
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/223429108

Empirical	study	of	dynamic	scheduling	on	rings
of	processors

ARTICLE		in		PARALLEL	COMPUTING	·	SEPTEMBER	1999

Impact	Factor:	1.51	·	DOI:	10.1016/S0167-8191(99)00039-3	·	Source:	DBLP

CITATION

1

READS

22

5	AUTHORS,	INCLUDING:

Arnold	Rosenberg

Northeastern	University

287	PUBLICATIONS			5,131	CITATIONS			

SEE	PROFILE

Paul	R.	Cohen

The	University	of	Arizona

373	PUBLICATIONS			5,110	CITATIONS			

SEE	PROFILE

Available	from:	Arnold	Rosenberg

Retrieved	on:	22	January	2016

https://www.researchgate.net/publication/223429108_Empirical_study_of_dynamic_scheduling_on_rings_of_processors?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/223429108_Empirical_study_of_dynamic_scheduling_on_rings_of_processors?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Arnold_Rosenberg?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Arnold_Rosenberg?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Northeastern_University?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Arnold_Rosenberg?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Paul_Cohen3?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Paul_Cohen3?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/The_University_of_Arizona?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Paul_Cohen3?enrichId=rgreq-8d9cfba0-99f7-4e3d-88b0-27d0b5ee0035&enrichSource=Y292ZXJQYWdlOzIyMzQyOTEwODtBUzoxMDAwNDY2NjIwMTI5MzZAMTQwMDg2NDM5MTY3NA%3D%3D&el=1_x_7


An Empirical Study of Dynamic Scheduling on Rings of Processors∗

Miranda E. Barrows§ Dawn E. Gregory† Lixin Gao‡ Arnold L. Rosenberg§ Paul R. Cohen§

Abstract. We empirically analyze and compare two low-overhead, deterministic policies for

scheduling dynamically evolving tree-structured computations on rings of identical processing

elements (PEs). Our computations have each task either halt or spawn two independent children

and then halt; they abstract, for instance, computations generated by multigrid methods. Our

simpler policy, koso, has each PE keep one child of a spawning task and pass the other to its

clockwise neighbor in the ring; our more sophisticated policy, koso
⋆, operates similarly, but

allows child-passing only from a more heavily loaded PE to a more lightly loaded one. Both

policies execute waiting tasks in increasing order of their depths in the evolving task-tree. Our

study focuses on two conjectures: (a) Both policies yield good parallel speedup on large classes

of the computations we study. (b) Policy koso
⋆ outperforms policy koso in many important

situations. We verify these conjectures via a suite of experiments, supplemented by supporting

mathematical analyses. We view our methodology of experimental design and analysis as a

major component of our study’s contribution, which will prove useful in other such studies.

1 Introduction

The promise of parallel computers to accelerate computation relies on an algorithm designer’s
ability to keep all (or most) of a computer’s processors fruitfully occupied all (or most) of the time.
The problem of balancing computational loads so as to approach this goal has received considerable
attention for decades. In this paper, we study the problem of efficiently scheduling dynamically
evolving tree-structured computations, on parallel computers whose underlying structure is a ring
of identical processing elements (PEs). The challenge of efficiently scheduling such computations
on such computers resides in the following facts.

• The dynamic nature of our computations precludes knowledge of the ultimate “shape” of their
task-dependency graphs; such knowledge can help one devise efficient schedules [3, 4].

• The large diameters and communication latencies of rings render both randomized load-
balancing and PRAM-like algorithms unacceptably time consuming; when efficient, such devices
aid in devising good schedules [7, 9, 10].

• The low communication bandwidths of rings render massive transfers of data unacceptably

————————————
∗ A portion of this paper appeared at the 8th IEEE Symp. on Parallel and Distributed Processing (1996) 470–473.
§ Dept. of Computer Science, Univ. of Massachusetts, Amherst, MA 01003, USA
Email: {miranda, rsnbrg, cohen}@cs.umass.edu
† School of Cognitive Science, Hampshire College, Amherst, MA 01002, USA
Email: dgregory@hampshire.edu

‡ Dept. of Computer Science, Smith College, Northampton, MA 01060, USA

Email: gao@cs.smith.edu

1



time consuming; such transfers can lead to good schedules [5, 9].
• The tight interrelationships among our tasks—as reflected in the dependency structures of our

computations—impose (load-balancing and scheduling) constraints that do not appear in activities
such as job scheduling (cf. [1]).

