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Abstract

We report a study of word meaning
that tests whether dynamical aspects of
movies predict word use. The movies
were based on a novel representation of
verb semantics calledmaps for verbs. We
asked preschool-school-age children to
describe the movies, and demonstrated
that their distributions of words could be
predicted by the dynamical aspects of the
movies. These results lend support to the
empiricist position that word meanings
are learned associatively.

1 Introduction
Previous work has shown that robots can learn the meanings
of words by associating aspects of the perceptual array with
utterances (e.g.,[Steels, 1999; Oates, 2002; Siskind, 2001;
Vogt, 2002; Cohen and Oates, 1998]). In this paper we test the
conjecture that the dynamics of the perceptual array, specif-
ically, the manner in which objects move and interact, ex-
plains the production of particular verbs. The work is part
of a larger project to model human language development on
robot platforms, and is based on themaps for verbsframe-
work described in Section 3. A persistent question in the
project is whether the perceptual array contains enough in-
formation to provide semantics for words, or, in a slightly
different formulation, what fraction of the variability of word
use is explained by information in the perceptual array? A
concrete version of this question is posed here: What fraction
of the variability of word use is explained by the dynamical
aspects of interactions between two objects?

We developed 18 movies of interactions between objects.
Each movie was generated by a program written inbreve
[Klein, 2002], an animation tool with good physics. A vec-
tor of parameters of each program characterizes the dynamics
of the corresponding movie. We showed the movies to pre-
school children and asked them to describe the action in the
movies. After removing non-content words, we characterized
each movie by a distribution of words. We ranked all pairs of
movies in two ways: by the similarities of their word dis-
tributions and by the similarities of their vectors of program
parameters. Then we compared the rankings. The results

are highly significant: there is strong dependence between
the parameters of the programs that generated the movies and
the distributions of words that children use to describe the
movies.

2 Related Work
Interest in the perception of the dynamics of whole-body in-
teractions is not new. Heider and Simmel[1944] report a
study in which adults were shown a film of animated shapes
interacting with each other in and around a box. After watch-
ing the film, participants were asked to describe what hap-
pened in the film. Heider and Simmel found a strong ten-
dency to attribute a rich set of intentions to the moving ob-
jects and a story-line describing the interactions, even though
the only information in the stimuli was the shape and size of
the objects and their motion dynamics.

More recently, several psychologists and computer scien-
tists have explored dynamic maps as representations of activ-
ities, often for machine recognition and modeling of human
gesture and bodily movement (e.g.,[Thelen and Smith, 1994;
Rosenstein, 1998; Intille and Bobick, 1999; Bobick and
Davis, 2001].

Blythe, Todd & Miller [1999] and Todd & Barrett[2000]
present a preliminary study of adult and child perception of
intention based on the dynamics of motion between two sim-
ple interacting bodies. Their work also uses the tools of dy-
namic map representation to characterize interactions. Their
results suggest that such dynamics are implicated in people’s
categorization of interactions, although their focus was on in-
tention, rather than more primitive verb classes.

For a comprehensive review of the psychological literature
on dynamics and word meanings see[Cannon and Cohen,
2005].

3 Maps for Verbs
In the maps for verbsrepresentation of verb meanings, the
denotations of verbs dealing with interactions between two
bodies, such as push, hit, chase, and so on, are represented as
pathways through a metric space, or map, the axes of which
are perceived distance, velocity, and energy transfer[Cohen,
1998]. Verbs with similar meanings have similar pathways.
A scene, such as one object chasing another, is thought to
be perceived as a pathway through the map. To learn verb



meanings, one simply associates verbs that describe scenes
with the corresponding pathways.

Although maps are compact and objective representations
of some verb meanings, we do not know whether they have
psychological reality — whether humans use maps to assign
meanings to verbs. Even if they do, the original maps for
verbs representation might have the wrong axes, or the axes
might be correct but verbs might not be correlated with the
particular features of pathways, as we thought. The experi-
ment in this paper does not test whether humans have maps in
their heads. Instead it asks, “If one creates movies which are
different according to the maps for verbs framework, will hu-
man subjects use different distributions of words to describe
them?”

