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Abstract
A developing memory requires a mechanism for de-

ciding how much information to gather, based on what
is currently represented in memory. That is, we need
to know when we have seen enough to say we have
or have not seen this before, or that we need to con-
tinue collecting data. We present a novel statistical
approach to this decision mechanism. This serves as
the foundation for a simple visual object memory. We
present results from simulations showing that the sta-
tistical measure can serve as the basis of the stay/go
decision process.

1 Introduction
Consider a robot faced with the task of learning to

distinguish objects in its environment. As the robot
moves around its environment it makes visual contact
with objects, some of which it has seen before and
some of which are novel. Once it makes visual con-
tact, the robot looks at an object from several angles
before deciding to move on in search of other objects.
This paper develops a statistical framework for the de-
cision to stay and continue looking at an object or go
and look at another object. We call this the stay/go
problem. This paper does not try to solve the problem
in an optimal way, rather, it provides a simple method
that keeps the robot looking at an object until it is rea-
sonably certain that additional views will not help it
discriminate the object from others it knows. The set
of views that have been observed are the foundation
of a visual object memory.

2 Object Representation: Curvature
Scale-Space

Our robot is a Pioneer II with a Sony pan-tilt-zoom
camera. Each image of an object is processed by
an algorithm that generates a curvature scale-space
(CSS) representation. CSS diagrams like the one in

Figure 1: Curvature Scale Space representation: (a)
Original image of object, (b) Extracted pixels and bor-
der of tracked object, (c) Curvature Scale Space dia-
gram.

Figure 1.c represent how the curvature of each point
on a silhouette of the object changes with repeated
smoothing [1]. The horizontal axis (often denoted by
u) represents the length of the silhouette curve, and
the vertical axis (often denoted by σ) represents the
degree of smoothing applied to the curvature. The
shift from black to white along each horizontal line of
the diagram indicates a shift from positive to negative
change in the slope of the tangent line to the silhouette
curve. Each peak in a CSS diagram represents an “ap-
pendage” in the original silhouette (Fig. 1.b). Suppose
one has the CSS diagram δ of a new image and wishes
to identify the object in the image by comparing δ to
other CSS diagrams in a corpus and retrieving their
associated images. It has been shown [2, 3] that the
information in CSS diagrams is usually sufficient to
retrieve images that closely match the outline shape
of the new image, despite differences in scale and ori-
entation.

CSS diagrams can be represented as points in a
high-dimensional space as follows: Each peak in a di-
agram has a horizontal and vertical coordinate, so a



diagram with N peaks can be represented as a single
point in a space of 2n dimensions. However, not all
CSS diagrams have the same number of peaks, and the
location of peaks depends on the rotation of the object
in the image. We fix the latter problem by selecting
the tallest peak in the CSS diagram and shifting it
to the left-hand border. Since the horizontal axis of
the CSS diagram represents the length of the silhou-
ette border, the left and right edges of the horizontal
axis are actually adjacent – i.e., the horizontal axis
is circular. Any peaks to the left of the tallest peak
before shifting “wrap around” to the right side during
shifting (Figure 2.a and 2.b). Once a CSS diagram
has been shifted, the next task is to tackle the prob-
lem of variations in the numbers of CSS peaks. We
choose k, the number of peaks we will represent. k
may be greater or smaller than the actual number of
peaks in any given CSS diagram. The multidimen-
sional point representation of the CSS diagram, called
the canonical representation, is then 2k-1−dimensions
(−1 because the horizontal coordinate of the largest
peak after shifting is always 0, as is the case for coordi-
nate u1 of peak 1 in Figure 2). Finally, the horizontal
position of each peak fills the first k− 1 dimensions of
the canonical representation, and the remaining k di-
mensions are filled by the vertical values of each point.
These are filled in order of the largest to smallest rep-
resented CSS diagram peaks. Figure 2 shows an exam-
ple of this canonicalization; note that the numbering
of the peaks follows their order by height, which in
turn is reflected in the order in which the values ap-
pear in the canonical representation. Had there been
six CSS points, the 6th (and therefore smallest) peak
would not be represented in the canonicalization.

In summary, images of objects are first repre-
sented as CSS diagrams and then as points in 2k − 1-
dimensional space (representing the k highest peaks of
the diagram).

3 Object Labels and the Stay/Go De-
cision

As soon as the robot makes visual contact with
some object it generates a unique label; it attaches the
label to the CSS diagrams of every image it collects
while remaining in continuous visual contact. If the
robot observed the same object again, at a later time,
the images in this set get a new label. In general there
are several sets of uniquely-labeled CSS diagrams for
each object. When the robot collects 25 images of a
dog, then 30 of a man, then another 20 of the original
dog, its memory contains two sets of CSS diagrams
of the dog, each with a unique label. How big should
the second set of dog images be? If additional images
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Figure 2: Deriving a canonical representation of a CSS
diagram: (a) Initial CSS diagram, (b) Shifted CSS di-
agram, with example (u, σ) coordinate for peak 2, (c)
canonical representation of k = 5 possible CSS points;
with only four actual peaks, the remaining dimensions
of the canonical representation have 0-values.

cannot help the robot decide either that the object is
different from the man or that it is the same as the
first dog, then the robot should stop collecting images.

