
Learning and Transferring Action Schemas

Paul Cohen, Yu-Han Chang, Clayton Morrison
Information Sciences Institute Marina del Rey, California

Abstract

Jean is a model of early cognitive development
based loosely on Piaget’s theory of sensori-motor
and pre-operational thought. Like an infant, Jean
repeatedly executes schemas, gradually transfer-
ring them to new situations and extending them as
necessary to accommodate new experiences. We
model this process of accommodation with the Ex-
perimental State Splitting (ESS) algorithm. ESS
learns elementary action schemas, which comprise
controllers and maps of the expected dynamics of
executing controllers in different conditions. ESS
also learns compositions of action schemas called
gists. We present tests of the ESS algorithm in three
transfer learning experiments, in which Jean trans-
fers learned gists to new situations in a real time
strategy military simulator.

1 Introduction
One goal of the Jean project is to develop representations and
learning methods that are based on theories of human cog-
nitive development, particularly Piaget’s theories of sensori-
motor and pre-operational thought. Piaget argued that in-
fants acquire knowledge of the world by repeatedly execut-
ing action-producing schemas[Piaget, 1954]. This activity
was assumed to be innately rewarding. Piaget introducedas-
similationof new experience into extant schemas andaccom-
modationof schemas to experiences that don’t quite “fit” as
the principal learning methods for infants. This paper gives
a single computational account of both assimilation and ac-
commodation.

Although it seems to be a relatively recent focus in ma-
chine learning,transferof learned knowledge from one situ-
ation or scenario to another is an old idea in psychology and
is fundamental to Piaget’s account of cognitive development.
This paper demonstrates that the schemas learned by Jean can
be transferred between situations, as any Piagetian schema
should be.

Jean learns action schemas and gists. An action schema
comprises a controller, a representation of the dynamics of
executing the controller, and one or more criteria for stop-
ping executing the controller. Gists are compositions of ac-
tion schemas for common tasks; for instance,push involves

the sequencemove-to , contact andapply-force . Jean’s
learning method is a kind of state splitting in which state de-
scriptions are iteratively refined (split) to make the transitions
between states as predictable as possible, giving Jean progres-
sively more control over the outcomes of actions.

The following sections introduce Jean’s action schemas
(Sec. 2), and then establish correspondences between action
schemas and the more familiar states and finite-state ma-
chines (Sec. 3). The state splitting algorithm is described in
Section 4.1. Its application to transfer learning and empirical
results with a small-unit tactical military simulator are pre-
sented in Sections 5 and 6, respectively.

2 Action Schema Components
Action schemas have three components: controllers, maps,
and decision regions. Controllers control Jean’s behavior. For
example, the(move-to Jean Obj) controller moves Jean
from its current location to the specified object. Jean has very
few innate controllers — move-to, turn, rest, apply force. It
learns to assemble controllers into larger plan-like structures
calledgistsas described in Section 4.1.

As Jean moves (or executes any other controller) certain
variables change their values; for instance, the distance be-
tween Jean’s current location andObj usually decreases when
Jean executes themove-to controller. Similarly, Jean’s ve-
locity will typically ramp up, remain at a roughly constant
level, then ramp down as Jean moves to a location. The val-
ues of these variables ground out in Jean’s sensors, although
some variables correspond to processed rather than raw sen-
sory information.

These variables serve as the dimensions ofmaps. Each ex-
ecution of a particular schema produces a trajectory through
a map — a point that moves, moment by moment, through
a space defined by distance and velocity, or other bundles of
variables. Each map is defined by the variables it tracks, and
different maps will be relevant to different controllers.

Each invocation of a controller creates one trajectory
through the corresponding map, so multiple invocations will
create multiple trajectories. Figure 1 shows several such tra-
jectories for a map of distance for themove-to controller.
One can see thatmove-to has a “typical” trajectory, which
might be obtained by taking the mean of the trajectories in the
map. Also, when operating in Jean’s environment,move-to
produces trajectories that lie within some distance of the

mean trajectory. In a manner reminiscent of Quality Con-
trol Jean can assess whether a particular trajectory is “going
out of bounds.”

