
Discovering Rules for Clustering and
Predicting Asynchronous Events

Tim Oates, David Jensen and Paul R. Cohen
Experimental Knowledge Systems Laboratory

Department of Computer Science

Box 34610 LGRC

University of Massachusetts

Amherst, MA 01003-4610

foates, jensen, coheng@cs.umass.edu

Abstract

A wide variety of complex systems generate asyn-
chronous events, including nuclear power plants, com-
puter networks, governments, relational database sys-
tems and operating systems. We present Multi-Event
Dependency Detection (medd), a novel algorithm for
acquiring event correlation rules from historical logs
of asynchronous events. Given a new stream of events
generated in real time, the rules enable two impor-
tant activities: clustering sets of related events and
predicting events that will occur in the future. The
former activity supports data reduction so that hu-
man monitors can more easily understand the state of
the system generating the events, and the latter activ-
ity facilitates prediction of future states of the system
by reasoning about events that are likely to occur.
Medd's utility is evaluated in experiments with event
logs generated by a simulated computer network and
encodings of Reuters news stories describing events in
the Persian Gulf during 1996 and 1997.

Introduction

A large number of diverse real-world systems gener-

ate asynchronous events, electronic status reports, usu-

ally in response to abnormal conditions. For example,

computer networks and nuclear power plants generate

events when individual components fail (Feldkuhn &

Erickson 1989). Political systems generate events in

the form of media reports when atypical circumstances

arise (Schrodt 1994). Complex computer programs,

such as relational database systems and operating sys-

tems, maintain logs that record a variety of informa-

tion such as user activity and error conditions (Feld-

kuhn & Erickson 1989). For the sake of concreteness,

the remainder of the discussion will focus on events

generated by computer networks.

This paper describes the Multi-Event Dependency

Detection (medd) algorithm for discovering temporal

patterns in historical event logs. These patterns, which

are represented in the form of event correlation rules,

support two kinds of inference: determining which re-

ported events \go together", and predicting the occur-

rence of future events. The latter type of inference is

clearly important for reasoning about how the state of

a system is likely to evolve over time given the events

that it is currently generating. The former type of in-

ference facilitates data reduction. For example, a sin-

gle fault in a network, such as the failure of a router,

can generate dozens of events, ooding the manager's

console with information. If one or more faults oc-

cur simultaneously, it may be di�cult to detect that

separate faults have occurred based on the single resul-

tant stream of events. Event correlation groups related

events into clumps, reducing the number of separate re-

ports arriving at a manager's console and organizing

that information into meaningful units.

Algorithms to automatically construct event corre-

lation rules face at least three challenges. First, event

correlation rules must express important generaliza-

tions while abstracting over unimportant details. For

example, an event correlation rule might specify the

types of network elements that generate the events,

but abstract over particular event times and physical

locations.

Second, rules must be constructed from incomplete

information. The same fault can produce di�erent

event patterns, depending on the operating conditions

of the network. Although a fault might disrupt com-

munication between two devices, the devices will not

report an event unless they attempt to communicate.

Thus, all potential events produced by a particular

fault are unlikely to be reected in any one event log.

This a�ects judgments about the quality of event corre-

lation rules. If a rule forms a clump from two abstract

events, A and B, then the occurrence of an event of

type A without an event of type B is not necessarily

negative evidence for the rule. Instead, it may indicate

that the conditions for generating an event of type B
never arose over the duration of the fault.

Third, rule construction cannot rely on precise tem-

poral ordering of events, especially in computer net-

works. Events are often reported out of sequence be-

cause of non-deterministic messaging delays and the

vagaries of clock synchronization. Thus, exact tempo-

ral ordering cannot be used to induce causality. In-

stead, general temporal proximity is used to induce

which events are associated.

The MEDD algorithm

With these constraints in mind, we designed and imple-

mented medd (Multi-Event Dependency Detection).

