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Abstract

Jean is a model of early cognitive de-
velopment based loosely on Piaget’s the-
ory of sensori-motor and pre-operational
thought (Piaget, 1954). Like an infant, Jean
repeatedly executes schemas, gradually ex-
tending its schemas to accommodate new ex-
periences. We model this process of accom-
modation with the Experimental State Split-
ting algorithm. We present the algorithm and
demonstrate, in three transfer learning ex-
periments, Jean’s ability to transfer learned
schemas to new situations in a real time strat-
egy military simulator.

1. Introduction

Jean is both a synthesis of ideas about cognitive de-
velopment and the foundations of concepts, and an
integrated software system that implements percep-
tion, action, learning and memory (Chang et al.,
2006). From Piaget we borrow the ideas that chil-
dren learn some of what they know by repeatedly ex-
ecuting schemas, and executing schemas is in a sense
rewarding, and some new schemas are modifications
or amalgamations of old ones (Piaget, 1954). The
Image Schema theorists (Lakoff, 1987; Johnson, 1987;
Mandler, 2004; Oakley, 2006) promote the ideas that
primitive schemas are encodings or redescriptions of
sensorimotor information; and these schemas are se-
mantically rich, general, and extend or transfer to new
situations, some of which have no salient sensorimo-
tor aspects. Another idea, represented by various au-
thors, is that semantic distinctions sometimes depend
on dynamics — how things change over time — and
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so schemas should have a dynamical aspect (Thelen
& Smith, 1994; Cohen, 1998; Talmy, 2003). These in-
sights inspired our development of the Image Schema
Language for representing primitive relations, environ-
ment dynamics, and actions (St. Amant et al., 2006).
The experimental state splitting (ESS) algorithm pro-
vides a method for constructing new composite schema
representations using the image schema language. Al-
though ESS can learn policies for new situations from
scratch, we are much more interested in how previously
learned policies can accommodate or transfer to new
situations. We present the ESS algorithm and results
of its performance in three experiments specifically de-
signed to measure the effects of knowledge transfer
from previous learning in one scenario to another, dif-
ferent scenario. In the next section we introduce the
ESS algorithm. We then describe the experiments, the
transfer testing protocol and the results of the experi-
ments.

2. Learning: Experimental State
Splitting

The basic idea of ESS is to grow state machines by in-
crementally elaborating state descriptions that make
distinctions that previously were elided. These new
distinctions introduce two new states where previously
there was one. In order to make new distinctions, the
ESS algorithm requires some criterion or measure to
determine which splits are appropriate or worth in-
troducing. For a general developmental account we
want a general measure, not a task-specific one. To
accord with the idea that learning is itself reward-
ing, this measure might have something to do with the
informativeness or novelty or predictability of states.
In Jean, the ESS algorithm uses a measure we call
boundary entropy, which is the entropy of the distri-
bution of next states Jean might transition into given
the current state and an intended action. ESS cal-
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culates the entropy of this distribution and uses it as
a state splitting criterion: Jean is driven by ESS to
modify its world model by augmenting existing states
with new states that reduce the boundary entropies of
state-action pairs. This augmentation is achieved by
splitting an old state into two (or more) new states
based on distinguishing characteristics.

More formally, ESS works as follows. We assume
that Jean receives a set of schema features F t =
{f1, . . . , fn} from the environment at every time tick
t; these features could be schema slots that represent
sensor readings, for example. We also assume that
Jean is initialized with a goal state sg and a non-goal
state s0. St is the entire state space at time t. A is
the set of all actions, and A(s) ⊂ A are the actions
that are valid for state s ∈ S. Typically A(s) should
be much smaller than A. H(si, aj) is the boundary
entropy of a state-action pair (si, aj), where the next
observation is one of the states in St. A small bound-
ary entropy corresponds to a situation where executing
action aj from state si is highly predictive of the next
observed state. Finally, p(si, aj , sk) is the probability
that taking action aj from state si will lead to state
sk.