The computations we study have the structure of dynamically evolving binary trees in which
each executed task-node either halts (thereby becoming a leaf) or spawns exactly two child-
tasks. Algorithms that lead to such structure include branch-and-bound and game-tree algorithms
(cf. [6, 7, 8, 10]) and multigrid algorithms. To illustrate the latter, consider numerical integra-
tion algorithms that use Simpson’s Rule or the Trapezoid Rule: The initial task—the root of the
task-tree—represents the interval over which the integration takes place. A task spawns when the
approximation over the current interval is too coarse; its two child-tasks each represent half of the
parent-task’s interval. A task halts when either the approximation is sufficiently accurate or the
resolution of the host machine renders further subdivision of its interval useless.

We report here on an empirical evaluation and comparison of two low-overhead, deterministic
scheduling policies. Policy koso, for “Keep One-Send One,” has each PE keep one child-task of a
spawning task and send the other to its clockwise neighbor. Policy koso

⋆ tries to balance loads
better than koso, by having a PE send a spawned child-task to its neighbor only when the neighbor
has a lighter computational load; otherwise, the PE keeps both child-tasks.

Our main contribution is the design and analysis of two experiments that supply strong evidence
for the following conjectures—at least for large classes of dynamic tree-structured computations.

Conjectures. 1. Policies koso and koso
⋆ both yield close to optimal parallel speedup on large,

significant classes of computations.

2. Policy koso
⋆ produces significantly better schedules than policy koso, except on very small

processor rings.

Section 2 describes our computational setting in detail. In Section 3, we present two analytical
results which lend evidence for our conjectures. Section 4 is devoted to the experiments which vali-
date important cases of our conjectures: on an artificial computational load and on a simulated real
load. A combination of exploratory data analysis and hypothesis testing with variance-reducing
transformations leaves little doubt that koso

⋆ is superior to koso in a wide range of experimental
conditions. As importantly, these empirical results tell us why koso

⋆’s schedules enjoy better par-
allel speedup. We view this explanatory component of our methodology as an essential part of our
study. Indeed, one lesson of this paper is that empirical studies can augment formal analyses with
rich detail about why algorithms perform as they do—and may provide evidence about algorithms
in conditions that are difficult or impossible to analyze.

2 The Formal Setting of Our Study

2.1 The Computational Model

The Architecture. We focus on rings of PEs. The p-PE version Rp of this architecture has
p identical PEs, denoted P0,P1, . . . ,Pp−1, with each PE P i connected to its clockwise neighbor

2



P i+1 mod p and its counterclockwise neighbor P i−1 mod p.

The Computational Load. A binary tree-dag (BT, for short) T is a directed binary tree with
root-toward-leaf arcs. The root of T resides at level 0; each nonleaf node x of T has a left child
L(x) and a right child R(x) which both reside at level level(x) + 1. The (dynamic) computation
that generates T proceeds as follows, until no active leaves remain.

1. Initially, T contains only its root, which is its (current) active leaf.

2. Inductively, the tasks corresponding to some of the then-current active leaves (the particular
subset depending on the scheduling policy) get executed. An executed task/leaf may:
(a) halt, thereby becoming a permanent leaf,
(b) spawn two new active leaves, thereby becoming a nonleaf.

2.2 Policies koso and koso
⋆

Policies koso and koso
⋆ differ in their load-balancing regimens but share the same scheduling

strategy. Both have PEs retain tasks awaiting execution in local priority queues, ordered by the
tasks’ height in the BT being scheduled. Initially, the root of the evolving BT T is the sole occupant
of PE P0’s task-queue, and all other PEs’ task-queues are empty. At each step, the task-queue of
each PE contains some subset of the then-active leaves of T . Each P i having a nonempty task-queue
performs the following actions.

1. P i executes that active leaf x in its task-queue which is first in the mandated order.

2. If leaf x spawns two children, then P i adds L(x) to its task-queue. Under koso, it simul-
taneously sends R(x) to the task-queue of PE Pi+1 mod p. Under koso

⋆, P i sends R(x) to
P i+1 mod p only if the latter has a lighter load than P i; otherwise, P i adds this task also to
its own task-queue.

Notably, neither policy makes any assumption about the eventual shape of the evolving BT.

We assess one time unit for the entire process of executing a task and performing the balancing
actions just described. Thus, we ignore the fact that a step of koso

⋆ consumes a bit more real
time than does a step of koso, because of the required transmissions and comparisons of loads.