The idea that sensori-motor and pre-operational devel-
opment should rely on building and splitting maps or re-
lated dynamical representations was anticipated by Thelen
and Smith[Thelen and Smith, 1994] and has been explored
by other researchers in developmental robotics and psy-
chology (e.g.,REMOVED-FOR-BLIND -REVIEW [Siskind, 2001;
Barsalou, 1999; Mandler, 1992]).

Figure 1: Trajectories through a map of distance between
Jean and a simulated cat. Sometimes, when Jean gets close
to the cat, the cat moves away and the distance between them
increases, in which case a trajectory may go “out of bounds.”

time

move-to
distance

0

Figure 2: This schematic of a map, for the(move-to Jean
Obj) controller, has one decision region associated with the
distance between Jean and the objectObj being zero. The
other decision region bounds the area in which Jean cannot
reachloc even moving at maximum speed.

Every map has one or moredecision regionswithin which
Jean may decide to switch from one controller to another.
One kind of decision region corresponds with achieving a
goal; for example, there is a decision region of themove-to
map in which distance to the desired location is effectively
zero (e.g., the thin, horizontal grey region in Fig. 2). An-
other kind of decision region corresponds to being unable
to achieve a goal; for instance, there is a region of a time-
distance map from which Jean cannot move to a desired lo-
cation by a desired time without exceeding some maximum
velocity (e..g., the inverted wedge-shaped region in Fig. 2).

These regions are sometimes calledenvelopes, [Gardiol and
Kaelbling, 2003] andREMOVED-FOR-BLIND -REVIEW

Jean is not the only agent in its environment and some maps
describe how relationships between Jean and other agents
change. The upper two panels of Figure 4 illustrates how
distance, relative velocity, heading, and contact change in an
environment that includes Jean and another agent, called the
“cat,” an automaton that moves away from Jean if Jean moves
too close, too quickly.

3 Action Schemas as Finite State Machines
It will help to draw parallels between Jean’s maps and the
more familiar elements of finite state machines (FSMs). Con-
ventionally, states in FSMs represent static configurations
(e.g., the cat is asleep in the corner) and arcs between states
represent actions (e.g.,(move-to Jean cat)). For us, arcs
correspond to the intervals during which Jean executes con-
trollers (i.e., actions), and states correspond to decision re-
gions of maps. That is, the elements of action schemas are
divided into the intervals during which a controller is “in
bounds” (the arcs in FSMs) and the intervals during which
Jean is thinking about what to do next (the states). Both take
time, and so require a rethink of the conventional view that
states in FSMs persist and transitions over arcs are instan-
taneous. However, the probabilistic semantics of FSMs are
retained: A controller invoked from a decision region (i.e, an
action invoked in a state) will generally take Jean into one of
several decision regions (i.e., states), each with some prob-
ability. Figure 3 redraws Figure 2 as a finite state machine.
Starting from a decision region of some action schema A, the
move-to controller will with some probability (say .7) drop
Jean in the decision region associated with achieving its goal,
and, with the complementary probability, in the region asso-
ciated with being unable to achieve the goal in time.

A

move-to

move-to
.3

.7

Figure 3: The action schema from Figure 2 redrawn as a finite
state machine in which arcs correspond to the execution of
controllers and states correspond to decision regions.

There is one special case: Sometimes the world changes
when Jean is doing nothing. We model this as a schema in
which no controller is specified, called adynamic schemato
distinguish it from an action schema. Dynamic schemas do
have maps, because variables such as distance between Jean
and another agent can change even when Jean does nothing;
and they have decision regions, because Jean may want to in-
voke a controller when these variables take particular values
(e.g., moving away when another agent gets too close). The
FSMs that correspond to dynamic schemas have no controller
names associated with arcs but are otherwise as shown in Fig-
ure 3.