4 A Model of the Stay/Go Decision
In general the stay/go decision concerns the value

of additional data: One should stay and collect more
data as long as they are valuable, otherwise one should
go. The value of data depends on what one intends to
do with the data; specifically, the value of additional
images of an object depends on what the robot will
do with the images. Yet we do not want the robot’s
stay/go strategy to depend on the specifics of a par-
ticular task. We want the value of images to depend
on those the robot already has in memory and on the
new images it collects. We want the existing and new
images to be put to work in an extremely general task
with a measure of merit φ, and we want φ to reach a
maximum after the robot collects a finite number of
new images. When φ reaches its maximum (or mini-
mum) value, the sample of new images is as big as it
should be — making it larger will not increase (or de-
crease) φ, the robot’s score on its task. At this point,
the robot should stop collecting images of the current
object, because these images will not improve its score.

Let us develop a version of φ for a simple prob-
lem and then show how to extend it to the robot’s
stay/go decision. Suppose one already has a sample
of a random variable xa with mean xa, variance s2

a,
and sample size na. Sample a is analogous to a set of
identically-labelled CSS diagrams in memory. Now,



one starts to collect new data and accumulate it in
sample b. This sample is analogous to what we call
new images, above. How many data should one col-
lect, that is, how big should nb become? Can we for-
mulate a task that, when performed on samples a and
b and evaluated with function φ, has a maximum value
of φ at some value nb? Here is one: We play a game
that has two conditions, one in which samples a and
b are treated as different, and one in which they are
appended into a single sample, and we ask how much
better can we play the game in the former condition
than the latter. In the first condition, an element x is
drawn at random from sample a or sample b, you are
told which sample it is from, and invited to guess its
value. You are assessed an error, which is the squared
difference between your guess and x. To minimize
this error your guess should be xa (or xb, depending
on which sample x comes from). Suppose this game is
repeated na times with elements of sample a and nb

times with elements of sample b. Then the expected
total error assessed against you is:

na∑

i=1

(xi − xa)2 +
nb∑

j=1

(xj − xb)2 (1)

We denote these sums SSa and SSb. Note that these
sums of squares are related to the variances s2

a and s2
b

by SSa = nas2
a and SSb = nbs

2
b .

In a second condition of the game, samples a and
b are first appended into a single sample g with mean
xg. The guessing is repeated ng = na +nb times, with
expected error:

SSg =
na∑

i=1

(xi − xg)2 +
nb∑

j=1

(xj − xg)2 (2)

Clearly, if a and b are very similar samples in their
means and variances, then the value of SSa + SSb

will be very similar to SSg; conversely, if a and b are
different, then (SSa + SSb) < SSg. The difference
SSg − (SSa + SSb) can be interpreted as a reduction
in errors obtained by making a distinction between
samples a and b, as opposed to treating them as one
undifferentiated sample g. When we express this re-
duction in errors as a proportion of SSg, we obtain
the desired function φ:

φ =
SSg − (SSa + SSb)

SSg
(3)

One can see that φ has a maximum and that it de-
pends on na and nb (for now, suppose the variances
s2

a and s2
b are equal, we will generalize this in a mo-

ment): Clearly, when nb is much smaller than na,

SSg is dominated by SSa, and, conversely, when nb

is much larger than na, SSg is dominated by SSb.
As SSg becomes dominated by either SSa or SSb the
numerator of Equation 3 approaches zero. In fact,
when s2

a = s2
b , the maximum value of φ occurs when

na = nb. More generally, when the variances of a and
b may be unequal, we can find the value of nb at which
φ is maximum in the standard way by differentiating
Equation 3 and finding the value of nb at which that
function is zero. Equation 3 can be simplified by using
the decomposition

SSg = SSa + SSb +
(nanb(xa − xb)2)

ng
(4)

so that

φ =
(nanb/ng)(xa − xb)2

SSa + SSb + (nanb/ng)(xa − xb)2
(5)

To maximize this function in nb is difficult because
SSb and xb are functions of nb, but one can make some
approximations. As nb increases, (xa − xb)2 becomes
approximately constant, and provided nb and na are
not too small we can approximate both by the sample
variances: SSa = nas2

a and SSb = nbs
2
b . In this way,

the value of nb that maximizes φ is the solution of the
equation

n2
bs

2
b = n2

as2
a (6)

