Piagetian Adaptation Meets Image Schemas:
The Jean System

Yu-Han Changj, Paul Coheh, Clayton Morrisor, and Robert St. Amant

tuscisl
4676 Admiralty Way
Marina del Rey, CA 90292
{cohen, ychang, clayton }@isi.edu
2 North Carolina State University
stamant@ncsu.edu

Abstract. Jean is a model of early cognitive development based loosely on Pi-
aget’s theory of sensori-motor and pre-operational thought [1]. Like an infant,
Jean repeatedly executes schemas, gradually extending its schemas to accommo-
date new experiences. Jean’s environment is a simulated “playpen” in which Jean
and other objects move about and interact. Jean’s cognitive development depends
on several integrated functions: a simple perceptual system, an action-selection
system, a motivational system, a long-term memory, and learning methods. This
paper provides an overview of Jean’s architecture and schemas, and it focuses on
how Jean learns schemas and transfers them to new situations.

1 Introduction

Jean is both a synthesis of ideas about cognitive development and the foundations of
concepts, and an integrated software system that implements perception, action, learn-
ing and memory. Most of this paper is devoted to the Jean system, so let us begin with
the underlying ideas. From Piaget we borrow the ideas that children learn some of what
they know by repeatedly executing schemas, and executing schemas is in a sense re-
warding, and some new schemas are modifications or amalgamations of old ones [1].
The Image Schema theorists [2—6] promote the ideas that primitive schemas are encod-
ings or redescriptions of sensorimotor information; and these schemas are semantically
rich, general, and extend or transfer to new situations, some of which have no salient
sensorimotor aspects. Another idea, represented by various authors, is that semantic
distinctions sometimes depend on dynamics — how things change over time — and so
schemas should have a dynamical aspect [7-10].

Jean will test several conjectures about developmental Al: First, it will be possible to
provide a relatively small, core set of schemas and a general algorithm to learn others as
they are needed or indicated by experience. We are betting on a compositional account
of knowledge, in which newly learned schemas are assembled from previously learned
and appropriately modified components. Second, schemas will have to be more than
the declarative, logical structures proposed by Al researchers over the decades; they
will have to include behavior-generating controllers, dynamic maps, deictic variable
bindings, and causal theories; these components will not all develop simultaneously.

2 Chang, Cohen, Morrison and St. Amant.

Third, the generality of these schemas provides a basis for the efféwtivefer of
knowledge learned in one task to a new, related task.

2 The Image Schema Language

Image schemas are Jean’s elementary and innate representations, and much of Jean’s
design follows from these representation commitments, so we begin our description of
Jean with them. Image schemas are representations that are “close” to perceptual expe-
rience. Some authors present them as re-descriptions of experience [5]. Their popularity
is due to their supposed generality and naturalness: Many situations are naturally de-
scribed in terms of paths, up-down relations, part-whole relationships, bounded spaces,
and so on. Even non-physical ideas, such as following an argument, containing politi-
cal fallout, and feeling “up” or “down,” seem only a short step from image-schematic
foundations [2, 3].

These ideas are attractive but vague, and there have been attempts to formalize them,
such as the Image Schema Language (ISL) [11]. The authors found it necessary to dis-
tinguish three kinds of image schenftatic schemas describe unchanging arrange-
ments of physical thingglynamicschemas describe how the environment changes; and
action schemas describe intentional aspects of static and dynamic schemas. Thus, the
action schemapproach-objecincludes a path (a static schema) but gives it the inten-
tional gloss that it is the path one intends to follow (or is followinighoving might
be intentional or it might simply be the result of force acting on an object. Both cases
involve a path, but the latter is described by a dynamic schema, not an action schema.

2.1 Static Schemas

As represented in ISL, static image schemas are objects, in the sense of the object-
oriented data model. Each schema has a set of operations that determine its capabilities.
For example, operations for a basic container schema include putting material into a
container and taking material out. Each schema also has a set of internal slots that
function as roles in a case grammar sense [12]. Slots permitimage schemas to be related
to each other through their slot values. For example, the contents of a container can be
other image schemas.