4 Learning Action Schemas and Gists
Jean has a small set of innate controllers and a few “empty”
maps, and it “fills in” these maps with trajectories and learns
decision regions. Jean also learns compositions of action
schemas calledgists for their story-like or plan-like struc-
ture. One principle underlies how Jean learns decision re-
gions. It is to maximize predictability, or minimize the en-
tropy of “what’s next.” Within an action schema, what’s next
is a location in a map. At the boundaries of action schemas
(that is, in decision regions, or states) what’s next is the next
state. We call the entropy of what’s next theboundary en-
tropy. Jean learns decision regions that minimize boundary
entropy between states. Interestingly, this criterion tends to
minimize boundary entropy within maps as a side effect.

4.1 Experimental State Splitting Algorithm
We give a formal outline of the Experimental State Splitting
(ESS) algorithm in this section. Jean receives a vector of fea-
turesF t = {f1, . . . , fn} from the environment at every time
tick t. Some features will be map variables, others will be in-
puts that have not yet been associated with maps. Jean is ini-
tialized with a goal statesg and a non-goal states0. St is the
entire state space at timet. A is the set of all controllers, and
A(s) ⊆ A are the controllers that are executed in states ∈ S.
Typically A(s) should be much smaller thanA. H(si, aj) is
the boundary entropy of the statesi in which controllerai

is executed. A small boundary entropy corresponds to a sit-
uation where executing controlleraj from statesi is highly
predictive of the next observed state. Finally,p(si, aj , sk) is
the probability that executing controlleraj in statesi will lead
to statesk.

For simplicity, we will focus on the version of ESS that
only splits states; an alternative version of ESS is also capable
of learning specializations of parameterized controllers. The
ESS algorithm follows:

• Initialize state space with two states,S0 = {s0, sg}.
• While ε-optimal policy not found:

– Gather experience for some time intervalτ to esti-
mate the transition probabilitiesp(si, aj , sk).

– Find a schema featuref ∈ F , a thresh-
old θ ∈ Θ, and a statesi ∈ S to split
that maximizes the boundary entropy score re-
duction of the split: maxS,A,F,Θ H(si, ai) −
min(H(sk1 , ai),H(sk2 , ai)), where sk1 and sk2

result from splittingsi using featuref and thresh-
old θ: sk1 = {s ∈ si|f < θ} andsk2 = {s ∈
si|f ≥ θ}.

– Split si ∈ St into sk1 andsk2 , and replacesi with
new states inSt+1.

– Re-solve for optimal plan according top andSt+1

Finding a featuref and the value on which to split states is
equivalent to finding a decision region to bound a map.

Without heuristics to reduce the effort, the splitting proce-
dure would iterate through all state-controller pairs, all fea-
turesf ∈ F , and all possible thresholds inΘ, and test each
such potential split by calculating a reduction in boundary en-
tropy. This is clearly an expensive procedure.

ESS uses a simple heuristic to find threshold values for fea-
turesf and, thus to split a state: States change when sev-
eral state variables change more or less simultaneously. This
heuristic is illustrated in Figure 4. The upper two graphs show
time series of five state variables: headings for Jean and the
cat (in radians), distance between Jean and the cat, and their
respective velocities. The bottom graph shows the number
of state variables that change value (by a set amount) at each
tick. When the number of state variables that change simul-
taneously exceeds a threshold, Jean concludes that the state
has changed. The value of the schemaf at the moment of
the state change is likely to be a good threshold for splitting
f . For example, between time period 6.2 and 8, Jean is ap-
proaching the cat, and the heuristic identifies this period as
one state. Then, at time period 8, several indicators change
at once, and the heuristic indicates Jean is in a new state, one
that corresponds to the cat moving away from Jean.

