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Abstract 

In this paper we study a problem of identifying a 
group of related individuals embedded in a 
larger population. We state the problem in terms 
of node classification in a social network, and 
present an iterative algorithm to classify 
individuals.  We test it empirically on data 
generated by the Hats simulator.   Despite its 
simplicity, the algorithm performs remarkably 
well.   Like most iterative processes, iterative 
classification has characteristic dynamics.  We 
demonstrate that the dynamics of classifying 
group members differs from the dynamics of 
classifying non-members.  We call this 
phenomenon two-tiered dynamics. Our 
algorithm exploits this difference to identify 
group members with high accuracy. 

1. Introduction 
Traditionally most of the literature in social network 
analysis (SNA) has dealt with overt networks with 
transparent structures, such as scientific collaboration 
networks, online communities, and so on. After the 
September 11 attacks, SNA has increasingly been used to 
study adversary networks. While covert networks share 
some features with conventional networks, they are 
harder to identify because they mask their transactions.  
Another complicating factor is that adversaries are often 
embedded in a much larger population (i.e., adversaries 
have links with both covert and innocent individuals). 
Hence, it is very desirable to have tools to correctly 
classify individuals in covert network so that the 
resources for isolating them will be utilized more 
efficiently. 
 We present an iterative algorithm for classifying 
nodes in networks. Our algorithm utilizes an iterative 
label propagation scheme where nodes classified at each 
step help to classify neighboring nodes at the next step.  

One can think of this scheme in terms of an epidemic 
spreading in a heterogeneous network that contains two 
subpopulations.   A discrete epidemic model begins with 
some infected individuals, and then at each step new 
individuals become infected if they are linked to super-
threshold numbers of infected individuals. Clearly, when 
two sub-networks are decoupled, the epidemic will be 
contained in one.  When there are links between the sub-
populations, epidemics might spread through the whole 
network, depending on the threshold value for 
propagating infection. However, when the patterns of 
links between subpopulations are sufficiently different, 
the dynamics of the epidemic will be separated in time.  
This is two-tiered dynamics.   Where one finds two-tiered 
dynamics, one finds different subpopulations. 

2. Algorithm and Results 
We want to identify small sets of related individuals 
embedded in much larger populations. For the sake of 
concreteness, we concentrate on binary classification, 
although the problem and the algorithm we present below 
are rather general. That is, we assume that each 
individual in the network either belongs or does not 
belong to a certain class; for example, each is an 
“adversary” or “benign”. Initially, we know the correct 
class labels of a small subset of the individuals, called 
“known adversaries”, and the problem is to identify 
covert adversaries given a graph characterizing meetings 
between the individuals. Let CA be the class of 
adversaries (initially CA comprises of known adversaries 
only). At each iteration step, for each individual not in 
CA we calculate the number of members of CA. If for a 
certain individual, i, this number is greater or equal than 
some pre-established threshold H, individual i will be 
classified as an adversary itself, and added to the class 
CA. Our algorithm iterates this procedure until a steady 
state is achieved, e.g., no new node is added to the 
adversary class. Note that the final state of the system 
will depend on the threshold value and the pattern of 



links between the individuals. If the threshold value is set 
sufficiently low then the system will evolve to a state 
where every node has been classified as an adversary. On 
the other hand, if it is set too high, then no individual will 
be identified as covert at all. Hence, we expect the 
algorithm to be very sensitive to the threshold value. 
 We tested our algorithm on a data generated by the 
Hats simulator (Cohen and Morrison, 2004). The Hats 
simulator is a virtual society in which agents carry out 
individual and collective. Most agents are benign, some 
are covert terrorists, and a handful are known to be 
terrorists at the outset.  The Hats society includes benign 
and covert terrorist organizations.   Each covert terrorist 
belongs to at least one terrorist organization; benign 
agents belong only to benign organizations.  Each 
meeting includes members of exactly one organization.  
Thus, a meeting planned by a terrorist organization will 
comprise only terrorists (known and covert), whereas 
meetings planned by benign organizations might include 
benign and terrorist individuals. The task for our 
algorithm is to identify the covert terrorists. A single run 
of the Hats simulator produces a graph (or adjacency 
matrix) A of hats' meeting activities. For the analysis 
presented here, we collected Hats data for N=1200 
individuals: 50 known adversaries, 1000 benign, and 150 
covert. The simulation ran for T=2500 time steps.  
 We ran our algorithm for small, large, and 
intermediate values of the threshold H. For small values 
of H, most individuals are classified as adversaries, after 
a short time.  For large values of H, only a few 
individuals were classified as adversaries. The situation 
is dramatically different for intermediate values of H:  
The spread of the epidemic has a distinctive bimodal 
structure.  After a sharp initial spread the epidemic seems 
to be saturated.  However, upon further iterations, the 
number of infected nodes increases sharply, and in a few 
steps thereafter all the nodes in the network are infected. 
Clearly, this corresponds to some kind of threshold-
phenomenon in the whole network, where infection of 
certain nodes causes an epidemic in the whole system. 
This is illustrated in Fig.  1(a-b) where we plot the 
number of infected individuals versus time, N(t). Note 
that this behavior suggests a natural criterion for stopping 
the iteration. More precisely, in Fig. 1 (c-d) we plot the 
number of newly infected nodes at each times step versus 
time, i.e., ΔN(t)= N(t+1)-N(t). For the threshold value 
H=4 there is only a single peak in ΔN(t), whereas for 
H=6 one sees two well-separated peaks, denoted Pa and 
Pb, which are indicative of two-tier dynamics in the 
spread of the epidemic.  If we assume that Pa corresponds 
to the epidemic spreading in the first (covert) sub--
population, and Pb corresponds to the rest of the network, 
then the iteration should be stopped right before the 
infection starts to spread through the rest of the system 
(e.g., at t = 5). In this particular example, stopping the 
algorithm at this point correctly identifies 118 out of 150  
covert terrorists and misidentifies only 8 of the 1000 
benign nodes as terrorists. This is a very good level of 
accuracy for such a simple algorithm. More generally,  

experiments with Hats data indicate that although the 
detection error rate of the algorithm varies depending on 
the particular structure of the network, the amount of the 
available data, as well as the presence of noise, its 
performance is rather robust as long as the two-tier 
dynamics is observed. 
 In conclusion, we have presented a simple iterative 
scheme for identifying covert sub-networks embedded in 
a much larger benign population. Ours is not the first 
iterative classification algorithm (see, e.g., Macskassy 
and Provost 2003; Neville and Jensen 2000), however we 
believe it is the first to explicitly exploit the dynamics of 
newly classified class instances. Note that many 
classification and group-finding algorithms are sensitive 
to parameter settings (e.g., classification threshold). 
Iterative scheme presented in this paper also 
demonstrates sensitivity to the threshold parameter H. 
However, our algorithm uses this sensitivity in a self-
consistent way. Namely, the threshold is chosen such as 
to produce the most pronounced two-tiered dynamics, 
when one achieves the largest time-separation in the 
classification process between two sub-populations. 
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Figure 1: N(t) (a-b)  and ΔN(t) (c-d) for H=4 and H=6 