In the maps for verbs framework, the dynamics of in-
teraction are split into before, during (contact), and after
phases. Figure 1 depicts these phases with illustrative tra-
jectories in eac. The axes of the maps are the same in the
beforeand after phases: they are relative velocity and dis-
tance between the two bodies. Relative velocity is the dif-
ference between the velocity of one body, A, and another, B:
V elocity(A) − V elocity(B). Many verbs (e.g., transitive
verbs) predicate one body as the “actor” and the other as the
“target” (or “subject” or “recipient”) of the action. For exam-
ple, in a push interaction, the actor does the pushing, and the
target is the body being pushed. By convention, the actor is
designated as A and the target is B. Thus, when relative ve-
locity is positive, the actor’s velocity is greater than that of
the target; and when relative velocity is negative, the target’s
velocity is greater than that of the actor. Distance, in turn, is
simple Euclidean distance between the bodies.

The vertical dimension of the map in theduring phase is
perceived energy transfer (from the actor to the target). If
energy transfer is positive, then the actor is imparting to the
target more energy than the target originally had; if energy
transfer is negative, then the situation is reverse and the target
is imparting more energy to the actor. Since energy transfer is
not directly perceivable, we approximate it by calculating the
acceleration of the actor in the direction of the target while
the actor and target are in contact.

The labeled trajectories in Figure 1 characterize the com-
ponent phases of seven interaction types, as described by the
verbs push, shove, hit, harass, bounce, counter-shove and
chase.

For example,〈b,b,b〉 describes ashove. The actor ap-
proaches the target at a greater velocity than the target, clos-
ing the distance between the two bodies. As it nears the tar-
get, the actor slows, decreasing its velocity to match that of
the target. Trajectoryb of the before phase in Figure 1 il-
lustrates these dynamics, showing the decrease in relative ve-
locity, along with decrease in distance. At contact, the rel-
ative velocity is near or equal to zero. During the contact
phase, the actor rapidly imparts more energy to the target in a
short amount of time, as illustrated byb of the during/contact
phase. And after breaking-off contact with the target, the
agent rapidly decreases its velocity while the target moves
at a greater velocity due to the energy imparted it.

In Figure 2(b), below, we provide a plot of the dynamics of
a simulated shove action. The map in the figure plots the dy-

namics for a portion of the time between contact phases. The
trajectory begins with very low relative velocity, as would be
expected just after completing the contact phase of a shove
(after phase b in Figure 1), and ends with a high relative ve-
locity that is ramping down (before phase b in Figure 1) just
before a new shove occurs.

With this three-phase representation scheme, we define
six more interaction types corresponding to common English
verbs:

• Push〈b,a,a〉 – begins like shove, but at contact relative
velocity is near or equal to zero and the actor smoothly
imparts more energy to the target; after breaking contact,
the agent gradually decreases its velocity.

• Hit 〈c/d, c, c〉 – may begin with the actor already at high
velocity relative to the target or increasing in relative ve-
locity, and thus is characterized byc or d in the before
phase.

• Harass〈c/d, c,d〉 – is similar to a hit, except the after-
phase involves the actor quickly recovering its speed and
moving back toward the target, not allowing the dis-
tance between the two to get very large (thed in the
after phase). Harass highlights that interactions may be
cyclic: the after phase of one epoch blends into the be-
fore phase of the next.

• Bounce〈c/d,d, e〉 – along with counter-shove, bounce
involves the target making a more reactive response to
the actor’s actions. Bounce begins like a hit or harass,
but at contact, the target transfers a large amount of en-
ergy back to the actor.

• Counter-shove〈b/c/d, e, e〉 – is a version of a shove
where the target imparts energy to the actor.

• Chase〈a,−,−〉 – involves the actor moving toward the
target, closing the distance between the two, but never
quite making contact, so the during and after phases are
not relevant. This is depicted as the circular trajectorya
in the before phase.

4 Experiment
4.1 Stimuli
We usedbreve 1.4, an environment for developing realis-
tic multi-body simulations in a three dimensional world with
physics[Klein, 2002], to implement a model of the seven in-
teraction classes described in the previous section. The mod-
els were rendered as two generic objects (a blue ball for the
actor and a red ball for the target) moving on a white back-
ground — see Figure 2(a). The models allowed us to generate
multiple instances of each interaction type.