 0

 10

 20

 30

 40

 0 2 4 6 8 10 12 14

V
a

lu
e

Time

Sensor readings: Distance, Velocities

-2

 0

 2

 0 2 4 6 8 10 12 14

V
a

lu
e

Time

Sensor readings: Contact, Robot and Cat Headings in Radians

 0

 2

 4

 0 2 4 6 8 10 12 14

N
u

m
b

e
r

Time

Segment Indicators

Jean

Figure 4: New states are indicated when multiple state vari-
ables change simultaneously.

5 Transferring Learning

Although ESS can learn action schemas and gists for new sit-
uations from scratch, we are much more interested in how
previously learned policies can accommodate or transfer to
new situations. Gists capture the most relevant states and ac-
tions for accomplishing past goals. It follows that gists may
be transferred to situations where Jean has similar goals and
the conditions in the situation are similar.

The version of ESS that we described above is easily mod-
ified to facilitate one sort of transfer: After each split we re-
move the transition probabilities on all action transitions be-
tween each state. This allows the state machine to accommo-
date new experience while maintaining much of the structure
of the machine (seeREMOVED-FOR-BLIND -REVIEW for a pre-
vious example of this idea). In the experiments in the next
section we explore the effects of transfer using this mecha-
nism in several conditions.

6 Experiments
To measure transfer we adopt a protocol sometimes called
B/AB: In theB condition the learner learns to perform some
tasks in situation or scenarioB. In the AB condition, the
learner first learns to perform tasks in situation or contextA
and then inB. By comparing performance in situationB in
the two conditions after different amounts of learning in situ-
ationB one can estimate the effect of learning inA and thus
the knowledge transferred from situationA to situationB.
For instance,A might be tennis andB squash, and theB/AB
protocol compares learning curves for squash alone (theB or
control condition) with learning curves for squash after hav-
ing learned to play tennis (theAB or transfer condition). We
say positive transfer has occurred betweenA and B if the
learning curves for squash in the transfer condition are better
than those in the control condition.

In general “better” learning curves means faster-rising
curves (indicating faster learning), or a higher value after
some amount of learning (indicating better performance),
or higher value after no learning (indicating that knowledge
from A helps in performingB even before any learning has
occurred inB). In our experiments, better learning perfor-
mance means less time to learn a gist to perform a task at
a criterion level. Thus, a smaller area beneath the learning
curve indicates better learning performance, and we com-
pare conditionsB and AB by comparing the area beneath
the learning curves in the respective conditions. A bootstrap-
randomization procedure, described shortly, is used for sig-
nificance testing.

We tested Jean’s transfer of gists between situations in the
3-D real time strategy game platformISIS. ISIS can be con-
figured to simulate a wide variety of military scenarios with
parameters for specifying different terrain types, unit types,
a variety of weapon types, and multiple levels of unit control
(from individual soldiers to squad-level formations).

In each of three experiments, Jean controlled a single squad
at the squad level, with another squad controlled by an auto-
mated but non-learning opponent. Jean’s squad ranged in size
from 7 to 10 units while the opponent force ranged from 1-
3 units. Although the opponent was smaller, it could move
faster than Jean’s forces. In each experiment, Jean’s goal is to
move its units to engage and kill the opponent force.

Jean is provided four innate action schemas:run,
crawl, move-lateral , and stop-and-fire . It must
learn to compose these into gists that are appropriate for dif-
ferent engagement ranges, possible entrenchment of the op-
ponent, and some terrain features (mountains).