Medd �nds dependencies between patterns of network

events recorded in event logs.1 Dependencies are unex-

pectedly frequent or infrequent co-occurrences of pat-

terns of events, and can be expressed as rules of the

following form: \If an instance of event pattern x is

recorded in the log at time t, then an instance of event
pattern y will be recorded in close temporal proximity

with probability p."2 Dependency rules are denoted

x) y; x is called the precursor pattern, and y is

called the successor pattern. A dependency is strong

if the empirically determined value of p (obtained by

counting actual co-occurrences of x and y in historical

event logs) is very di�erent from the probability of see-

ing a co-occurrence of x and y under the assumption

that they are independent. Strong dependencies cap-

ture structure in event logs because they tell us that

there is a relationship between their constituent event

patterns, that occurrences of those patterns are not

independent.

Performing event correlation with medd is a two-

step process. First, medd is used o�-line to �nd strong

dependencies between patterns of events in existing

event logs. Second, the resulting rules are matched

against new events as they are generated in real time.

Because strong dependencies indicate that occurrences

of precursors and successors are not independent, any

co-occurrence of the constituent event patterns of a

rule can be reported to the network manager as a sin-

gle clump, thereby reducing the volume of events that

reach the manager's console. That is, all of the events

in the precursor and all of the events in the successor

can be collapsed into a single unit.

medd �nds strong dependencies between patterns of

events by performing a general-to-speci�c, best-�rst,

systematic search over the space of all possible pairs of

event patterns. Each of the patterns in such a pair may

be composed of representation of one or more events.

In the remainder of this section, we explain exactly

what that means. Section de�nes the space of pairs of

1
Medd is based on our earlier work with a similar algo-

rithm named msdd (Oates & Cohen 1996; Oates, Schmill,
& Cohen 1997; Oates et al. 1995).

2We rigorously de�ne \close temporal proximity" in Sec-
tion .

event patterns that medd searches. Section discusses

systematic search in general, and Section describes

the details of systematic search in medd. Finally, Sec-

tion describes a post-processing phase that the rules

returned by medd undergo, and explains in more de-

tail how the rules are used for event correlation in real

time.

The Space of all Possible Event Patterns

Precursor and successor event patterns contain one or

more partially instantiated events (PIEs). In general,

events recorded in logs comprise multiple �elds, and

each �eld takes a value from a set of allowable values

speci�c to that �eld. For example, the status �eld

might take values from the set fup, downg. Assuming
that events contain f �elds, and that �eld i takes values
from the set Vi, then the space of all possible events

is given by E = �f
i=1Vi (that is, the cross product

of all of the Vi { every possible combination of �eld

values). Any event e that appears in an event log is

an element of E . PIEs simply leave the value of one or
more �elds unspeci�ed, which is denoted by assigned

those �elds the wildcard value *. Therefore, the space

of all possible PIEs is given by P = �f
i=1(Vi [f�g).

Note that E � P . Consider an extremely simple event

structure containing two �elds { status and element {

such that Vstatus = fup, downg and Velement = fhost,
routerg. Then E and P are as follows:

E =

�
(up host) (up router)

(down host) (down router)

�

P =

8<
:

(up host) (up router) (up *)

(down host) (down router) (down *)

(* host) (* router) (* *)

9=
;

A PIE p 2 P is said to match an event e 2 E if

every non-wildcard �eld in p has the same value as the
corresponding �eld in e. For example, the PIE p = (up

*) matches event e1 = (up router), but it does not

match event e2 = (down host) or event e3 = (down

router). Event patterns, precursors and successors,

are de�ned to be sets of PIEs; i.e. x = fp1; : : : ; pnjpi 2
Pg is an event pattern. Precursors and successors are

said to match a fragment of an event log if each of

their constituent PIEs can be matched on a di�erent

event in the fragment. Therefore, the event pattern f(*
router), (* host)g matches the following event log
fragment containing three events, whereas the event

pattern f(down *), (* router)g does not:

up host

up host

down router

Systematic Search

Medd's search for dependencies among events is sys-

tematic, leading to search e�ciency (Oates, Gre-

gory, & Cohen 1994; Riddle, Segal, & Etzioni 1994;

