.1.3 Dynamic Load Balancing

Overall, static load balancing does not appear to be

feasible as a standalone load balancing policy for d-

msdd. The major fault of static load balancing is that

the information useful to load balancing becomes avail-

able only as the search progresses. Before any nodes

are rated and the k-best list starts �lling out, d-msdd

has little information to base its load balancing on.

The solution to this problem is to allow processors to

correct the misallocations of the static policy by dy-

namically rebalancing their workloads.

Dynamic load balancing schemes are a class of algo-

rithms that perform load balancing after work begins.

For d-msdd, dynamic load balancing is initiated when

a client detects that its agenda is about to become

empty. In such a situation, the client sends a message

to the server indicating that it can take on more work.

This is referred to as receiver initiated load balancing,

as the eventual recipient initiates the transfer of work.



1

RANK

CAPACITY

SEARCHERS

500000

1.0E+6

2 3 4

R
E
A
L
-
T
I
M
E

1

RANK

CAPACITY

SEARCHERS

0.9

1

2 3 4

M
E
A
N
-
U
T
I
L

Figure 4: Results for the solar 
ares data after adding

dynamic load balancing to d-msdd.(a) the e�ect on

the time to completion for unloaded machines (b) the

e�ect on mean CPU utilization.

RANK

CAPACITY

SEARCHERS

1.0E+6

2.0E+6

2 3 4

R
E
A
L
-
T
I
M
E

1

SEARCHERS

0.9

1

2 3 4

M
E
A
N
-
U
T
I
L

1

RANK

CAPACITY

Figure 5: Results for the chess data after adding dy-

namic load balancing to d-msdd. (a) the e�ect on

the time to completion for unloaded machines (b) the

e�ect on mean CPU utilization.

When the server receives the work request, it �rst

checks its own agenda to see if there is enough work

there to o�oad some minimum number of nodes. If

there is, the server invokes a static load balancing pol-

icy to rebalance its load with respect to the client. If

the server does not have enough nodes to o�oad to

a waiting client, or its own agenda becomes empty, it

broadcasts a request for work to all connected clients,

who themselves invoke the static load balancing algo-

rithm when possible.

The message passing associated with dynamic rebal-

ancing also provides an opportunity to obtain more

up-to-date information for use in load balancing. In

particular, by the time a searcher has expended its

agenda, it will have more recent estimates of its own

processing capacity. Updates to the capacity lookup

table are sent to the server along with each request for

more work.

Performance results with dynamic load balancing

working in conjunction with both the capacity and

rank static load balancing algorithms are shown in

Figures 4 and 5. The graphs of mean CPU utiliza-

tion show the e�ect that we had hoped for. For both

the solar 
ares and chess datasets, mean CPU utiliza-

tion show only slight decreases as processors are added,

and are generally within the 90-95% range. The min-

imum CPU utilization, not shown, exhibited similar

SEARCHERS

1000

2000

2 3 4

M
E
S
S
A
G
E
S

1

RA
NK

CA
PA
CI
TY

RAN
K

CA
PA
CI
TY

1

SEARCHERS

1000

2000

3000

4000

5000

2 3 4

M
E
S
S
A
G
E
S

(chess)(solar)

Figure 6: The number of network messages generated

during search with dynamic load balancing turned on.

(a) the solar 
are dataset (b) the chess dataset.

behavior, in most cases between 80-95%. As a result,

the mean completion time decreases in an apparently

linear fashion as processors are added to the search.

Recall that the machine in the single processor case

is an Alpha approximately 4.75 times faster than the

machines added in the 2 and 4 processor cases. In

the ideal case, then, the performance increase would

be around 163%. With the rank based load policy,

the mean speedup in our trials was 162% for the solar


ares and 143% on the chess data. The dynamic load

balancing scheme achieves high levels of CPU utiliza-

tion despite the relatively poor scheduling information

available to the static policies.

Better load balancing does not come without a cost,

though. Figure 6 shows the number of network mes-

sages generated under the dynamic load balancing

scheme. The number of messages generated while

searching the solar 
are and chess datasets appears lin-

ear with respect to the number of searchers and in the

thousands. For networks with large propagation de-

lays, or large numbers of processors this performance

degradation could be signi�cant.

5 Discussion

Although the core msdd algorithm is capable of

�nding complex dependencies in exponential search

spaces, we demonstrated the utility of three methods

for further reducing the number of rules that msdd

considers. The impact of the methods depends to a

large extent on the nature of the database, but in all

cases at least one of the methods resulted in signi�-

cant reductions in running time. If one is willing to

forgo msdd's optimality guarantees (with respect to

the G values of the �nal rule set), then reductions in

CPU time and nodes expanded of up to an order of

magnitude are possible while still �nding high quality

rules. In addition, we demonstrated that it is possible

to distribute msdd's search for structure over multi-

ple networked machines and achieve an almost linear

speedup in the number of machines used.