All experiment scenarios were governed by a model of en-
gagement ranges that determined how the squads interact and
how the opponent controller would respond to Jean’s actions.
Engagement ranges are defined as follows:

iv. Outer Range(beyond 250 meters): As long as the oppo-
nent is within line of sight (i.e., not obscured by terrain
features), no matter what the distance, Jean can locate
the opponent. However, beyond 250 meters, the oppo-
nent cannot see Jean’s forces.

iii. Visual Contact(up to 250 meters): At this range, if
Jean’s forces are standing they will be sighted by the op-

ponent. If Jean’s forces are crawling, and they have not
begun firing, then Jean’s forces won’t be sighted (until
they are within rangei).

ii. Firing Range(up to 200 meters): Within this range, ei-
ther force can fire on the other. Once Jean’s forces have
fired, they are considered sighted, even if crawling, and
the opponent can return fire with the same effectiveness
as Jean’s forces.

i. Full Contact(up to 100 meters): At this range, even if
Jean’s forces are crawling, they will be sighted by the
opponent. Direct fire has full effect.

Each experiment had a transfer conditionAB and a control
condition,B. In the former, Jean learned gists to accomplish
its goal in a scenario designatedA and then learned to accom-
plish its goal in scenarioB. In the latter, control condition,
Jean tried to learn in scenarioB without benefit of learning
in A.

The experiments differ in theirA andB scenarios:

Experiment 1 : All action takes place in open terrain.A sce-
narios all have Jean’s forces starting near enemy forces.
B scenarios are an equal mix of starting near the enemy
or far away from the enemy.

Experiment 2 : All action takes place in open terrain.A sce-
narios all have Jean’s forces starting far from the enemy
forces.B scenarios are an equal mix of starting near the
enemy or far away from the enemy.

Experiment 3 : The terrain forA scenarios is open, whereas
the terrain forB scenarios has a mountain that, for some
placements of Jean’s and the enemy’s forces, prevents
them seeing each other. (The advantage goes to Jean,
however, because Jean knows the location of the enemy
forces.) TheA scenario is an equal mix of starting near
or far from the enemy, theB scenario is an equal mix
of starting near and far from the enemy in the mountain
terrain.

6.1 Metrics and Analysis
We plot the performance of the Jean system in the various
experimental scenarios as learning curves over training trials.
Better learning performance is indicated by a smaller number
of training instances required by Jean to achieve a criterion
level of performance. Thus, a smaller area beneath the learn-
ing curve indicates better learning.

Givenn learning curves for theB andAB conditions, we
test the null hypothesis of “no transfer” as follows: LetB
andAB denote the sets ofn learning curves in theB andAB
conditions, respectively,X be the mean learning curve for
a set of learning curvesX , andArea(X) be the area under
learning curveX . We measure the benefit of transfer learning
with thetransfer ratio

r(B,AB) =
Area(B)

Area(AB)
.

Values greater than one indicate that the area under the learn-
ing curves in the control conditionB is larger than in the
transfer condition, or a positive benefit of transfer.

The null hypothesis isr = 1.0, that is, learning proceeds
at the same rate in the control and transfer conditions. To test
whether a particular value ofr is significantly different from
1.0 we require a sampling distribution forr under the null
hypothesis. This is provided by a randomization-bootstrap
procedure[Cohen, 1995]. First, we combine the sets of learn-
ing curves,C = B ∪ AB. Then, we randomly sample, with
replacement,n curves fromC and call this a psuedosample
B∗; and again randomly sample, with replacement, anothern
curves fromC to get pseudosampleAB∗. Then, we compute
r(B∗,AB∗) and store its value in the sampling distribution of
r. Repeating this process a few hundred times provides an
estimate of the sampling distribution. For one-tailed tests, the
p-value is simply the proportion of the sampling distribution
with values greater than or less thanr (depending on the di-
rection of the one-tailed alternative hypothesis). Because we
expect learning rates in the transfer condition to be higher,
our alternative hypothesis isr > 1 and the p value is the pro-
portion of the sampling distribution with values greater than
r. (N.B.: When there is a possibility ofnegativetransfer, in
which the knowledge acquired inA actually impedes learning
in B, it might be more appropriate to run two-tailed tests.)

