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If robotic agents are to act autonomously they must

have the ability to construct and reason about models

of their physical environment. In all but the simplest,

static domains, such models must represent the dynam-

ics of environmental change. For example, because the

e�ects of actions are not instantaneous, planning to

achieve goals requires knowledge of how the robot's ac-

tions a�ect the state of the world over time. The tradi-

tional approach of hand-coding this knowledge is often

quite diÆcult, especially for robotic agents with rich

sensing abilities that exist in dynamic and uncertain

environments. Ideally, agents would acquire knowledge

of their environment autonomously, and then use this

knowledge to act autonomously.

This paper presents an unsupervised method for learn-

ing models of environmental dynamics based on clus-

tering multivariate time series. Experiments with a

Pioneer-1 mobile robot demonstrate the utility of the

method and show that the models acquired by the robot

correlate surprisingly well with human models of the en-

vironment.

Individual time series are obtained by recording the

output of a subset of an agent's sensors. We call these

time series experiences. An example of a sensor subset

on the Pioneer-1 robot is its array of seven sonars. Each

sonar returns the distance to the closest object in the

direction that it points. Recording of time series is usu-

ally triggered by events, such as the initiation of a par-

ticular action. Each time a given event occurs, the time

series that was recorded is added to a bucket associated

with that event. Once a suÆcient number of experi-

ences are recorded, clusters can be formed. Clustering

requires a measure of similarity between multivariate

time series. One such measure that is particularly ap-

propriate for this problem is Dynamic Time Warping

(DTW) [4]. Each cluster can then be represented by a

prototype, either the cluster centroid or an average of

its members.

Cluster prototypes formed in this manner are use-

ful for a variety of purposes. If the event driving the

collection of time series was the initiation of an action,

cluster prototypes correspond to qualitatively di�erent

outcomes of engaging in that action. As such, they can

be used for o�-line planning and for on-line prediction

by �nding the best partial match among the prototypes

to current sensor readings.

We are interested in the results of clustering for two

key reasons. First, for the purposes of planning, we

would like clusters to map to action outcomes, so that

each cluster prototype can serve as the basis for an op-

erator model. Second, we would like agents to be able

to acquire a believable ontology of activity. That is, we

would like our agents to be able to di�erentiate actions

as a human would so that their representations of out-

come are in accordance with our own. As such, our pri-

mary means of evaluating cluster quality is to compare

the clusters generated by our automated system against

clusters generated manually by the experimenter who

designed the experiences they comprise.

The following experiment was used to explore these

issues. Data were collected for 4 sets of experiences:

102 experiences with the robot moving in a straight line

while collecting data from the velocity encoders, break

beams, and gripper bumper (which we will call the tac-

tile sensors), 102 move experiences collecting data from

the Pioneer's vision system, including the X and Y loca-

tion, area, and distance to a single visible object being

tracked (which we will call the visual sensors), 50 expe-

riences with the robot turning in place collecting tactile

data, and 50 turn experiences collecting visual data. In

each experience, the robot attempted to move or turn

for a duration between 2 and 8 seconds in the laboratory

environment. Visible objects and objects that impeded

or obstructed the robot's path were present in many of

the trials.

We evaluate the clusters generated by DTW and ag-



# tt tt^te % :tt :tt^:te % Agree Disagree %

Move visual -5 876 720 82.2 4275 4125 96.4 4845 306 94.0

Move tactile -7 443 378 85.3 4708 4468 95.0 4846 305 94.0

Turn visual -5 262 262 100.0 599 571 95.3 833 28 96.7

Turn tactile -6 163 163 100.0 698 593 85.0 756 105 87.8

Figure 1: Accordance statistics for automated clustering against the hand built clustering.

glomerative clustering with a 2 � 2 contingency table

called an accordance table. Consider the following ta-

ble:

te :te

tt n1 n2

:tt n3 n4

We calculate the cells of this table by considering all

pairs of experiences ej and ek, and their relationships

in the target (hand-built) and evaluation (DTW) clus-

terings. If ej and ek reside in the same cluster in the

target clustering (denoted by tt), and ej and ek also

reside in the same cluster in the evaluation clustering

(denoted by te), then cell n1 is incremented. The other

cells of the table are incremented when either the tar-

get or evaluation clusterings places the experiences in

di�erent clusters (:tt and :te, respectively).

Cells n1 and n4 of this table represent the number

of experience pairs in which the clustering algorithms

are in accordance. We call n1+n4 the number of agree-

ments and n2 + n3 the number of disagreements. The

accordance ratios that we are interested in are n1
n1+n2

,

accordance with respect to tt, and
n4

n3+n4
, accordance

with respect to :tt.

Table 1 shows the breakdown of accordance for the

combination of dynamic time warping and agglomera-

tive clustering versus the ideal clustering built by hand.

The column labeled \#" indicates the di�erence be-

tween the number of hand-built and automated clus-

ters. In each problem, the automated algorithm clus-

tered more aggressively, resulting in fewer clusters. The

columns that follow present the accordance ratios for

experiences grouped together, apart, and the total num-

ber of agreements and disagreements.

The table shows very high levels of accordance. Ra-

tios ranged from a minimum of 82.2% for experiences

clustered together (tt) in the move/visual set to 100%

for experiences clustered together in the turn problems.

For the turn problems, the aggressive clustering may

account for the high tt accuracy, causing slightly lower

accuracy in the :tt case. The disparity in the num-

ber of clusters suggests that tuning the parameters of

the clustering algorithm to produce more clusters might

boost :tt accuracy while preserving the tt accuracy.

Additional experiments explored methods for opti-

mizing the clusters to meliorate ordering e�ects induced

by the agglomerative clustering algorithm [1]. After ap-

plying this optimization technique to the clusters used

to generate table 1, many of the errors in the tt cases

disappeared: accordance climbed to 91.9% or better in

all cases except the :tt case of turn/tactile, which de-

creased to below 80%, which reects the disparity be-

tween the number of clusters generated by our algo-

rithm and the hand built clustering.

Current work is extending the approach described

above in three ways. First, we are extending the au-

tonomy of our system by utilizing cluster prototypes as

bases for planning models, which will allow the Pioneer-

1 agent to create basic action sequences to achieve sen-

sorimotor goals [5]. Second, rather than using each ex-

perience in its entirety, we are developing methods for

identifying subsequences within the experiences that are

relevant to the clustering process [2]. Finally, we are

leveraging the relationship between DTW and HMM's

to develop a method of clustering time series in which

the output is a set of HMM's, one for each cluster [3].
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