To illustrate static schemas in ISL, it will be helpful to walk through an example,
which we take from our work on representing chess patterns. Consider a chess board in
which the Black queen has the White king in check. In image schema terms, we say that
there exists a path from the queen to the king. In ISL, we generate a path schema, which
contains a set of locations, as shown in Through a mechanism gat#edretation we
can substitute one kind of schema for (part of) another in ISL, which allows us to make
the locations along the paths bentainerschemas. Then, by setting the capacity of
these containers to one piece, we capture the idea that the location (interpreted as a
container) is “full” if it is occupied by a piece. A blocked path is then a path with at
least one full container/location.

Piagetian Adaptation Meets Image Schemas: The Jean System 3

2.2 Dynamic and Action Schemas

If Jean lived in a chess game, we might choose to represent the dynamics of the en-
vironment as a sequence of static schemas, like fluents in the situation calculus: Some
schemas describe the environment until an instantaneous chess move happens, then oth-
ers do. Jean’s environment changes continuously, and there is much strudtaveitn
changes, so we have adopted the following representation for dynamic schemas and
action schemas: Both are finite state machines, the states of which are themselves com-
posed of image schemas. For example, to catch a simulated cat, Jean must sneak up on
the cat slowly and then, when it gets near the cat, Jean must pounce. As illustrated in
Figure 1, the action schema for catching a cat must have at least these two states (and
actually, a couple more). Each state contains several static and dynamic schemas. For
instance, state; of Figure 1 comprises an object schema that binds its deictic variable

to the cat, and a near-far schema that binds its two deictic variables to the robot (i.e.,
Jean) and the cat, respectively. The near-far schema also asserts that the cat is more than
six units away from the robot; is associated with two action schemas, fast-approach-
object (#") and slow-approach-objec$), represented as arcs leaving

S2
S5 OBJECT CAT
OBJECT BALL NEAR-FAR ROBOT CAT : DISTANCE <= 6 i
MOVEMENT CAT : VELOCITY <=5
S3
OBJECT CAT
NEAR-FAR ROBOT CAT : DISTANCE > 6

S4
OBJECT CAT
NEAR-FAR ROBOT CAT : DISTANCE <= 6
MOVEMENT CAT : VELOCITY > 5

Fig. 1. A learned composite action schema for catching a cat

Composite action schemas like catching a cat are cgitdbecause they involve
story-like sequences of actions and states and they abstract away many of the details of
particular instances.

In addition to the familiar, declarative components of schemas, dynamic and action
schemas contain dynamimaps which describe continuous, smooth changes in state
variables. Dynamic maps have three functions: They let Jean estimate when changes
will occur, they tell Jean when its actions are, or are not, likely to achieve its goals,
and they help Jean find the boundaries between states. These functions are elaborated
in Section 4.

4 Chang, Cohen, Morrison and St. Amant.

Action schemas also contagontrollersthat control behavior. For instance, Jean’s
schema forapproachingbinds its variables to the approaching object (typically Jean)
and the approached object, a map that shows how distance between the objects changes
over time, and a controller that makes Jean move toward the location of the object it
is approaching. Eventually, schemas will also be augmented with causal relations (see
Sec. 7).

Gists
Behavior | Schemas
generator |
\’\
\ 4 S
Sensorimotor . Experiment :
data L plggr__e_r_ o
------ S
Causal
 hypotheses :
Interpretation b,
7

Experimental
State Splitting

Fig. 2. The main functional components of Jean

3 The Architecture of Jean

The main functional components of Jean are illustrated in Figure 2. Over time, Jean
learns new schemas and gists, all represented in the Image Schema Language (ISL).
When Jean has a goal, such as catching a simulated cat, it retrieves an appropriate gist
and runs its controller, which means taking the actions that produce transitions between
states. The component of Jean that runs schemas is callbéhhgior generatorEx-
ercising schemas produces sensory data, and lots of it. The job aftdrpreteris

to retrieve and instantiate (i.e., bind the deictic variables of) schemas from the repos-
itory. Interpretation also updates conditional probabilities associated with state transi-
tions within gists. Jean will try to interpret the sensory data in terms of the schemas
in the gist it is running; for example, if it is trying to catch a cat, then it will prefer to
interpret the sensory data as matching the states in Figure 1. Sometimes, though, the fit
is poor, and another schema in the repository does a better job of explaining the sen-
sory data. And sometimes, it is necessary to construct a novel static, dynamic or action
schema, as described in the next section.