3 Analytical Evidence for the Conjectures

While we have not been able to establish our conjectures about koso and koso
⋆ analytically,

we have established two results that support the conjectures. The first result concerns the load

disparity under the two policies—the difference in the numbers of unexecuted tasks residing in the
heaviest and lightest loaded PEs of Rp.

3



Theorem 1. Focus on a dynamic BT in which every executed task spawns two new tasks.

(a) Under policy koso, after N ≥ p − 1 steps, the load disparity is exactly p − 2.
(b) Under policy koso

⋆, after N ≥ (p − 1)2 steps, the load disparity is exactly 1.

Proof. Since every executed task spawns two new tasks, and since an idle PE always accepts a
task offered by its counterclockwise neighbor, it should be obvious that after p − 1 steps of either
policy, every PE contains at least one task that is eligible for execution. Less obviously, the load
disparity at step p is exactly p − 2. To wit, when Pp−1 first receives a task to execute, the work
profile within Rp is as follows: P0 contains a single task, while each other Pi contains p − i tasks.
Under koso, at each subsequent step, each PE receives one additional task, so the load disparity
never changes, whence part (a).

We establish part (b) via three observations about koso
⋆.

1. The first time a PE has nonzero load, its load is 1.
2. The load of P0 remains 1 during the first p − 1 steps of the computation.
3. The load of the heaviest-loaded PE never increases by more than 1.

Focus on an arbitrary step t > p−1; let Pi be a heaviest loaded PE and Pj a lightest loaded PE at
step t. During step t: Pi’s load either stays the same (if P i+1 mod p has a lighter load than P i) or
increases by 1 (if P i+1 mod p is not lighter); similarly, Pj’s load either increases by 1 (if Pj−1 mod P

has the same load as Pj) or increases by 2 (if Pj−1 mod p has a heavier load). Therefore:
1. If each lightest-loaded PE has a more heavily loaded counterclockwise neighbor, then the

load disparity decreases by either 1 or 2 at step t.
2. If some lightest loaded PE does not have a more heavily loaded counterclockwise neighbor,

then, although the load disparity may not decrease at step t it cannot increase; and, the number
of lightest loaded PEs definitely decreases.
Since there are at most p − 1 lightest loaded PEs, alternative #1 must hold at least every p − 1
steps. Since the disparity at step p is at most p − 2, it follows that after ≤ (p − 1)2 steps, the
load disparity can be no greater than 1. In fact, the disparity is exactly 1, since any unit-disparity
configuration having a single lightest loaded PE produces another such configuration.

Theorem 1 does not really address our conjectures, for two reasons. (1) Policies that balance
computational loads well need not schedule parallel computations efficiently: pathological situations
could arise wherein PEs do equally much work, but with little concurrency. (2) Steady-state
balanced loads do not ensure good speedup, because once nodes start failing to spawn, the load
disparity can increase arbitrarily (since more than half the nodes of a BT are leaves.)

The following result from [2] does address Conjecture 1, by showing that koso achieves asymptot-
ically optimal parallel speedup, at least on a narrow class of BT-computations.

Theorem 2 [2] Under policy koso, Rp executes each evolving BT that evolves into the height-n
complete binary tree in time (1 + o(1))(2n − 1)/p.

While an analytical verification of our conjectures has eluded us, we have been able to verify them
via simulation experiments—at least for classes of trees that model the structure of computations
such as those enumerated in Section 1. The next section describes our experiments and their results.

4



4 Our Experimental Study

4.1 Experimenting with an Artificial Computational Load

In our first experiment, we abstract the computations of a large class of algorithms—such as
multigrid algorithms—by generating BT’s via a combinatorial model. We strive for realistic “com-
putations” by generating BT’s that are “bushy”—very likely to branch—near the root but quickly
get “scrawny” at deeper levels. For inspiration, consider numerically integrating via the Trapezoid
Rule. The BT-structured computations will start out bushy since most nontrivial functions are
nonlinear, hence will incur several levels of subdivision; however, task-spawning will quickly be-
come sparse because of the relative smoothness of most functions over most of their domains and
of the limited resolution of floating point representations. We expect our policies to yield good
parallel speedup for algorithms that generate such trees.

In this experiment, input trees were generated according to a branching parameter α ∈ (0, 1).
Each level-l tree-node spawns with probability αl and halts with probability (1 − αl). Values of α
close to 1 yielded trees with the desired shapes.