For simplicity, we will focus on the version of ESS that
only splits states; an alternative version of ESS is also
capable of splitting actions and learning specializations
of parametrized actions. The ESS algorithm follows:

1. Initialize state space with two states, S0 =
{s0, sg}.

2. While ε-optimal policy not found:

a. Gather experience for some time interval
τ to estimate the transition probabilities
p(si, aj , sk).

b. Find a schema feature f ∈ F i, a threshold
θ ∈ Θ, and a state si ∈ S to split that max-
imizes the boundary entropy score reduction
of the split:

max
S,A,F,Θ

[
H(si, ai)−min(H(sk1 , ai),H(sk2 , ai))

]
where sk1 and sk2 result from splitting si us-
ing feature f and threshold θ: sk1 = {s ∈
si|f < θ} and sk2 = {s ∈ si|f ≥ θ}.

c. Split si ∈ St into sk1 and sk2 , and replace si

with new states in St+1.
d. Re-solve for optimal plan according to p and

St+1

The splitting procedure iterates through all state-
action pairs, all of the schema features F , and all pos-
sible thresholds in Θ and tests each such potential split
by calculating the reduction in boundary entropy that
results from that split. This is clearly an expensive
procedure. We are currently investigating methods to
speed up the search for splits with heuristics that limit
Jean’s attention to relevant features and state-action
pairs.

3. Experiments

We tested Jean’s transfer of schemas between scenar-
ios in the 3-D real time strategy game platform ISIS.
In each scenario in the experiments, Jean controlled a
single squad at the squad level with another, smaller
but faster squad controlled by an automated but non-
learning opponent. In all of the scenarios, Jean’s mis-
sion was to command its units to engage and eliminate
the opponent force. The knowledge Jean acquired and
transfered between scenarios involved learning policies
for choosing among the actions of run, crawl, move-
lateral, and stop-and-fire, respecting the engagement
ranges, possible entrenchment of the opponent, and
some terrain features (mountains).

3.1. Scenarios

All scenarios were governed by a model of “engagement
ranges” that determined how the squads may inter-
act and how the opponent controller would respond
to Jean’s actions. Engagement ranges were defined in
terms of the distance between Jean’s force and the op-
ponent. At the Outer Range (beyond 250 meters), as
long as the opponent is within line of sight (i.e., not
obscured by terrain features), Jean can locate the op-
ponent force but the opponent cannot visually contact
Jean’s force. Within 250 meters, the opponent can
see Jean’s force (make Visual Contact) unless Jean’s
forces are crawling (and haven’t yet fired).Within 200
meters, Firing Range, either force can fire on the other.
Finally, within 100 meters the two forces have reached
Full Contact and even if Jean’s forces are crawling,
they will be sighted by the opponent.

Measuring transfer is both a problem of theory and
methodology. In the work we report here we adopted
the B/AB protocol to measure how learning in one
condition, A, transfers to learning and performance in
condition B. The protocol is simple: measure perfor-
mance over time while Jean is exposed to condition
B (the B-alone condition). Then compare this perfor-
mance with the performance when Jean is exposed to
condition B after first being trained on A (the AB con-
dition). Each experiment thus defines an A scenario
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and a B scenario, and the learning curves generated
by measuring performance over time in the B-alone
condition and the B performance in the AB condition
were compared.

The three experiments to test transfer of knowledge
between pairs of the scenarios were defined as follows:

• Experiment 1: Condition A consisted of training
Jean to catch and attrit the opponent in an open
field and always starting within 250 meters. Con-
dition B consisted of the same open field, except
50% of the time Jean started within 250 meters,
the other 50% of the time beyond 260 meters –
this was referred to as the full open field scenario.

• Experiment 2: This time, condition A had Jean
always start beyond 260 meters. Condition B was
again the same as condition B in Experiment 1:
the full open field.

• Experiment 3: Condition A consisted of training
in the full open field scenario. Condition B was
just like the full open field except that now there
was a single hill in the middle of the field that
could obscure Jean’s view of the opponent. Now
Jean had to learn to find the opponent visually
before utilizing any strategy from condition A.

3.2. Results

Figure 1. Experiment 1 graph showing learning curves for
the A, AB, and B conditions, averaged over eight replica-
tions of the experiment. One standard deviation is shown
with the error bars. Each point of each curve is the aver-
age of ten fixed test trials. These test trials are conducted
every 20 training trials. The x-axis plots the number of
training trials that the agent has completed.

The learning curves for the B and AB conditions in
Experiment 1 are shown in Figure 1. The graph also
shows the learning curve for the A condition, merely

Figure 2. Experiment 2 graph, again showing learning
curves for the A, AB, and B conditions, averaged over eight
replications of the experiment. The x-axis plots the num-
ber of training trials that the agent has completed.

Figure 3. Experiment 3 graph, again showing learning
curves for the A, AB, and B conditions, averaged over eight
replications of the experiment. The x-axis plots the num-
ber of training trials that the agent has completed.

to verify whether Jean has indeed successfully learned
a good policy for the A condition. For example, it is
clear in Figure 1 that Jean learned a good policy in
the A condition, where the enemy units are initialized
close to Jean’s position. Experiment 1 also shows that
Jean receives a significant benefit when it moves to the
B condition after training in the A condition. The AB
learning curve starts out immediately with much bet-
ter performance than the B learning curve, and after
200 training trials, the two curves reach approximately
the same level of performance.