We generated a set of movies based on each of thebreve
interaction models. For several of the interaction classes we
also varied the behavior of the target object, as follows: the
target object, (a) did not move except when contacted (“sta-
tionary”), (b) moved independently in a random walk (“wan-
der”), or (c) moved according to billiard ball ballistic physics,
based on the force of the collision (“coast”). We generated
a total of 17 unique movies. For the bounce and counter-
shove interaction types, we only implemented “stationary”



0

0

+

-R
e
l
a
t
i
v
e
-
V
e
l
o
c
i
t
y

Distance
0

0

+

-R
e
l
a
t
i
v
e
-
V
e
l
o
c
i
t
y

Distance

Before After

a

b
c

c

d a

b

d
e

starting
tick

0

+

-E
n
e
r
g
y
 
T
r
a
n
s
f
e
r

Time

During/Contact

c

a

b

d
e

Figure 1: Maps-for-verbs model of the three phases of interaction.

Figure 2: (a) Example of maps-for-verbs simulation running
the shove-wander action, as rendered inbreve 1.4. (Note:
dashed lines represent motions of colored patches for demon-
stration purposes; only the moving color-patches themselves
were displayed in the stimuli movies.); (b) Dynamic map plot
of shove-wander action before contact, corresponding to the
picture in (a) (x-axis = distance between agents, y-axis = rel-
ative velocity).

and “wander” target behavior, as “coast” would obliterate the
effect of the target transferring energy back to the actor. Also,
there was only one version of “chase,” as the target must al-
ways be moving away from the actor. Chase was also unique
because it was the only instance in which the two balls never
contacted each other.

The 17 movies were recorded and presented on a G3 iMac
with 14 inch screen. The children’s responses were recorded
and later transcribed.

Participants
Sixteen children participated in this study, ranging in age
from 26-60 months old (average age = 50 months). Partici-
pants were recruited and tested at a local daycare in Amherst,
MA.

Procedure
For each child, a total of 18 movies was presented, each
movie instance appearing once — with the exception of
chase, which the child watched twice. An experimenter told
each child that she would be watching movies on the com-

puter screen with two balls, one blue and one red, and that
the task was to tell a story about what the balls were doing.

4.2 Analysis
The children used remarkably small vocabularies and very
terse sentences to describe the movies; the following tran-
script is typical:

E: Okay, last one. Can you tell me a good story
about this one?

S: Even gooder than all of the other ones?
E: Make it the best story!
S: It’s going umm gooder and it’s playing but the

red is letting the blue push him. And the red is
letting the blue one push

E: How come he’s letting the blue push?
S: Because he wanted to.
E: Why does he want to?
S: Because he likes to play like that.

All the content words for each trial were extracted and
“canonicalized,” converting verbs in different tenses or forms
(e.g., ending in -ed, -ing, etc.) to a single form. Also, nega-
tion phrases, such as “it’s not zooming” or “red didn’t move,”
were also transformed into a single token, e.g., not-zooming
and not-moving. The total number of unique, canonical-
ized content words uttered by all the subjects in response to
all the movies was 104, of which the following 30 words
were uttered more than three times (words are listed with
their frequencies):PUSHING, 85; MOVING, 57; BONKING, 54;
AWAY, 46; TRYING, 38; PLAYING, 28; FAST, 27; RUNNING, 27;
AROUND, 25; UP, 25; GETTING, 21; CHASING, 19; FRIENDS,
18; BUMPING, 17; SLOW, 16; HITTING, 16; DOWN, 16; CIR-
CLE, 11; CATCHING, 10; STANDING, 7; TAG, 7; ZOOMING, 6;
STOPPING, 6; COMING, 4; FLYING, 4; KNOCKING, 4; FOL-
LOWING, 4; BOUNCING, 4; ABOUT, 4; TOGETHER, 4.

Note that some of these words are not verbs; for instance,
“friends” and “away.”

Each movie is characterized by a vector of relative frequen-
cies of these 30 words. For example, here is the vector for the
movieSHOVE-STATIONARY:

PUSHING, 0.192; MOVING, 0.115; BONKING, 0.0; AWAY,
0.115; TRYING, 0.038; PLAYING, 0.0; FAST, 0.115; RUNNING,
0.077; AROUND, 0.0; UP, 0.0; GETTING, 0.0; CHASING, 0.038;