Our simulator maintains a collection of queues representing the PEs of Rp. Each task is represented
within its queue by an integer, its level in the evolving BT. At each iteration, the simulator executes
the task at the head of each nonempty queue: it determines the probability of the task’s spawning—
from α and the task’s level—and generates a pseudo-random number to decide whether or not the
task spawns. If the task spawns, two child-tasks are created and sent to the appropriate queues
according to the scheduling policy being simulated. The simulator continues this iteration until
all queues are empty. Due to implementation costs—mainly storage considerations—we generated
input trees on-line, rather than generating a batch of trees off-line and testing the same input for
all values of the policy and the parameters α and p.

We ran the experiment with α = 0.96, 0.965, 0.97 and p = 8, 10, 12, 14, 16. We chose the latter
values because with fewer than 8 PEs, buses outperform rings, and with more than 16 PEs the
communication latency of a ring is too great, so one would likely use a more densely connected
network. For each α and p, we ran 100 trials with each policy, for a total of 3000 trials. In each
trial, we measured the size N (total number of nodes) and height h (longest root-to-leaf path) of
the BT, and the total execution time T .

We evaluated the observed computation times for koso and koso
⋆ in the light of the following

factors which influence the optimal computation time Tp for Rp.
1. Easily, Tp ≥ max(N/p, h), those quantities representing, respectively, p-fold parallel speedup

and inherent sequentiality.
2. The bounds in item #1 are moderated by the inevitable “startup and cooldown” periods

during which some PEs must have empty queues. (E.g., in Rp, one cannot have all PEs busy until
step p.)

With these factors in mind, we calculated the normalized parallelization factor, NPF
def

= N/pT , for
each trial. NPF indicates what percentage of optimal speedup was attained, or equivalently, what
percentage of Rp’s capacity was utilized during the trial. Fig. 1 shows the relationship between
NPF and N for each trial.

5



N
P
F

N

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50000 100000

N
P
F

N

0.7

0.8

0.9

10000 20000 30000 40000 50000 60000 70000 80000 90000

(a) p = 8 PEs (b) p = 10 PEs

N
P
F

N

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10000 20000 30000 40000 50000 60000 70000 80000 90000

N
P
F

N

0.5

0.6

0.7

0.8

0.9

10000 20000 30000 40000 50000 60000 70000 80000

(c) p = 12 PEs (d) p = 14 PEs

N
P
F

N

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10000 20000 30000 40000 50000 60000 70000 80000 90000

(e) p = 16 PEs

Figure 1: Percentage of optimal parallel speedup vs. tree-size (× = koso; + = koso
⋆)

6



Fig. 1 illustrates the importance of load-balancing, since for sufficiently large N , the NPF for
koso

⋆ appears to climb very close to 1, while koso’s NPF peaks notably lower. In the koso
⋆

trials, each of the four smaller rings appears to have a threshold tree size after which the NPF
values plateau; the 16-PE ring probably has such a threshold as well, but our trees were too small
to expose it. Note that NPF values are smaller for larger rings, because greater communication
delay results in poorer PE utilization. Higher values of N tend to increase NPF , because the larger
problem sizes offset the communication delay. Larger ring sizes also serve to increase the difference
between the NPF values for each policy; the amount by which koso

⋆ outperforms koso increases
with p because of the greater need for load balancing on a larger ring.

We tested the observation that koso
⋆ had higher NPF values than koso via two-sample two-

tailed t-tests which indicate the probability that we are incorrectly rejecting the null hypothesis
that koso and koso

⋆ perform equally well. A t-test for the entire sample, not broken down by
processor size, yields a t-value of 2.89, which is significant at the p < .001 level. Hence, koso

⋆ had
higher NPF values than koso averaging across all conditions of the experiment. Moreover, the
t-values shown in Table 1 indicate that koso

⋆ is superior to koso for each individual ring size.
Even after a Bonferonni adjustment for multiple testing, all results are significant at the p < .001
level.

p 8 10 12 14 16

t-statistic 12.46 44.81 43.28 40.92 31.77

Table 1: t-test results for the combinatorial experiment

Fig. 2 shows the execution times under each policy, with trials segregated according to the value of
α. (Recall that smaller values of α lead to smaller trees.) Each data point shows the mean execution
time for the 100 trials in that condition, with 95% confidence bars to indicate the variability of
the data. koso shows generally smaller execution times on larger rings, especially for larger trees.
However, the overlap of confidence intervals from one value of p to the next suggests that increasing
p is no guarantee of better performance; the specific shape of the input tree seems to have a large
influence on execution time, especially for smaller trees. For koso

⋆ however, the decrease in
execution times on larger rings is much more apparent, although some of the confidence bars do
overlap from one value of p to the next, especially for smaller trees. Even more apparent, however,
is the superiority of koso

⋆ over koso in nearly every condition—especially for larger rings. Thus,

koso
⋆ allows one to exploit parallelism better than koso.