When the variances are the same, φ is maximized
when na = nb and in general when

nb = na
s2

a

s2
b

(7)

To recap, we drew an analogy between the stay/go
decision and the following statistical question: Given a
sample a of size na with variance s2

a, how many data
should we collect into a sample b for a performance
metric φ to reach its maximum value? The metric in
this case is the reduction in errors that one achieves
by treating samples a and b as different (Equation 3).
More specifically, if one repeatedly guesses the value of
a datum x, then φ is the reduction in errors (the differ-
ence between guessi and xi) due to knowing whether
x came from sample a or b. Said differently, φ is the
value of treating a and b as if they came from different
populations. If, in fact, a and b are drawn from dif-
ferent populations, then φ will have a nice, clear peak
when nb = na(s2

a/s2
b), otherwise φ will hover around

zero for all values of nb.
Mapping this analogy back to the robot’s stay/go

decision, the robot should collect a sample of images b



as long as there is value in treating the images in a and
b as if they are images of different objects. When they
are, in fact, images of different objects, then φ will
have a well-defined peak at nb = na(s2

a/s2
b), otherwise

φ will hover around zero for all values of nb.

5 The Stay/Go Decision Methods
It is easy to implement this stay/go strategy when

images of objects are represented as CSS diagrams.
Recall that the robot’s memory contains sets of CSS
diagrams and all the diagrams in a set represent im-
ages of the same object. Recall, too, that each CSS
diagram is transformed to a canonical representation
point in 2k-1−dimensional space. For a given set, a,
we can calculate both its centroid xa and SSa, the sum
of squared distances between each element of a and xa.
This is all the information we need to calculate φ as
in Equation 3.

There are two general approaches to implementing
the stay/go decision process based on φ, each of which
has two variations (for a total of four methods). The
analytic approach uses Equation 7, the anticipated
number of views needed to achieve a maximal value
for φ. In Equation 7, sample a corresponds to the set
of CSS view representations in memory. The size, na,
is already known, as well as s2

a. The difference between
the two analytic approaches is in how s2

b is calculated,
where sample b is the set of new views of the current
object the robot is observing. The Analytic-Complete
method calculates s2

b based on the complete set of
views for the currently experienced object. Clearly
this method can only be implemented in simulation,
as it requires the set of possible views for a particular
object to be known a priori. For the simulations be-
low, this method provides a baseline of performance.
The Analytic-Estimate method estimates s2

b based on
the current sample of views. The estimate for the cur-
rent object being observed will gradually change as
new views are acquired.

The other group of stay/go approaches is empiri-
cal because the decision to go is based on the current
shape of the developing φ curve as views are collected.
As noted, φ will either grow to a peak and then de-
crease as more views are experienced, or φ will hover
around zero (Figure 3). In the empirical method, a
peak-finding test sweeps a window across the φ curve,
from left to right, looking for the first instance in which
the average φ values to the left and right of the window
are lower than the average of the window center. This
will find a peak if one exists. Such a peak is found for
φ-curve A1 in Figure 3 (several peaks are possible for
A1, but the decision to go would be based on the first
that is found). For φ-curve A2, however, there is not
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Figure 3: Example of curves generated by plotting
values of φ as views are accumulated. The two curves
represent φ values that result from comparing the sets
of views for objects A1 and A2 (both in memory) to
the current object.

enough of a peak present for the window test. Instead,
an additional test must be defined. The choice of test
makes the difference between the two variations in the
empirical method. In both variations, φ is regressed on
nb. The slope of the regression line is expected to be
positive when φ has a peak and zero otherwise. The
Empirical-Threshold method calls the regression line
flat (i.e., φ does not peak) when its slope is less than
some threshold near zero. The Empirical-Confidence
method, on the other hand, calls the regression line
flat if a confidence interval for the slope around the
line contains zero.

In sum, we have four stay/go decision methods:
Analytic-Complete, Analytic-Estimate, Empirical-
Threshold, Empirical-Confidence. We now discuss
their performance in a simulator using actual object
images.

6 The Stay/Go Simulator
Recall that a CSS diagram represents curvature fea-

tures of an image. We constructed five 3-dimensional
objects with a variety of different surface features, al-
lowing for both similarity and variance among CSS
diagrams of images taken from different perspectives
of the objects. The five object-shapes resemble a thin
dog, a four-legged arch, a dog with two heads, a man,
and a four-legged object with a round body (a “ro-
tund” dog). We then collected 7 sets of images taken
from a variety of perspectives of the objects, all from



the level of the Pioneer II camera angle. Three of the
image sets were taken from the thin dog; one of these
consisted of a complete rotation around the dog, the
other two only half rotations around either side. Each
set contained a mean of 34 images.