To obtain a confidence interval forr, as opposed to a p
value, we again construct a sampling distribution, but this
time, instead of first combining the two setsB andAB, we
sampleB∗ with replacement fromB, andAB∗ similarly from
AB∗. Then we calculater(B∗,AB∗). Repeating this process
yields a sampling distribution forr. A 95% confidence in-
terval aroundr is the interval between the 2.5% and 97.5%
quantiles of this distribution[Cohen, 1995].

6.2 Results
Let us start with a qualitative assessment of what Jean
learned. In Experiment 1, Jean learned in scenarioA to run
at the enemy and kill them. In scenarioB, Jean learned a gist
that included a conditional: When starting near the enemy,
use the gist from scenarioA, but when starting far from the
enemycrawl — don’t run — until one is near the enemy and
then use the gist from scenarioA. The alternative, running
at the enemy from a far starting location, alerts the enemy
and causes them to run away. State splitting did what it was
supposed to do: Initially, Jean’s gist for scenarioB was its
gist forA, so Jean would always run at the enemy, regardless
of starting location. But through the action of state splitting,
Jean eventually learned to split the state in which it ran at
the enemy into a run-at and a crawl-toward state, and it suc-
cessfully identified the decision region for each. For instance,
the decision region for the crawl-toward state identifies a dis-
tance (corresponding to being near the enemy), from which
Jean makes a transition to the state in which it runs at and
shoots the enemy.

Similar results are obtained in Experiment 3, where Jean
learns to run at the enemy from a far starting location as long
as the mountain prevents the enemy from sighting Jean, oth-
erwise to crawl.

In Experiment 2, Jean learned nothing in scenarioA and
was no more successful in scenarioB. This is due to the diffi-
culty of the scenario. Jean is always initialized far away from
the enemy units, and must learn a policy for killing them by

exploring a continuous, high-dimensional feature space us-
ing her four available actions. Many of these actions result
in the enemy soldiers detecting Jean’s presence and running
away, thus reducing Jean’s chances of ever reaching her goal
by simple exploration. Since Jean does not learn anything
useful in theA scenario, her performance in theAB transfer
condition is no better than in the control conditionB.

The learning curves for theA and B scenarios in Ex-
periment 1 are shown in Figure 5. Note that the vertical
axis is “time to achieve the goal,” in the scenarios, so a
downward-sloping curve corresponds to good learning per-
formance. Jean learned a good policy in theA scenario where
the enemy units are initially close to Jean’s position. Jean re-
ceives a significant benefit when it learns in theB scenario af-
ter having learned in theA scenario (i.e., in the transfer condi-
tion AB). TheAB learning curve starts out immediately with
much better performance than theB learning curve. In fact,
it takes 200 trials for learning in theB condition, in which no
transfer happens, to reach the level of performance observed
at all levels of training in the transfer conditionAB. How-
ever, theAB curve is roughly flat, which means learning in
scenarioA provides a boost in performance inB but has no
impact on the rate of learning inB. We rejected the null hy-
pothesis thatB andAB have the same mean learning curve
with a p value of 0.035; theAB condition has significantly
better learning curves.

Figure 5: Learning curves for learning in scenarioA, in sce-
narioB, and in scenarioB after having first learned in sce-
nario A. Each point is averaged over eight replications of
the experiment. Error bars are two standard deviations wide.
Each point of each curve is the average of ten fixed test tri-
als. Test trials are conducted every 20 training trials. The
x-axis plots the number of training trials that the agent has
completed.

In contrast, in Experiment 2 Jean does not succeed in
achieving any transfer. Jean does not ever learn anything use-
ful in the A condition because, as noted above, when Jean
starts far from the enemy the search space of possible gists
is too large. The transfer ratior = .97 is nearly equal to the
expected value under the null hypothesis of no transfer, and
the p value is accordingly high,p = .557.

In Experiment 3, Jean transfers learned knowledge from
the A scenario, which involves open terrain to “jump-start”
performance in theB scenario, which includes a mountain.