Rymon 1992; Schlimmer 1993; Webb 1996). System-

atic search non-redundantly enumerates the elements

of search spaces for which the value or semantics of

any given node are independent of the path from the

root to that node. Webb calls such search spaces un-

ordered (Webb 1996). Consider the space of disjunc-

tive concepts over the set of literals fA;B;Cg. Given
a root node containing the empty disjunct, false, and
a set of search operators that add a single literal to

a node's concept, a non-systematic elaboration of the

search space is shown on the left in Figure 1. Note that

the concept A_B_C appears six times, with each oc-

currence being semantically the same as the other �ve,

yet syntactically distinct. In the space of disjunctive

concepts, the semantics of any node's concept is unaf-

fected by the path taken from the root to that node.

The non-systematic search tree in Figure 1 contains

six syntactic variants of the concept A _ B _ C, and
two syntactic variants of the concepts A _ B, A _ C
and B _ C. Clearly, naive expansion of nodes in un-

ordered search spaces leads to redundant generation

and wasted computation.

Systematic search of unordered spaces generates no

more than one syntactic form of each semantically dis-

tinct concept, and is therefore much more e�cient than

naive search. That is accomplished by imposing an or-

der on the search operators used to generate the chil-

dren of a node, and applying only those operators at a

node that are higher in the ordering than all other op-

erators already applied along the path to the node. Let

opA; opB and opC be the operators that add the liter-

als A;B and C respectively to a node's concept. If we

order those operators so that opA < opB < opC , then
the corresponding space of disjunctive concepts can be

enumerated systematically as shown on the right in

Figure 1. Note that each semantically distinct con-

cept appears exactly once. The concept A is obtained

by applying operator opA to the root node. Because

opB > opA and opC > opA, both opB and opC can

be applied to the concept A, generating the child con-

cepts A _ B and A _ C. In contrast, the concept C,
which is obtained by applying opC to the root node,

has no children. Because all other operators (opA and

opB) are lower in the ordering than opC , none will be
applied and no children will be generated.

The trees in Figure 1 represent general-to-speci�c

elaborations of the space of disjunctive concepts. That

is, the root node is the most general concept false, and
children of a node are generated by making that node's

concept more speci�c through the addition of a single

literal. All of the concepts at depth d contain exactly

d literals.

Search in MEDD

Medd accepts as input a set of historical event logs,

searches for dependencies between patterns of events in

those logs until a user de�ned limit on the number of

nodes to expand is reached. This section describes the

search in detail, and the next explains how the returned

nodes are processed and used for event correlation.

The Structure of the Search Space Medd's

traversal of the space of dependencies between event

patterns is both general-to-speci�c and systematic.

Each node in the search space corresponds to a depen-

dency rule, and the root of that space is the completely

general rule in which both the precursor and successor

contain only wildcards. For the simple two-�eld event

structure introduced in Section , the root node con-

tains the rule f(* *)g) f(* *)g. The children of a

node are generated by modifying either the precursor

or successor of that node in one of two ways: by �lling

in the value of a �eld that contains a wildcard in an ex-

isting PIE, or by adding a new PIE containing a single

non-wildcard �eld. In either case, the descendants of a

node are always more speci�c than the original node |

that is, descendants specify more non-wildcard values

for �elds than the original node.

Consider the node f(up *)g) f(* *)g. Several of
the children of that node are shown below:

{(up host)} => {(* *)}

{(up *)} => {(down *)}

{(up *)} => {(* router)}

{(up *), (* router)} => {(* *)}

{(up *), (* host)} => {(* *)}

{(up *), (down *)} => {(* *)}

The three children in the left column were generated

by specifying a value for a single �eld that was wild-

carded in the parent. The three children in the right

column were generated by adding a new PIE contain-

ing a single non-wildcard to the precursor.