A simulator was constructed to test the stay/go de-
cision methods. At the beginning of each epoch, one
of the 7 image sets is selected at random, and the
simulator is presented with views randomly sampled
from that set. As described in Section 3, all of the
views from the selected set are assigned a unique la-
bel chosen at the beginning of the epoch. At each
view presentation, the simulator decides whether to
stay and see another view from that set, or go, ter-
minating that epoch. The stay/go decision is calcu-
lated by comparing the current set of views against
each set of previously experienced object views stored
in memory. The decision to go cannot be made un-
til the φ curve for each object in memory passes the
decision method’s test. After the completion of each
epoch, the views sampled during the epoch are added
to memory. For the experiments we conducted, each
of which consisted of 100 epochs, the simulator’s mem-
ory was seeded with the complete set of unique views
from one of the 7 image sets.

7 Results
We tested the simulator with each of the four

stay/go methods. Figures 4-6 plot the number of views
before going for each epoch. For clarity, we use the
Analytic-Estimate curve as a baseline to compare with
each of the other methods’ curves. Figure 4 shows that
the Analytic-Complete and Analytic-Estimate meth-
ods are very similar, with the Analytic-Complete in-
creasing at a slightly faster rate. To understand why
both of these curves increase linearly with each epoch,
observe that the size of the set of elements for the ob-
ject in memory, na, appears in the calculation of Equa-
tion 7. That is, for each comparison, the number of
views in a set from memory directly influences the go
decision. However, the decision to go cannot be made
until the comparison with each object in memory sat-
isfies the go criterion. This means that the required
number of views will be influenced by the largest set of
views in memory. This is the key shortcoming of the
analytic methods: as long as the number of objects in
memory keep accruing, the mean number of views will
increase.

To avoid this problem, we turn to the empirical
methods, which depend not on the size of the sam-
ples but on the behavior of φ. The naive Empirical-
Threshold method exemplifies a first-pass solution to
this problem. Here, the threshold was set to slightly
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Figure 4: Comparison of Analytic-Estimate and
Analytic-Complete.

above zero (0.015), in order to catch those φ curves
with slopes close to zero, but to avoid catching φ
curves that may eventually have peaks. Figure 5 shows
that this threshold is not desirable. At least for runs of
under 100 epochs, the analytic methods perform much
better. Empirical-Threshold does, however, have one
positive property: despite the large variance in num-
ber of views required from one epoch to the next, the
overall number of views required does not increase at
the rate the analytic methods do. To see this more
clearly, we have treated each method’s results as a
scatterplot and calculated linear regression lines for
each. These are summarized in Table 1, which include
the overall mean number of views per epoch, the stan-
dard deviation (s.d.) of each mean, and the linear re-
gression line slope, along with that slope’s confidence
interval. The Empirical-Threshold slope is 0.34, which
is significantly less than the two analytic methods.

The last method, Empirical-Confidence, provides a
much better approach to determining the slope of φ
curves that are close to flat. In this method, the con-
fidence interval of the linear-regression line slope of
the φ curve is also calculated, and if a slope of 0 falls
within the interval, then the φ curve is considered es-
sentially flat. Figure 6 plots the Empirical-Confidence
results. Not only does it maintain a slope that is close
to horizontal, the number of views required for each
epoch is significantly less than any of the other meth-
ods. Of the four methods, Empirical-Confidence does
the best job of differentiating empirically curves that
have peaks from those that are flat.
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Figure 5: Comparison of Analytic-Estimate and
Empirical-Threshold.
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Figure 6: Comparison of Analytic-Estimate and
Empirical-Confidence.

method mean s.d. regression
slope c.i.

Analytic-Comp 73.90 24.64 0.83 0.0040
Analytic-Est 61.93 18.07 0.60 0.0035
Empirical-Thresh 69.17 22.97 0.34 0.0167
Empirical-Conf 38.32 12.34 0.15 0.0093

Table 1: Summary Statistics of Results

8 Summary and Conclusions
The Empirical-Confidence decision method has two

interesting properties: (1) even early on it tends to re-
quire fewer views than the analytic methods do, and,
more importantly, (2) the number of views required
within each epoch remains relatively stable as the
number of objects represented in memory increases.
This makes the Empirical-Confidence method, based
on the behavior of the φ statistic as views are accrued,
an attractive approach to a general stay/go solution.

Up to this point, the sets of views experienced for
each epoch have simply been stored in memory as in-
dividual sets. But many of these sets are actually
sampled from the same object. The next step is to
investigate methods for merging sets of views that are
similar, and to evaluate how such merging interacts
with the stay/go criterion over time. The goal is a
simple visual object memory that maintains classes in
memory that accurately represent classes of objects in
the environment. Such a memory will be a significant
step towards an autonomously developing agent.
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