Piagetian Adaptation Meets Image Schemas: The Jean System 5

4 Learning: Experimental State Splitting

Jean learns new schemas in two wayscbgnposingschemas into gists and lojffer-
entiatingstates in schemas. Both are accomplished by the Experimental State Splitting
(ESS) algorithm. The basic idea behind Experimental State Splitting (ESS) is simple.
The algorithm starts with a minimal state model of the world, in which it has only one
all-encompassing state. This model is modified as the agent explores its world, so that
it becomes more predictive of some measure of observed action outcomes.

For a general developmental account we want a general measure, not a task-specific
one. To accord with the idea that learning is itself rewarding, this measure might have
something to do with the informativeness or novelty or predictability of states. In Jean,
the ESS algorithm uses a measure we balindary entropywhich is the entropy of
the next state given the current state and an intended action. Initially, when there is only
one state in the model, the entropy will always be zero. One way to drive Jean toward
more states, and, thus toward states that have boundary entropy, is to have a goal state
in addition to the initial (non-goal) state. At any moment in time, the agent is in one of
these two states, and each state-action pair generates some probability distribution over
the set of possible next states. ESS calculates the entropy of this distribution and uses it
as a state splitting criterion.

In general, Jean is driven by ESS to modify its world model by augmenting existing
states with new states that reduce the boundary entropies of state-action pairs. This aug-
mentation is achieved by splitting an old state into two (or more) new states based on
distinguishing characteristics. For example, if an agent is navigating a city intersection,
it might decide that “green light” is an important characteristic because, where it ob-
serves a green light, it is much less likely to be involved in crashes. Thus, its non-goal
state would be split into two states: (1) a green light is observed and its goal has not yet
been attained, and (2) neither a green light is observed nor its goal has been obtained.
The state machine thus grows over time as the agent adds more attributes to its state
descriptions.

As Jean interacts with the world, it counts the transitions between the states via
particular actions. If the developing state machine model is Markov, then the model is a
Markov Decision Process (MDP), which Jean can solve for the optimal policy to reach
its goal state. In this way, the developing model can be used for planning. However, it
is worth pointing out that since Jean operates in a continuous environment using fairly
general action schemas, its world model is more like a semi-Markov Decision Process
(SMDP), where each action results in a transition between states according to some
probability distribution.

If Jean lives always in one environment with one set of goals, then ESS will even-
tually produce optimal policies for the environment. However, the purpose of the Jean
project is not to produce optimal policies for each task and variant of Jean’s environ-
ment, but, rather, to explain how a relatively small set of policies may quitpm-
modate(as Piaget called it) aransferto new tasks and environments. Our approach
to this problem is to extragistsfrom policies. Gists are like policies, in that they tell
Jean what to do in different situations, but they are more general because they extract the
“usual storyline” or essential aspects of policies. We claim that these essential aspects
are typically thecausal relationshipthat govern actions and effects in the environment.

6 Chang, Cohen, Morrison and St. Amant.

If an agent can identify and learn these causal relationships, then it should have a very
good idea of how its actions affect the world and how act to achieve its gnadg,in
novel situationsWe will discuss gists and transfer further in Section 5.

4.1 An Example

Figure 1 illustrates a gist for approaching and contacting a simulated cat. In the scenario
in which this gist was learned, the cat is animate, capable of sitting still, walking or
running away. The cat responds to Jean. In particular, if Jean moves toward the cat
rapidly, the cat will run away; if Jean approaches slowly, the cat will tend to keep doing
what it is doing. Because of these programmed behaviors, there is uncertainty in Jean’s
representation of what the cat will do, but there is a general rule about how to catch the
cat, and it can be represented in a gist: The only way to catch the cat is to first get into
states, (Fig. 1), where the cat is nearby and not moving quickly, and then to move fast
toward the cat, reaching state All other patterns of movement leave Jean in states

or s4. This corresponds to the strategy of slowly sneaking up to the cat and then quickly
pouncing on it to catch it.