The search is made systematic, thereby obtaining

the e�ciency gains described in Section , by only

adding non-wildcards and PIEs to the right of the

right-most non-wildcard in a node when generating

that node's children. Consider the node f(up *)g
) f(down *)g. The right-most non-wildcard in this

rule is down in the successor. Therefore, f(up *)g)
f(down router)g is a valid child, but f(up router)g
) f(down *)g would not be generated because it re-

quires adding a non-wildcard to the left of down.3

3Interested readers are referred to (Oates & Cohen 1996)

false

B v A B v C

B v A v C B v C v AA v C v BA v B v C

A v B A v C C v A

C v A v B

C v B

C v B v A

A B C

false

B v CA v B A v C

BA C

A v B v C

Figure 1: On the left, a naive elaboration of the space of disjunctive concepts over the set fA;B;Cg generated by

applying all valid search operators at every node. Naive search generates multiple syntactic variants of individual

concepts. On the right, a systematic elaboration of the space of disjunctive concepts over the set fA;B;Cg. Only
one syntactic form of each semantically distinct concept is expanded.

Counting Co-occurrences

Medd's search through the space of dependencies is

guided by a best-�rst heuristic. Each time it generates

a node, medd scans its historical event logs, counting

the number of times the precursor and successor of that

node co-occurred. Frequency of co-occurrence becomes

the node's heuristic value, biasing the search to pre-

fer rules with frequently occurring precursors and pre-

cursor/successor pairs that frequently co-occur. The

search proceeds by iteratively selecting the node with

the highest value, generating that node's children, and

adding them to the list of nodes under consideration.

When should an occurrence of precursor x and an

occurrence of successor y count as a co-occurrence?

Clearly, the temporal proximity of the occurrences of

x and y is important. We are more inclined to believe

that x and y are related if they occur within a few

seconds of each other rather than a few hours. One

approach to determining when x and y co-occur is to

specify a �xed-size temporal window of width �, pass
the window over the historical event log that medd

uses to generate rules, and count any occurrences of

x and y within the window as co-occurrences. That

is, if x occurs at time t, and y occurs between t � �
and t + �, then x and y are said to have co-occurred.

This approach has the disadvantage of treating events

that fall just outside the temporal window as being

unrelated to those that are inside the window. Suppose

event e1 occurs at time t, e2 at t+ �, and e3 at t+ �+
�=1000000. The method above would treat e1 and e2
as related, and e2 and e3 as related, but would not

treat all three events as related.

To avoid the problem with �xed-size windows de-

scribed above, medd takes a slightly di�erent ap-

for a detailed discussion of the use of this type of operator
ordering to achieve systematicity.

proach. Sets of related events are constructed such

that each event in a set occurs within � time steps of

at least one other event in that set. Given a histor-

ical event log, let ei be the ith event in the log, and

let ti be the time at which the ith event occurred. To

construct sets of temporally proximal events, we start

with e1 by creating a set containing only that event

and asking whether t(e2)� t(e1) � �. If so, then e2 is
added to the set containing e1. Then we ask whether

t(e3) � t(e2) � �. If so, then e3 is added to the set.

This continues until t(ej+1) � t(ej) > �, where ej is

the last event added to the set. Events e1 through ej
form a complete set, and a new set is created contain-

ing only ej+1. The process repeats (comparing t(ej+2)
and t(ej+1), etc.) until the last event in the log is as-

signed to a set. Consider the following event log, which

gives the times of occurrence of six events:

(e1 10)

(e2 15)

(e3 24)

(e4 50)

(e5 75)

(e6 80)

Given � = 10, medd would form the following sets of

related events: fe1; e2; e3g; fe4g; fe5; e6g. medd forms

sets of temporally related events in the historical event

logs prior to starting its search. When counting co-

occurrences of precursors and successors for the pur-

pose of guiding the search, medd simply checks for

occurrences inside those sets.