In order to investigate why koso
⋆ is more efficient than koso, we recorded traces of both the

numbers of busy PEs and the queue sizes over the course of a trial. Figs. 3 and 4 show time-series
data for six trees of approximately equal size.

Summarizing Fig. 3. R8 saturates quickly under both policies, and most PEs remain busy
throughout the trial; at the end of the trial, however, the number of busy PEs drops off sooner and
less steeply for koso than for koso

⋆. When p = 12, koso
⋆ is still able to keep all PEs busy for

most of the trial, while under koso, the number of busy PEs begins to drop off less than halfway

7



T

P

600

700

800

900

9 10 11 12 13 14 15 16

T

P

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

9 10 11 12 13 14 15 16

(a) α = .96 (b) α = .965

T

P

4000

5000

6000

7000

9 10 11 12 13 14 15 16

(c) α = .97

Figure 2: Execution times vs. ring size (top line koso; bottom line koso
⋆)

8



2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000

(a) koso with p = 8 PEs (b) koso
⋆ with p = 8 PEs

5

10

1000 2000 3000 4000 5000

5

10

1000 2000 3000 4000

(c) koso with p = 12 PEs (d) koso
⋆ with p = 12 PEs

5

10

15

1000 2000 3000 4000 5000

5

10

15

1000 2000 3000

(e) koso with p = 16 PEs (f) koso
⋆ with p = 16 PEs

Figure 3: Numbers of busy PEs over the course of a trial

9



100

200

300

400

500

600

100 200 300 400 500 600 700

100

200

300

400

100 200 300 400 500 600

(a) koso with p = 8 PEs (b) koso
⋆ with p = 8 PEs

100

200

300

400

100 200 300 400 500

100

200

300

100 200 300 400

(c) koso with p = 12 PEs (d) koso
⋆ with p = 12 PEs

100

200

300

400

500

600

100 200 300 400 500

50

100

200

150

50 100 200150 300250

(e) koso with p = 16 PEs (f) koso
⋆ with p = 16 PEs

Figure 4: Queue sizes over the course of a trial

10



through the trial. When p = 16, the ring never saturates under koso; under koso
⋆, the number

of busy PEs drops off much more gradually than for the two smaller rings.

Summarizing Fig. 4. When p = 8, koso produces large variations in queue size, while koso
⋆

balances loads almost perfectly, allowing almost no variation in queue sizes throughout the trial.
When p = 12, koso

⋆ performs almost as well when p = 8, while koso shows substantially degraded
balance in loads. When the load is too light to saturate the ring, as when p = 16, neither policy
balances loads well.

4.2 Experimenting with a “Real” Computational Load

Our second experiment was designed to test our policies on trees generated by instances of an actual
problem, in order to demonstrate that the combinatorial model of the first experiment effectively
captures the structure of trees generated by (at least some) actual algorithms. We chose the problem
of integrating polynomial functions on the interval [0,1] using the Trapezoid Rule.

The Trapezoid Rule. Given a function f and a real interval [a,b]:

1. Calculate the area A(a, b) of the trapezoid with corners (a, 0), (a, f(a)), (b, (f(b)), (b, 0).

2. If 1

2
(b − a) is less than the resolution threshold θr, then return A(a, b) and halt.

3. Evaluate A(a, 1

2
(a + b)) and A(1

2
(a + b), b).

4. If A(a, 1

2
(a + b)) + A(1

2
(a + b), b) differs from A(a, b) by less than the accuracy threshold θa,

then return A(a, b) and halt; otherwise, apply the Trapezoid Rule recursively to the intervals
[a, 1

2
(a + b)] and [1

2
(a + b), b].

Note that θa plays somewhat the same role here as α did in our combinatorial experiment.