To learn a gist like the one in Figure 1, Jean repeatedly retrieves action schemas
from its memory, runs the associated controllers, producing actions, specifically slow
and fast movement to a location; assesses the resulting states, and, if the transitions
between states are highly unpredictable, Jean splits states to make the resulting states
more predictable.

In fact, the three states;, s3 ands, were all originally one undifferentiated state
in which Jean moved either fast or slowly toward the cat. Jean’s learning history — the
distinctions it makes when it splits states — begins with a single, undifferentiated non-
goal state. Then, Jean learns that the type of object is an important predictor of whether
or not it can catch the object. Balls are easy to catch, whereas cats are hard to catch.
From here, ESS recognizes that distance also influences whether or not it can catch
a cat. Starting near the cat, a fast-approach-objertagttion will often catch the cat,
whereas this action will not usually catch the cat from further away. Thus, ESS splits on
distance with a threshold of 6, whete= 6 is considered near, and 6 is far. Finally,

ESS may notice that even when Jean is near the cat, sometimes it does not succeed in
catching the cat. This might be because the cat is already moving away from the agent
with some speed. Thus, ESS may do a final split based on the velocity of the cat. This
process leads to the states ss, s4 andss that we see in Figure 1.

4.2 The Algorithm

We give a formal outline of the ESS algorithm in this section. We assume that agent
receives a set of featurds’ = fi,..., f, from the environment at every time tick

t; these features could be sensor readings, for example. We also assume that Jean is
initialized with a goal stats, and a non-goal statg. S, is the entire state space at time

t. Ais the set of all actions, and(s) C A are the actions that are valid for state S.
Typically A(s) should be much smaller tha#. H(s;,a;) is the boundary entropy of

a state-action paifs;, a;), where the next observation is one of statesinA small
boundary entropy corresponds to a situation where executing agtivom states; is

Piagetian Adaptation Meets Image Schemas: The Jean System 7

highly predictive of the next observed state. Finglis;, a;, si) is the probability that
taking actionu; from states; will lead to states,.

For simplicity, we will focus on the version of ESS that only splits states; an alter-
native version of ESS is also capable of splitting actions and learning specializations of
parametrized actions. The ESS algorithm follows:

— Initialize state space with two state$, = {so, s4}.
— While e-optimal policy not found:
e Gather experience for some time intervab estimate the transition probabil-
ities p(s;, aj, Sk).
e Find a states; to split that maximizes the boundary entropy score reduction of
the splitmaxs a4 reo H(s;, a;) —min(H (sg,, a;), H(sk,, a;)), wheresy, and
sk, result from splittings; using featuref € F' and threshold € ©.
e Splits; € S; into si, andsy,, and replace; with new states irb; ;.
e Re-solve for optimal plan according toand .Sy,

The splitting procedure iterates through all state-action pairs, all of the fedtures
and all possible thresholds # and tests each such potential split by calculating the
reduction in boundary entropy that results from that split. This is clearly an expensive
procedure. In future we will speed it up with heuristics that limit the Jean’s attention
to relevant features and state-action pairs. Heuristics to find potential thresholds are
discussed next.