It is clear that in Experiment 1, Jean succeeds in trans-
ferring knowledge from the A condition to help her
perform better in the B condition immediately. To
summarize this improvement, we use the notion of a
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Performance ratio r P-value 2.5% quantile 97.5% quantile
Experiment 1 1.591 0.035 1.02 2.97
Experiment 2 0.970 0.557 0.63 1.34
Experiment 3 1.531 0.0034 1.24 1.85

Table 1. Table showing the transfer ratio of the AB and B cases in the various experiments, along with associated p-values
and confidence intervals.

transfer ratio

r(B,AB) =
Area(B)

Area(AB)
,

where B and AB denote the set of n learning curves
in the B and AB conditions respectively, X is the
mean learning curve for a set of learning curves X, and
Area(X) is the area under learning curve X. A large
ratio indicates better transfer. In Experiment 1, the
transfer ratio r is 1.591, and the benefit is significant
at the 3.5% level (i.e. our p-value is 0.035). The p-
value is calculated using the randomization-bootstrap
method (Cohen, 1995), and measures the fraction of
the sampling distribution for the null hypothesis in
which r is greater than our observed data.

In Experiment 2, it is equally clear that Jean does not
succeed in achieving any transfer. On closer inspec-
tion, we realize that Jean does not ever learn anything
useful in the A condition of Experiment 2. This can be
seen from Figure 2, where the learning curve for the A
condition stays almost at 100 throughout the training
trials. This is due to the difficulty of the scenario. Jean
is always initialized far away from the enemy units, and
must learn a policy for killing them by exploring a con-
tinuous, high-dimensional feature space using her four
available actions. Many of these actions result in the
enemy soldiers detecting Jean’s presence and running
away, thus reducing Jean’s chances of ever reaching her
goal by simple exploration. Since Jean does not learn
anything useful in the A condition, we can expect that
her performance in the AB case will not be any better
than in the B case, and indeed, we can see that this is
true in the observed data. Our measure r is approxi-
mately one, indicating little difference between B and
AB, and the p-value is 0.557, as we would expect if
there is indeed no difference between the B and AB
conditions.

Finally, in Experiment 3, Jean appears to transfer her
learned knowledge from the A condition to “jump-
start” her performance in the B condition, similar to
Experiment 1. Figure 3 shows the average learning
curves we observe in this experiment. Our transfer ra-
tio r is 1.531, with a p-value of 0.0034. Table 1 summa-
rizes the data we observed from the three experiments

and provides confidence intervals for the transfer ra-
tios.

References

Chang, Y., Morrison, C. T., Kerr, W., Galstyan, A.,
Cohen, P. R., Beal, C., St. Amant, R., & Oates, T.
(2006). The jean system. Proceedings of the Fifth In-
ternational Conference on Development and Learn-
ing (ICDL 2006).

Cohen, P. R. (1995). Empirical methods for artificial
intelligence. Cambridge, MA: The MIT Press.

Cohen, P. R. (1998). Maps for verbs. Proceedings
of the Information and Technology Systems Confer-
ence, Fifteenth IFIP World Computer Conference.

Johnson, M. (1987). The body in the mind: The bodily
basis of meaning, imagination, and reason. Chicago,
IL: University of Chicago Press.

Lakoff, G. (1987). Women, fire and dangerous things.
Chicago, IL: University of Chicago Press.

Mandler, J. (2004). The foundations of mind: Origins
of conceptual thought. Oxford University Press.

Oakley, T. (2006). Image schema. In D. Geeraerts and
H. Cuyckens (Eds.), Handbook of cognitive linguis-
tics. Osford University Press.

Piaget, J. (1954). The construction of reality in the
child. New York: Basic.

St. Amant, R., Morrison, C. T., Chang, Y., Cohen,
P. R., & Beal, C. (2006). An image schema language.
To appear in the Proceedings of The 7th Interna-
tional Conference on Cognitive Modelling (ICCM
2006).

Talmy, L. (2003). Toward a cognitive semantics, vol. 1:
Conceptual Structuring Systems (Language, Speech
and Communication). Cambridge, MA: The MIT
Press.

Thelen, E., & Smith, L. (1994). A dynamic systems
approach to the development of cognition and action.
Cambridge, MA: The MIT Press.