Counting co-occurrences of precursors and succes-

sors is complicated by the fact that they can comprise

multiple PIEs. Recall that an event pattern is said to

match a fragment of a log (i.e. occur in that fragment)

if each of the PIEs in the pattern can be matched on

a di�erent event. That is, we are only concerned with

whether a set of PIEs co-occur within one of the sets

of temporally proximal events, not whether they occur

in any speci�c order. Log fragments are obtained for

matching by �nding all sets of events within the logs

that span no more than � time steps. For a log frag-

ment with n events and a pattern with k pies, there

are n choose k ways that the pattern might match.

If the precursor matches a fragment, then then suc-

cessor must also be checked for a match. That pro-

cess is complicated by the fact that the successor may

not match because certain events are \taken" by the

precursor, but the precursor could match on a di�er-

ent set of events allowing the successor to match. In

the worst case, all possible matches of the precursor

must be tried to �nd a match for the successor. We

avoid this combinatorial problem by simply trying to

match the elements of the precursor sequentially and,

if a complete match is found, doing the same with the

successor. This scheme may miss some matches, but it

is computationally e�cient.

Rule Post-Processing and Application

medd returns all nodes that it explores in the space

of dependencies. To �nd the strongest dependencies

among those explored, a 2x2 contingency table that

describes the frequency of co-occurrence of each rule's

precursor and successor is built. (Actually, the com-

plete table is built during the search as each node is

expanded. The �rst cell of the table is used as the

node's heuristic value to guide the search.) Then, the

G statistic, a statistical measure of non-independence,

is computed for each rule, and the rules are sorted in

non-decreasing order of G. We then remove generaliza-

tions of the strongest rules that were generated as the

search descended through the tree to �nd those rules.

Finally, the top k rules are retained. Currently, the

choice of k is ad hoc and set at 200.

To perform event correlation in real time, the re-

maining rules are matched against incoming events

in sorted order. That is, the rule representing the

strongest dependency that matches a new set of events

is used to cluster those events.

Performance

The section describes the results of applying medd in

two very di�erent domains: event correlation in com-

puter networks and discovering temporal relationships

among Reuters news stories.

We created simulated networks with a modi�ed ver-

sion of the Netsim network simulator (which is pub-

licly available from MIT (Heybey & Robertson 1994)),

introduced faults into those networks, and generated

event logs based on those faults. For each experimen-

tal trial, we created an event log, applied medd to the

log, produced event correlation rules, and then tested

those rules on a second event log created from the same

simulated network. We examined medd's performance

under baseline conditions and under variations in the

size of the training log (N), the size of the window (�),
and the size of the simulated network (T). Baseline

parameter values were N = 100, � = 0:175 seconds,

and T = 16 nodes.

We evaluated medd by recording various measures

of performance for ten di�erent runs of the simulator

and averaging the results. medd identi�ed an average

of 39.1 clumps, sets of events that were each gener-

ated in response to a di�erent single fault, in logs of

100 events. In actuality, the logs contained an average

of 54.3 clumps. That is, there were about 54 faults

that each generated two or more events that could be

grouped into a clump. medd correctly identi�ed 37.8

of those clumps (true positives), missed 16.5 clumps

(false negatives), and mistakenly identi�ed 1.3 clumps

(false positives). On average, the correctly identi�ed

clumps contained 85.8 events out of a possible total of

100 events. Of those, 79.8 were correctly included in

clumps (true positives), 20.2 were missed (false nega-

tives), and 6 were incorrectly included in a clump (false

positives). To summarize: in the baseline trials, medd

correctly identi�ed 70% of the true clumps, and less

than 5% of its identi�ed clumps were spurious.