4.3 Finding splitting thresholds, learning new dynamic schemas, and other
criteria for splitting

Given a candidate schenfafor splitting, ESS must find a threshold on which to split
the state using that schema. To do this, Jean uses a simple heuristic: States change when
several state variables change more or less simultaneously. This heuristic is illustrated
in Figure 3. The upper two graphs show time series of five state variables: headings
for the robot and the cat (in radians), distance between the robot and the cat, and their
respective velocities. The bottom graph shows the number of state variables that change
value (by a set amount) at each tick. When more than a set number of state variables
change, Jean concludes that the state has changed. The value of the gchietha
moment of the state change is likely to be a good threshold for splittikgr example,
between time period 6.2 and 8, Jean is approaching the cat, and the heuristic identifies
this period as one state. Then, at time period 8, several indicators change at once, and the
heuristic indicates Jean is in a new state, one that corresponds to the cat moving away
from Jean. The regions between these changes become the dynamic maps associated
with dynamic and action schemas, and the active schemas in these regions are bundled
together into composite dynamic and action schemas suctya®bject : Cat ; Near-
Far : Robot, Cat :Distance 6 ; Movement Cat : Velocityk 5.”

This segmentation of the time series helps Jean learn new dynamic schemas. Seg-
ments correspond to dynamigapsin dynamic and action schemas. As long as Jean
is safely within a schema, state variables will change as the schema’s maps prescribe.
Over time, Jean builds up a statistical model of how state variables are expected to

8 Chang, Cohen, Morrison and St. Amant.

Sensor readings: Distance, Velocities

Value

Value

Number
o

Fig. 3. New states are extracted by cutting multiple time series at places where multiple state
variables change simultaneously.

change in a state. If the variance of this model is high, then it suggests the state is a
candidate for splitting.

Other useful indicators that states need to be split include rewards (and costs), and
repeatability or closure. Reward is fairly straightforward: we wish to split states so that
new states will better predict future rewards (rather than simply predicting future states).
Repeatability or closure refers to whether actions are easily repeated once executed. For
example, picking up and dropping a block onto a table is easily repeated because the
action leads to a state where it can immediately be repeated. Such “closed” actions
are more easily learned by children, thus we may want closure to be an indicator for
splitting actions.

5 Transferring Learning

Although ESS can learn policies for new situations from scratch, we are much more
interested in how previously learned policies can accommodate or transfer to new situ-
ations. We call transferrable policigssts or generalized summaries of policies. Gists
capture the most relevant states and actions for accomplishing past goals. It follows
that gists may be transferred to situations where Jean has similar goals. Jean could, of
course, try to execute gists without modification in these situations. However, in situ-
ations that are not very similar, it may be more effective to execute a gist from which
state transition probabilities have been excised. The extra cost of relearning the prob-
abilities may be offset by the cost akgative transferSometimes a learned gist can
actually inhibit learning of a new gist. For instance, having learned to drive in the U.S.
can interfere with learning to drive in the U.K. In cases like this, one wants to keep the
general structure of a gist because it describes the states and transitions that occur in
both situations, but learn new transition probabilities. By dropping transition probabil-

Piagetian Adaptation Meets Image Schemas: The Jean System 9

ities, we may have an easier time finding a policy in the new situation without being
burdened by the weight of past experiences.

6 Experiments

We tested Jean’s transfer of schemas between situations in a simulated 3-D physical
environment. Jean’s task is to catch a given target object as quickly as possible. The
targets, which we refer to as a “ball” and a “cat,” have different dynamics. The ball
moves ballistically when Jean makes contact with it (and may be moving at the start of a
learning episode), whereas the cat is self-moving and has a preference to not be caught
by Jean. In these experiments, the cat runs away if Jean is far away but approaching
quickly, or when Jean is very near. Thus, the best way to catch the cat is to sneak up
slowly and then quickly pounce upon it. In these experiments, Jean has four innate
(not learned) action schemas: fast-approach, slow-approach, stop, and wander. In some
experiments there are obstacles, such as walls.

In each trial, Jean has a chance to complete its given task — catch a ball or catch a
cat — within a time limit. The time Jean requires to perform its task is the dependent
variable, and is expected to decrease as Jean learns to catch its targets. An experimental
condition includes 100 trials. The value of the dependent variable, time to catch the tar-
get, is smoothed over these trials using a smoothing window of 15 trials. Good learning
performance should corresponds to a line that slopes down from left (early trials) to
right (later trials).