Figure 6: Experiment 3. Learning curves for the A, AB, and
B conditions, averaged over eight replications of the experi-
ment. The x-axis plots the number of training trials that Jean
has completed.

r p 2.5% quantile 97.5% quantile
Expt. 1 1.591 0.035 1.02 2.97
Expt. 2 0.970 0.557 0.63 1.34
Expt. 3 1.531 0.0034 1.24 1.85

Table 1: The transfer ratior, the p value, and lower and upper
bounds of a 95% confidence interval aroundr in all three
experiments.

Figure 6 shows the average learning curves we observe in
this experiment. Note the wide error bars. While learning in
the transfer condition is significantly more successful than in
the control condition (r = 1.53, p = 0.0034) the data do not
support the conclusion that Jean’s learning in theB scenario
is acceleratedby learning inA. As in Experiment 1, it ap-
pears that the curve for learning inB afterA is quite flat and
the benefit of knowledge learned inA is felt immediately in
domainB.

Table 1 summarizes the data we observed from the three
experiments and provides confidence intervals for the transfer
ratios.

7 Discussion
The Experimental State Splitting algorithm splits an undiffer-
entiated gist comprising just a start state and goal state into a
sequence of states that follow each other with high predica-
bility. To do this, ESS finds new decision regions for action
schemas, that is, it finds values of map variables that indi-
cate Jean should switch from one action schema to another.
ESS often reduces the entropy within action schemas, that is,
it reduces the entropy of trajectories in maps and “tightens
up” its expectations of the dynamics associated with execut-
ing a controller. This is because trajectories lead to decision
regions and wildly varying trajectories lead to large numbers
of decision regions, and, thus, to highly entropic distributions
of next states. Splitting states to reduce the entropy of the
distributions of next states is equivalent to reducing the num-
ber of decision regions associated with a state and thus the
variability of trajectories in a map.

Interestingly, this hints at an unexplored aspect of the re-
lationship between the Piagetian learning mechanisms of as-
similation and accommodation. Assimilation means incor-
porating experiences into known schemas, which, for Jean,
means adding trajectories to the maps of action schemas. Ac-
commodation means modifying schemas when experiences
don’t fit. For Jean, this means state splitting. We have learned
that the impetus for accommodation, and thus for maintaining
narrow bounds on what’s assimilated, is a desire to predict the
next state.

We also have preliminary evidence that gists can transfer
between situations by a relatively simple mechanism, namely,
keeping the structure of a gist’s FSM but deleting its transition
probabilities.

Much work remains to be done. Further transfer experi-
ments are already underway. Better heuristics for proposing
states to split and feature values as splitting thresholds are
being developed. Perhaps most challenging, we want ESS to
be a truly experimental kind of state splitting, an algorithm
that proposes and carries out experiments to assess the causal
influences of features on map trajectories.

References
[Barsalou, 1999] L. W. Barsalou. Perceptual symbol systems.Be-

havior and Brain Sciences, 22:577–609, 1999.

[Cohen, 1995] P. R. Cohen.Empirical Methods for Artificial Intel-
ligence. The MIT Press, Cambridge, MA, 1995.

[Gardiol and Kaelbling, 2003] N. H. Gardiol and L. P. Kaelbling.
Envelope-based planning in relational mdps. InAdvances in Neu-
ral Information Processing Systems 16 (NIPS 2003), 2003.

[Mandler, 1992] J. Mandler. How to build a baby: Ii. conceptual
primitives. Psychological Review, 99:597–604, 1992.

[Piaget, 1954] J. Piaget.The Construction of Reality in the Child.
New York: Basic, 1954.

[Siskind, 2001] J. Siskind. Grounding lexical semantics of verbs in
visual perception using force dynamics and even logic.Journal
of AI Research, 15:31–90, 2001.

[Thelen and Smith, 1994] E. Thelen and L. Smith.A Dynamic Sys-
tems Approach to the Development of Cognition and Action. The
MIT Press, Cambridge, MA, 1994.