Next, we evaluated medd's performance in relation

to this baseline by varying the number of events in the

training log (N), the size of the window used to locate

co-occurring events (�), and the size of the network

(T). Each of these factors was varied individually, and
the e�ects on performance were recorded.

Surprisingly, medd can construct accurate event cor-

relation rules from very small event logs. When we ex-

amined the rules constructed by medd and how they

are used during event correlation, we discovered that

a few rules often formed the majority of the clumps.

As long as the event log is su�ciently large to support

construction of these dominant rules, a large number

of true positive clumps will be found.

Equally surprisingly, very large samples (e.g., N =

500) do little to increase the percentage of true clumps

found. A manual review of the event logs indicates

that this \ceiling e�ect" is partially caused by the rep-

resentational limitations of medd's event correlation

rules. Some types of relationships cannot be repre-

sented by medd rules, and thus cannot be located by

the algorithm. For example, medd cannot represent

the proximity of network elements. Thus, medd can

only construct rules that apply to all hosts or to one

speci�c host. Similarly, medd cannot represent classes

of applications, and thus can only construct rules that

apply to all applications or one speci�c application.

In both these examples, the inability to form PIEs at

the correct level of abstraction reduces the G value of

rules that use the only alternative | PIEs that are too

general or too speci�c.

Despite its relatively modest e�ect on the number

of true positive clumps found, increasing N does re-

duce the number of false positive events in true positive

clumps. Using very small event logs more than doubles

the average number of false positive events per clump.

However, this e�ect quickly levels out, so that training

logs with more than 100 events have no discernible ef-

fect on the average number of false positive events per

clump.

The window size � can have a dramatic e�ect on

the percentage of true positive clumps found by medd.

Window sizes that are too small make it di�cult to

form any useful event correlation rules, because related

events are not included within a single window, and

thus cannot be used to form a rule. Instead, medd

constructs many spurious rules that associate unre-

lated events that occur at nearly the same time in the

training log. Window sizes that are too large produce

rules that form a few very large clumps, missing many

smaller clumps that should be identi�ed separately.

In addition to the experiments with simulated com-

puter networks, we applied medd to political event

data available from the Kansas Event Data System

(KEDS) (Schrodt 1994). The goal of the KEDS project

is to develop algorithms for automatically converting

English-language news reports into event data and for

modeling the resulting data to predict political change.

We used a portion of the publicly available KEDS data

containing 886 events based on Reuters news stories

describing occurrences in the Persian Gulf during 1996

and 1997. Several of the most highly ranked rules

found by medd are shown below:

1. (* * GRP ASSASSINATE)) =>

((* * * CRITICIZE))

2. (* * * VISIT_SEEK)) => ((* * * MEET))

3. ((* * KUR *)) => ((* * REF *))

4. ((* GOV * *) (* * * VOTE_ELECT)) =>

((* POL * *))

The events, which are encoded according to the

World Events Interaction Survey (WEIS) event cod-

ing scheme, can be interpreted as follows:

1. A group assassinates someone, and another party

criticizes that act.

2. One party seeks a visit with another, and a meeting

occurs.

3. News about the Kurds appears near news about

refugees.

4. Elections are held and events involving politicians

occur.

Medd found rules that capture regularities in the me-

chanics of politics in the Middle East based on simple

event-based encodings of news reports.

Conclusion

In the base case, applying medd rules produced a 25%

reduction in the number of reports that would arrive at

a manager's console. That is, when medd clumps were

substituted for their constituent events, the resulting

number of items (events and clumps) was only 75%

of the original number of events in the original test-

ing log. Medd requires relatively small training logs

(e.g., 100 events) to form the event correlation rules re-

sponsible for these reductions. In nearly all cases, only

one percentage point of this reduction was due to false

positive clumps (in the worst case examined, with very

small window sizes, medd reduced the overall number

of events by 15%, and four percentage points this re-

duction were due to false positive clumps).