To evaluate the effect of transfer, we follow an “B vs. A+B” protocol. A and B refer
to tasks across which we might observe transfer; for instance, A might be catching a
ball, and B, catching a cat. The protocol involves two conditions: The “B” condition
involves learning to perform a task, B, whereas the “A+B” condition involves learning
task B after learning to perform task A. If the gist for task A transfers, then it will
improve some aspect of performance on B, either the initial level of competence on B
(before learning) or the rate of learning to perform B.

Jean was tested on three tasksCatch a ball in an unobstructed rooBr; Catch a
cat in an unobstructed roor@; Catch a cat in a room with obstacles such as additional
walls. Here Jean must learn to avoid bumping into the walls while chasing the cat. We
constructed five experimental conditions:

B. Catch the cat without any prior training.

A+B. First learn to catch a ball, then learn to catch a cat.

C. Catch the cat in the obstructed room without any prior training.

B+C. First learn to catch a cat in an unobstructed room, then learn to do this in a
room with additional interior walls.

B+A. First learn to catch a cat in an unobstructed room, then learn to catch a ball
in the same room.

The data presented here are a representative sample of system performance in the
conditions in which we expect positive or negative transfer.

8 We are currently conducting tests for statistical significance, based on the methods of Piater
et al. for comparing learning curves [13]; these will be ready in time for the camera-ready

10 Chang, Cohen, Morrison and St. Amant.

Guys, calling the horizontal axis Time is misleading. Can we call it Trials, in-
stead?

Figure 4 shows Jean learning to catch a cat in an unobstructed room. The dotted
line represents Jean learning to catch a cat without any prior knowledge (i.e., condi-
tion B). We see little improvement in the performance measure as Jean acquires more
experience. The bold line represents Jean’s performance on the catch-a-cat task after
learning to catch a ball. Clearly Jean is able to transfer some of its knowledge from
catching a ball to the task of catching a cat. In particular, it has already established a
preference ordering on its action schemas, whereby it prefers fast-approach and slow-
approach over stop and wander, since these result in shorter ball-catching times. Thus,
in the A+B, condition, Jean does not explore the stop and wander actions, but directly
accommodates its ball-catching gist to cat-catching. It is quickly able to identify the
proper state to split (i.e., split based on the NEAR-FAR schema), and learns the optimal
policy for catching a cat. This is clearly represented by the large drop in catching time
seen around time 20.

Average performance in B vs A+B trials

. A+B

Performance

0 20 40 60 80 100
Time

Fig. 4. Graph showing average performance over time in the B versus A+B regimes. Performance
is measured as the time taken for the robot to catch the target object. If in some trial the object is
not caught within the time limit, then the time limit value is used as that trial’s performance.

A similar benefit of prior learning is seen in Figure 5. Here, the dotted line shows
Jean’s performance while attempting to learn from scratch how to catch a cat in an
obstructed room (conditio®). The bold-face line shows the performance given that
Jean has already learned how to catch a cat in an open room (corigition The

submission. These are particularly important since there is a high degree of variability inherent
in the simulation domain.

Piagetian Adaptation Meets Image Schemas: The Jean System 11

Average performance in C vs B+C trials
65

B+C

Performance

25

0 20 40 60 80 100
Time

Fig. 5. Graph showing average performance over time in the C versus B+C regimes.

transfer premium is due to Jean using its learned Task B gist to accomplish Task C
when the cat is not hiding behind a wall. Jean then only needs to learn to amend this
gist to deal with the situation in which the cat is hiding. There is more variability in the
C condition because random exploration, which is more prevalent i€ tbendition,

may cause the cat to run far away.

Finally, in the B+A condition, we found an example of negative transfer (graph
not shown). Recall that transfer is not always beneficial when applied blindly. Here,
Jean first learns tadk It learns to sneak up to, and then pounce on, the cat. When Jean
directly applies this gist to task A, it results in a sub-optimal behavior, since one does not
need to sneak up to a ball. Depending on its exploration behavior, Jean might take a long
time to realize that its behavior is suboptimal. However, we can ameliorate this negative
transfer by modifying the knowledge being transferred. Instead of transferring a gist that
includes all states, actions, and transition probabilities, we can transfer only the state
descriptions, leaving out the transition probabilities that were observed when learning
the old task. This removes most of the negative transfer effect. Any remaining decrease
in performance simply results from the fact that the agent has a slightly larger state
space to explore. This transfer mechanism, where transition probabilities are dropped
but state description are retained, is used inAh8 andB+C conditions as well.