:BEFORE-SUBJECT-ACTION ’agent-coast
:BEFORE-ACTOR-ACTION ’approach-slow-down
:BEFORE-ACTOR-ORIGINAL-SPEED 2
:BEFORE-ACTOR-DESIRED-SPEED .5
:BEFORE-ACTOR-DISTANCE-FOR-SLOW-DOWN 1.5
:BEFORE-ACTOR-DISTANCE-FOR-STOP 0
:DURING-ACTOR-ACTION ’agent-approach-speed-up
:DURING-ACTOR-SPEED-UP-START-TIME ’self
:DURING-ACTOR-SPEED-UP-END-TIME .4
:DURING-ACTOR-ORIGINAL-SPEED ’self
:DURING-ACTOR-DESIRED-SPEED 6
:DURING-ACTOR-SELF-WAIT .6
:DURING-2-ACTOR-ACTION ’agent-halt
:DURING-2-ACTOR-SELF-WAIT .5
:AFTER-SUBJECT-ACTION ’agent-coast
:AFTER-ACTOR-ACTION ’agent-run-away-speed-up
:AFTER-ACTOR-SPEED-UP-START-TIME ’self
:AFTER-ACTOR-SPEED-UP-END-TIME 1
:AFTER-ACTOR-ORIGINAL-SPEED ’self
:AFTER-ACTOR-DESIRED-SPEED 2
:AFTER-2-SUBJECT-ACTION ’agent-halt
:AFTER-2-ACTOR-SELF-WAIT 1

Table 1: A vector of parameters for the movieSHOVE-STATIC

FRIENDS, 0.077; BUMPING, 0.038; SLOW, 0.038; HITTING,
0.0; DOWN, 0.0; CIRCLE, 0.0; CATCHING, 0.038; STANDING,
0.0; TAG, 0.0; ZOOMING, 0.038; STOPPING, 0.0; COMING, 0.0;
FLYING, 0.0; KNOCKING, 0.0; FOLLOWING, 0.0; BOUNCING,
0.038; ABOUT, 0.038; TOGETHER, 0.0.

That is, of the content words used to describe the movie
SHOVE-STATIONARY, 19% of them werePUSHING, 11.5%
wereMOVING, and so on. LetVwords(movie) denote the vec-
tor of relative frequencies of words used to describe a movie.

The movies also can be characterized by the parameters of
the breveprograms that generated them. These parameters
include the current speed and desired speed of the objects,
the subroutines that implement patterns of movement, the dis-
tance between objects at which one slows down, the latency
before starting the next movement, and so on. Table 1 shows
the vector for the movieSHOVE-STATIC. LetVparams(movie)
denote the vector of parameters for the program that generates
the movie.

The next step of the analysis is to test whether there is
an association between the vectors of parameters for movies,
Vparams(movie), and the vectors of words used to describe
the movies,Vwords(movie). A simple method is to calculate
the similarities between pairs of moviesi andj, rank the pairs
by similarity, and see whether the ranking based on word vec-
tors is predicted by the ranking based on parameter vectors.
Let

Simwords(i, j) = f(Vwords(i), Vwords(j)) (1)

Simparams(i, j) = g(Vparams(i), Vparams(j)) (2)

wheref and g are methods for comparing word-frequency
vectors and parameter vectors, respectively. The ques-
tion is whether, averaged over pairs of moviesi and j,
Simwords(i, j) is predicted bySimparams(i, j). We let f
be generalized Euclidean distance between the probabilities
p(wi) andp(wj) of hearing wordw uttered in response to
moviesi andj, respectively:

f(i, j) =
√ ∑

w∈{pushing,moving,..}

(p(wi) − p(wj))2 (3)

The functiong, for comparing parameter vectors, cannot
be simple Euclidean distance because parameter vectors in-
clude non-numeric values. We wrote a function that increases
the similarity score when symbolic (and numeric values) are
identical, decreases the score by a constant when symbolic
values don’t match, and decreases the score proportional to
the mismatch between numeric values. We added some con-
ditions for missing values. We are aware that this function
might conceivably be “tuned” to make the parameter vectors
better predict the word vectors, so we wrote it once and did
not revise it. The results presented below are for the first and
only evaluation of this function on these data.

As a final step, we ranked pairs of movies according to
Simwords(i, j) andSimparams(i, j).

4.3 Results
Each pair of moviesi, j gets two similarity scores,
Simwords(i, j) and Simparams(i, j), so we can look at
the simple correlation of these scores and the regression of
Simparams(i, j) on Simwords(i, j). Figure 3 shows these
score plotted against each other and the linear regression line
that fits them best. Clearly, the similarity of two movies ac-
cording to their parameters is a good predictor of the similar-
ity of distributions of words used to describe the movies. The
correlation between them is0.949, which means the similar-
ity of two movies according to their parameters accounts for
90% of the variance in the similarity of the word vectors for
the movies. This result is highly significant (p < .0001).