6 Acknowledgement

This research is supported by DARPA/AFOSR un-

der contract number F49620-97-1-0485, DARPA/RL

under contract number F30602-93-C-0100, and by a

DoD National Defense Science and Engineering Grad-

uate (NDSEG) Fellowship. The U.S. Government is

authorized to reproduce and distribute reprints for

governmental purposes notwithstanding any copyright

notation hereon. The views and conclusions contained

herein are those of the authors and should not be in-

terpreted as necessarily representing the o�cial poli-

cies or endorsements, either expressed or implied, of

DARPA or the U.S. Government.

References

Cook, D. J. 1996. A hybrid approach to improving

the performance of parallel search. In Geller, J., ed.,

Parallel Processing for Arti�cial Intelligence. Elsevier

Science Publishers.

Gao, L.-X.; Rosenberg, A. L.; and Sitaraman, R. K.

1995. Optimal architecture-independent scheduling

of �ne-grain tree-sweep computations. In 7th IEEE

Symposium on Parallel and Distributed Processing,

620{629.

Oates, T., and Cohen, P. R. 1996a. Learning planning

operators with conditional and probabilistic e�ects.

In Working Notes of the AAAI Spring Symposium

on Planning with Incomplete Information for Robot

Problems, 86{94.

Oates, T., and Cohen, P. R. 1996b. Searching for

planning operators with context-dependent and prob-

abilistic e�ects. In Proceedings of the Thirteenth Na-

tional Conference on Arti�cial Intelligence, 863 { 868.

Oates, T., and Cohen, P. R. 1996c. Searching for

structure in multiple streams of data. In Proceedings

of the Thirteenth International Conference on Ma-

chine Learning, 346 { 354.

Oates, T.; Schmill, M. D.; Gregory, D. E.; and Cohen,

P. R. 1996. Detecting complex dependencies in cate-

gorical data. In Fisher, D., and Lenz, H., eds., Learn-

ing from Data: Arti�cial Intelligence and Statistics.

New York: Springer Verlag, Inc. 185{195.

Oates, T.; Jensen, D.; and Cohen, P. R. 1998. Corre-

lating and predicting asynchronous events. In Work-

ing Notes of the AAAI-98 workshop on Predicting the

Future: AI Approaches to Time-Series Analysis, 73{

79.

Wickens, T. D. 1989. Multiway Contingency Tables

Analysis for the Social Sciences. Lawrence Erlbaum

Associates.



flare

Condition CPU Seconds Nodes # Rules Length Disparity

standard 57.90 3,359,849 912.00 5.09 0

order 57.87 3,346,089 912.00 5.09 0

fringe 29.86 1,836,863 912.00 5.09 0

sample 287.5 16,581,715 912.00 5.09 0

all 146.64 8,949,947 912.00 5.09 0

lymphography

Condition CPU Seconds Nodes # Rules Length Disparity

standard 18125.34 2,871,877,000 66.00 5.48 0

order 18191.70 2,869,929,700 66.00 5.48 0

fringe 7898.37 1,311,838,200 66.00 5.48 0

sample 3506.80 451,658,020 55.33 5.11 0.91

all 4346.57 634,634,100 62.67 5.32 0.42

mushroom

Condition CPU Seconds Nodes # Rules Length Disparity

standard 18,809.59 189,895,730 9402.00 9.50 0

order 18,962.20 189,547,940 9402.00 9.50 0

fringe 10,225.68 105,555,256 9402.00 9.50 0

sample 44,523.57 393,258,140 9402.00 9.50 0

all 17,984.33 172,908,180 7554.00 9.33 0.25

promoters

Condition CPU Seconds Nodes # Rules Length Disparity

standard 1364.32 297,523,940 418.00 7.67 0

order 1257.40 271,428,540 418.00 7.67 0

fringe 621.92 142,537,070 418.00 7.67 0

sample 421.72 72,410,270 274.00 7.57 2.50

all 214.47 39,952,100 101.60 7.12 3.23

tic-tac-toe

Condition CPU Seconds Nodes # Rules Length Disparity

standard 673.97 21,553,110 60 4.00 0

order 673.90 21,553,088 60 4.00 0

fringe 499.11 16,173,695 60 4.00 0

sample 3370.47 107,787,840 60 4.00 0

all 2495.93 80,890,920 60 4.00 0

vote

Condition CPU Seconds Nodes # Rules Length Disparity

standard 4005.03 225,861,500 20 3.3 0

order 3999.81 225,844,530 20 3.3 0

fringe 2228.59 131,412,384 20 3.3 0

sample 269.21 12,648,121 20 3.3 0

all 144.63 7,782,805 20 3.3 0

Table 2: Performance of msdd and its various enhancements on several datasets.