7 Future Work

We are currently extending this work in a variety of ways. We have implemented a dif-
ferent learning domain in a real-time 3-D strategy game, complete with terrain, natural
obstacles such as trees and water, and enemy units. We have observed some interesting
transfer between the simple robot-and-cat domain and this military domain. Sneaking

12 Chang, Cohen, Morrison and St. Amant.

up to the cat is analogous to sneaking up on the enemy, for example. Future experiments
will explore learning in this new domain, and cross-domain transfer.

Another line of development for Jean is suggested by the word “experimental” in
Experimental State Splitting, and by the boxes labei@dsal hypothesesnd experi-
ment planneiin Figure 2. State splitting finds factors that reduce the entropy of state
transitions, or conversely, increase the predictability of these transitions. Not all predic-
tive relations are causal. Tlwdunterfactual theory of causalisays X causes Y iff X
precedes Y, and X and Y covary, and X is necessary to affect Y. The necessity condition
is framed as a counterfactualX — =Y. The problem with this theory is that it does
not distinguish true causes from mere conditions; for instance, a wire is necessary for
electricity to travel from a light switch to a light bulb, but we would not call a wire
the cause when we turn on the light. A heuristic to get around this is to assign counter-
factually necessary and proximal actions to X’s in causal models. Thus flipping a light
switch, being the most proximal action to illumination, and counterfactually necessary,
is a candidate cause. It is easy to find actions that are proximal to effects, and to for-
mulate counterfactuals relating these actions to effects. These counterfactuals serve as
causal hypotheses for Jean to try to refute. Jean will develop causal models of its action
schemas, and will learn not only what works, but why it works.

References

1. Piaget, J.: The Construction of Reality in the Child. New York: Basic (1954)

2. Lakoff, G.: Women, Fire and Dangerous Things. University of Chicago Press, Chicago, IL
(1987)

3. Johnson, M.: The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason.
University of Chicago Press, Chicago, IL (1987)

4. Gibbs, R.W., Colston, H.L.: The cognitive psychological reality of image schemas and their
transformations. Cognitive Linguisti€4) (1995) 347-378

5. Mandler, J.: The Foundations of Mind: Origins of Conceptual Thought. Oxford University
Press (2004)

6. Oakley, T.: Image schema. In Geeraerts, D., Cuyckens, H., eds.: Handbook of Cognitive
Linguistics. Osford University Press (2006)

7. Thelen, E., Smith, L.: A Dynamic Systems Approach to the Development of Cognition and
Action. The MIT Press, Cambridge, MA (1994)

8. Regier, T.. The Human Semantic Potential: Spatial Language and Constrained Connection-
ism. The MIT Press (1996)

9. Cohen, P.R.: Maps for verbs. In: Proceedings of the Information and Technology Systems
Conference, Fifteenth IFIP World Computer Conference. (1998)

10. Talmy, L.: Toward a Cognitive Semantics. Volume 1: Conceptual Structuring Systems (Lan-
guage, Speech and Communication). The MIT Press, Cambridge, MA (2003)

11. St. Amant, R., Morrison, C.T., Chang, Y., Cohen, P.R., Beal, C.: An image schema language.
To appear in the Proceedings of The 7th International Conference on Cognitive Modelling
(ICCM 2006) (2006)

12. Fillmore, C.: The case for case. In Bach, E., Harms, R.T., eds.: Universals in Linguistic
Theory. Holt, Rinehart & Winston, London (1968)

13. Piater, J.H., Cohen, P.R., Zhang, X., Atighetchi, M.: A randomized anova proceedure for
comparing performance curves. In: Proceedings of the Fifteenth International Conference
on Machine Learning (ICML 1998). (1998) 430-438