One difficulty in designing this experiment is how to generate “random” functions. (When is a
function “random”?) We chose to use polynomial functions of varying degrees, because they are:
easily parameterized by a small set of integers and simple to evaluate yet still provide enough
“wiggles” to generate interesting trees. We generated a random polynomial π by first generating
a pseudo-random degree d ∈ {0, 1, . . . , 100} and then generating d pseudo-random roots in the
interval [0, 1]. Since this approach generates polynomials with very small coefficients, we multiplied
π by a random factor a ∈ {1, 2, . . . , 500}, to increase the amplitude of its wiggles. Finally, we
squared aπ, because the Trapezoid Rule as presented earlier expects positive functions.

Because the tree structure of a computation is determined entirely by the d roots and the amplifier
a, it was computationally feasible to run multiple iterations of the experiment with the same input
tree. We ran the experiment applying both koso and koso

⋆ to 100 polynomials, with ring-sizes
p = 8, 10, 12, 14, 16 and θa = 10−6, 10−8, 10−10, for a total of 3000 trials. (θr was fixed at 10−10).

Fig. 5 shows the mean execution times for this experiment with 95% confidence intervals. These
results illustrate dramatically the advantages of load-balancing. koso

⋆ is a clear winner over

11



T

P

500

600

9 10 11 12 13 14 15 16

T

P

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

2800

9 10 11 12 13 14 15 16

(a) θa = 10−6 (b) θa = 10−8

T

P

8000

9000

10000

11000

12000

9 10 11 12 13 14 15 16

(c) θa = 10−10

Figure 5: Execution times vs. ring size (top line koso; bottom line koso
⋆)

koso: the confidence intervals for the two policies overlap only when p = 8, and then only slightly.
There is hardly any change in the execution times for koso as p increases, while koso

⋆’s times
show a definite downward trend. However, this trend, disappointingly, is not as steep as in the
combinatorial experiment. The NPF vs. N data in Fig. 6, too, are not as encouraging as with the
combinatorial experiment. Even for koso

⋆, the NPF values decrease steadily as p increases and
do not tend to 1 with increasing N . Once again however, the t-statistics, shown in Table 2, reveal
that the NPF values are significantly higher for koso

⋆ than for koso.

p 8 10 12 14 16

t-statistic 18.82 21.97 24.16 25.10 25.21

Table 2: t-test results for the second experiment

12



N
P
F

N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50000 100000 150000

N
P
F

N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50000 100000 150000

(a) p = 8 PEs (b) p = 10 PEs

N
P
F

N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50000 100000 150000

N
P
F

N

0.1

0.2

0.3

0.4

0.5

0.6

50000 100000 150000

(c) p = 12 PEs (d) p = 14 PEs

N
P
F

N

0.1

0.2

0.3

0.4

0.5

50000 100000 150000

(e) p = 16 PEs

Figure 6: Percentage of optimal parallel speedup vs. tree size (× = koso; + = koso
⋆)

13



As in the combinatorial experiment, we attempted to explain our findings via a time-series analysis.
The results, for a single polynomial under both policies and all ring sizes, with threshold θa = 10−10,
are shown in Figs. 7 and 8.

The plots of busy PEs show that the ring saturates when p = 8, but not when p = 12, 16. As
expected, koso

⋆ balances loads better than koso. The plots of queue size tell the same story:
when p = 8, koso

⋆ keeps all queues approximately even throughout the trial, but when p = 12, 16,
there is not enough work to saturate the ring. Under koso, there is little difference in performance
between R8 and R16; in the latter, half the PEs are hardly doing any work at all.

The queue sizes from the koso trials do not look the same as those from the combinatorial experi-
ment: the queues appear to grow and shrink in pairs. This may be because the random distribution
of the roots of the polynomials causes most leaf nodes to occur at the same level of the tree (the
deepest level). In other words, most nodes spawned until they reached a certain level, at which
all of the remaining nodes halted. A histogram of the sizes and heights of the trees from the two
experiments in Figs. 9 and 10 supports this explanation. To wit, while the distribution of N is
comparable for the two experiments, the values of h from the polynomial experiment appear to
reach an upper bound, while those from the combinatorial experiment are concentrated in one
range, with outliers on either side—and, they are much larger.

4.3 Summary

While the results from both experiments largely support our two conjectures, the polynomial ex-
periment was disappointing, showing smaller speedup factors and less inherent parallelism. We
believe this disparity is due to unanticipated different growth patterns of our combinatorial and
polynomial model trees: the former trees were large and died out gradually; the latter were smaller
and tended to have all leaves at the lowest level. We are not certain why this occurs—most im-
portantly whether it is an artifact of our generation scheme or an inherent property of (random)
polynomials. Further work is needed to settle this question, thereby sharpening our understanding
of policies koso and koso

⋆.