However, there is substantial room for future work

in two areas. First, Medd should be evaluated much

more thoroughly. We currently have little idea whether

medd will perform well on actual network data. Ac-

tual networks may have very di�erent failure patterns

than those we were able to produce in simulated net-

works. Real networks may also be much larger and

more varied in their topology, interconnectedness, and

types of elements than were our simulated networks.

Event logs of failures in actual networks will be needed

before medd can be realistically evaluated.

Second, medd itself could bene�t from additional

development. The ability of medd rules to detect cer-

tain types of event correlations could be improved if

PIEs could abstract events in a greater variety of ways.

For example, providing a hierarchy of network element

types and providing information on network proximity

would greatly expand the types of abstraction possible

in PIEs.

Similarly, additional characteristics of hosts, appli-

cations, and communication links could be used by

medd to expand the range of rules it can consider. Fi-

nally, methods for automatic determination of window

size should be explored because medd's accuracy de-

pends critically on this parameter. We can reasonably

expect managers to provide some information about

the likely temporal proximity of related events, but

automatic determination would still be desirable.

Acknowledgements

This research is supported by DARPA, Air Force

Research Laboratory and AFOSR under contract

#'s N66001-96-C-8504, F30602-97-1-0289, F49620-97-

1-0485, and by a DoD NDSEG Fellowship. The U.S.

Government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding

any copyright notation hereon. The views and con-

clusions contained herein are those of the authors and

should not be interpreted as necessarily representing

the o�cial policies or endorsements, either expressed

or implied, of DARPA, AFRL, AFOSR or the U.S.

Government.

References

Feldkuhn, L., and Erickson, J. 1989. Event manage-

ment as a common functional area of open systems

management. In Proceedings of the First IFIP Sym-

posium on Integrated Network Management, 365{376.

Heybey, A., and Robertson, N. 1994. The network

simulator version 3.1.

Oates, T., and Cohen, P. R. 1996. Searching for struc-

ture in multiple streams of data. In Proceedings of

the Thirteenth International Conference on Machine

Learning, 346 { 354.

Oates, T.; Schmill, M. D.; Gregory, D. E.; and Co-

hen, P. R. 1995. Detecting complex dependencies in

categorical data. In Fisher, D., and Lenz, H., eds.,

Finding Structure in Data: Arti�cial Intelligence and

Statistics V. Springer Verlag. 185 { 195. Includes

work on an incremental algorithm not contained in

workshop version.

Oates, T.; Gregory, D. E.; and Cohen, P. R. 1994. De-

tecting complex dependencies in categorical data. In

Preliminary Papers of the Fifth International Work-

shop on Arti�cial Intelligence and Statistics, 417{423.

Oates, T.; Schmill, M. D.; and Cohen, P. R. 1997.

Parallel and distributed search for structure in mul-

tivariate time series. In Proceedings of the Ninth Eu-

ropean Conference on Machine Learning.

Riddle, P.; Segal, R.; and Etzioni, O. 1994. Repre-

sentation design and brute-force induction in a boeing

manufacturing domain. Applied Arti�cial Intelligence

8:125{147.

Rymon, R. 1992. Search through systematic set enu-

meration. In Proceedings of the Third International

Conference on Principles of Knowledge Representa-

tion and Reasoning.

Schlimmer, J. C. 1993. E�ciently inducing determi-

nations: A complete and systematic search algorithm

that uses optimal pruning. In Proceedings of the Tenth

International Conference on Machine Learning, 284{

290.

Schrodt, P. A. 1994. Event data in foreign policy

analysis. In Neack, L.; Hey, J. A. K.; and Haney,

P. J., eds., Foreign Policy Analysis: Continuity and

Change. Prentice-Hall. 145 { 166.

Webb, G. I. 1996. OPUS: An e�cient admissible

algorithm for unordered search. Journal of Arti�cial

Intelligence Research 3:45{83.