Figure 3: Regression plot of similarity scores for movie pairs
according to movie parameters and movie word descriptions.

Another way to analyze the data is to compare the rank-
ings of pairs of movies according to the two similarity
scores. To illustrate, suppose we have four movies,a, b, c, d,
and so six pairs of movies, ranked by functionf from
most to least similar: ((a, b)(a, c)(b, d)(a, d)(b, c)(c, d)).
Now suppose functiong produces a different ranking:
((b, d)(a, c)(a, d)(c, d)(b, c)(a, b)). According tof , the most
similar movies, with rank 1, are(a, b) whereas the rank of
these movies is 6 according tog. We can characterize the dif-
ference of two rankings by summing the differences in rank



over items; for instance, the item(a, b) contributes6− 1 = 5
to the sum.

For the data in Figure 3, the summed rank difference is
δ = 104, but how can we tell whether this is a statistically
significant number? We perform arandomization testas fol-
lows: There are 21 pairs of movies, so construct two vectors,
v1 andv2, each containing the numbers1...21. Now shuffle
v2 thoroughly and calculateδ∗ =

∑
i=[0,21] abs(v1,i − v2,i).

Repeat 1000 times. The resulting distribution ofδ∗ is theem-
pirical sampling distributionof the summed rank difference
under thenull hypothesisthat the ranks of items in the vec-
tors are unrelated. If the actual summed rank difference,δ,
has low probability according to this sampling distribution,
we reject the null hypothesis with residual uncertainty (thep
value) equal to the quantile ofδ in the sampling distribution
(see[Cohen, 1995] for details).

As it happens, the ranking of movie pairs according to the
movie parameters is not independent of the ranking according
to word frequencies. The summed rank differenceδ = 104
is just the0.0016 quantile of the sampling distribution, so we
can reject the null hypothesis and conclude with confidence
that the rankings are related.

5 Discussion
These results are supported by another study, using the same
movies, with adult subjects. (The final paper will present both
sets of results.) They show conclusively that the dynamics of
interactions between two bodies, as represented by the param-
eters of the programs that generate movies, predict the dis-
tributions of words that children use to describe the movies.
This result is surprisingly strong when one considers how few
words children actually use. Although our study involved 16
children, only 30 content words were uttered more than three
times in the entire study. Nevertheless, by concentrating on
thedistributionsof these words for each movie we were able
to show a strong dependence on the dynamics of the movies.

Returning to the question that motivates this work, is there
sufficient information in the perceptual array, particularly dy-
namical information, to supply semantics for some words,
particularly some verbs? By demonstrating a dependency be-
tween dynamical information and word choice (especially in
young children) we strengthen the empiricist case that word
meanings can be learned as associations between the words
and percepts. Our evidence is only suggestive, however, be-
cause we demonstrated a dependence of word use not on the
child’s perceptsbut, rather, on the parameters of the movies
shown to the child. Only by assuming that these parameters
affect how the movie is perceived can we argue for associative
learning of word meanings. The assumption is very reason-
able; after all, the parameters were tuned to make the movies
look different and distinctive.

Still, we think it likely that associative learning of word
meanings “needs help,” probably from prior domain knowl-
edge. Although researchers such as Todd and Barrett[Todd
and Barrett, 2000] argue that motion is a cue to intention, they
do not argue that it is theonly cue, and one is hard-pressed
to see how the intentional aspect of, say, “chasing,” can be
learned from nothing but the relative motions of two bodies.

We think Dennett[Dennett, 1987] is probably right when he
says we adopt an intentional stance even to non-intentional
scenarios, and the intentional language of our subjects, di-
rected to a couple of colored blobs moving on the screen,
lends force to his argument. It seems likely to us that per-
ceived movement is one cue to word meaning, but the inten-
tional aspects of words are generated by the subjects them-
selves. We are currently designing studies to tease apart these
contributors to word meanings.

Finally, we relate an anecdote about our word-learning
robot: It learned that “forward” is associated with the wheels
rotating in one direction and “backward” with the opposite di-
rection of rotation, but it never learned that forward and back-
ward are antonyms. We realized then that word meanings can
be arbitrarily “deep” and that associating percepts and words
produces a shallow kind of meaning. But it’s a start.
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