Acknowledgments. The authors wish to thank Nadia Perez of the University of Catania for
programming assistance. The work of Miranda Barrows and Arnold Rosenberg was supported in
part by NSF Grants CCR-92-21785 and CCR-97-10367. The work of Dawn Gregory was supported
in part by a NSF Graduate Fellowship Award and by DARPA/RL Contract F30602-93-C-0100.
The work of Lixin Gao was supported in part by NSF Grant NCR-9729084.

References

[1] P. Fizzano, D. Karger, C. Stein, J. Wein (1994): Job scheduling in rings. 6th ACM Symp. on Parallel

Algorithms and Architectures, 210–219.

[2] L.-X. Gao and A.L. Rosenberg (1996): Toward efficient scheduling of evolving computations on rings
of processors. J. Parallel Distr. Comput. 38, 92–100.

14



2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000 8000 9000

2

3

4

5

6

7

8

1000 2000 3000 4000 5000 6000 7000

(a) koso with p = 8 PEs (b) koso
⋆ with p = 8 PEs

5

10

1000 2000 3000 4000 5000 6000 7000 8000 9000

5

10

15

1000 2000 3000 4000 5000 6000

(c) koso with p = 12 PEs (d) koso
⋆ with p = 12 PEs

5

10

15

1000 2000 3000 4000 5000 6000 7000 8000 9000

5

10

15

1000 2000 3000 4000 5000 6000

(e) koso with p = 16 PEs (f) koso
⋆ with p = 16 PEs

Figure 7: Numbers of busy PEs over the course of a trial

15



500

1000

2000

1500

100 200 300 400 500 600 700 800 900

500

1000

2000

1500

100 200 300 400 500 600 700

(a) koso with p = 8 PEs (b) koso
⋆ with p = 8 PEs

500

1000

2000

1500

100 200 300 400 500 600 700 800 900

500

1000

2000

1500

100 200 300 400 500 600 700

(c) koso with p = 12 PEs (d) koso
⋆ with p = 12 PEs

500

1000

2000

1500

100 200 300 400 500 600 700 800 900

500

1000

1500

100 200 300 400 500 600

(e) koso with p = 16 PEs (f) koso
⋆ with p = 16 PEs

Figure 8: Queue sizes over the course of a trial

16



N

500

1000

50000 100000
N

500

1000

1500

50000 100000 150000

a) Combinatorial Experiment b) Polynomial Experiment

Figure 9: Distribution of N

H

500

1000

10 20 30 40 50 60
H

500

1000

5 10 2015

a) Combinatorial Experiment b) Polynomial Experiment

Figure 10: Distribution of h

17



[3] L.-X. Gao, A.L. Rosenberg, R.K. Sitaraman (1997): Optimal clustering of tree-sweep computations for
high-latency parallel environments. See also, Optimal architecture-independent scheduling of fine-grain
tree-sweep computations. 7th IEEE Symp. on Parallel and Distr. Processing, 620–629.

[4] A. Gerasoulis and T. Yang (1992): Static scheduling of parallel programs for message passing ar-
chitectures. Parallel Processing: CONPAR 92 — VAPP V. Lecture Notes in Computer Science 634,
Springer-Verlag, Berlin, 601–612.

[5] S.L. Johnsson (1987): Communication efficient basic linear algebra computations on hypercube archi-
tectures. J. Parallel Distr. Comput. 4, 133–172.

[6] C. Kaklamanis and G. Persiano (1994): Branch-and-bound and backtrack search on mesh-connected
arrays of processors. Math. Syst. Th. 27, 471–489.

[7] R.M. Karp and Y. Zhang (1993): Randomized parallel algorithms for backtrack search and branch-and-
bound computation. J. ACM 40, 765–789.

[8] R.M. Karp and Y. Zhang (1999): On parallel evaluation of game trees. J. ACM, to appear.

[9] R. Lüling and B. Monien (1993): A dynamic, distributed load-balancing algorithm with provable good
performance. 5th ACM Symp. on Parallel Algorithms and Architectures, 164–172.

[10] A.G. Ranade (1994): Optimal speedup for backtrack search on a butterfly network. Math. Syst. Th. 27,
85–101.

18


