
A Toolbox for Analyzing Programs�

Scott D. Anderson

David M. Hart

David L. Westbrook

Paul R. Cohen

fanderson, dhart, westy, coheng@cs.umass.edu

Experimental Knowledge Systems Laboratory

Computer Science Department, LGRC

University of Massachusetts

Amherst, MA 01003-4610

To appear in the International Journal on AI Tools

Abstract

The paper describes two separate but synergistic tools for running experiments on large Lisp programs.

The �rst tool, called Clip (Common Lisp Instrumentation Package), allows the researcher to de�ne and

run experiments, including experimental conditions (parameter values of the planner or simulator) and

data to be collected. The data are written out to data �les that can be analyzed by statistics software. The

second tool, called Clasp (Common Lisp Analytical Statistics Package), allows the researcher to analyze

data from experiments by using graphics, statistical tests, and various kinds of data manipulation. Clasp

has a graphical user interface (using CLIM, the Common Lisp Interface Manager) and also allows data

to be directly processed by Lisp functions. Finally, the paper describes a number of other data-analysis

modules have been added to work with Clip and Clasp.

1 Introduction

The systems described in this article, Clip and Clasp were originally developed to aid our empirical,

statistical work with an arti�cial intelligence (AI) program called Phoenix [1] that does online planning

and execution in a very complex environment. The statistical work is necessary because the program is

so complex that patterns of behavior (and misbehavior) only emerge from many trials in many conditions.

As programs become more complex, researchers will increasingly need to turn to simulators, controlled

experiments, and statistics to study the behavior of their systems. Clip and Clasp are tools to make

such empirical work easier, and although we will describe them with respect to an AI simulator, they are

applicable to the statistical study of any large computer program.1

We will briey describe a simulator called TransSim, an AI agent that observes and helps control the

simulated environment, and a controlled experiment that the Experimental Knowledge Systems Laboratory

(EKSL) ran using TransSim. However, our real purpose in this description is to introduce the two tools that

EKSL has developed to aid in running and analyzing experiments of this sort: Clip and Clasp (Common

Lisp Instrumentation Package and Common Lisp Analytical Statistics Package).

Clip enables researchers to de�ne experiments in terms of the conditions under which the simulator is

to be run and the data to be collected. Clip also helps with the running of the experiment, by looping

over all the experimental conditions, running the simulator, and writing the data to �les. At that point, a

�This research is supported by ARPA/Rome Laboratory under contracts #F30602-91-C-0076 and #F30602-93-C-0100.
1As will be described later, Clip integrates with Common Lisp programs and therefore is restricted to programs written in

that language. Clasp, on the other hand, is a stand-alone Common Lisp program, and can analyze data from any source.

Figure 1: TransSim simulates ships moving cargo between ports. The shade of gray in the port represents

how full it is; dark ports are near capacity. In the real interface, the colors green, amber and red are used

rather than gray levels.

researcher will want to analyze the data using statistical software. While the data �les that Clip writes can

be analyzed by any statistical package, Clip is especially well integrated with Clasp, which is a statistical

package that EKSL has implemented. Clasp has many of the standard descriptive and inferential statistics,

together with a convenient graphical user interface, and a Lisp interaction window that researchers can use

for implementing statistical operations that we have not anticipated.

2 Transportation simulator

TransSim simulates the execution of transportation plans in a problem domain where the goal is to get

cargo through a shipping network from a number of starting locations to a number of destination ports.

The problem, de�ned as part of the Arpa/rl2 Planning Initiative, involves many di�erent kinds of cargo

and ships, and many, many pieces of cargo. TransSim allows the user to con�gure an arbitrary shipping

network by specifying ports, a set of cargo inputs, and a list of available ships. Ports and docks can have

constraints on the kinds of ships and cargo they can handle. Input to the scenario is a list of Simple

Movement Requirements (SMRs). SMRs specify a port of embarkation, various intermediate ports, and a

port of debarkation. Cargo appears at its port of embarkation at times determined by the scenario and

travels through the network along the route speci�ed by its SMR. The time for a ship to travel between

ports is a Gaussian random variable computed by the simulator and controlled by user-speci�able parameters

giving the mean and variance of the ship's speed. Figure 1 illustrates the basic idea of TransSim. The

links in the �gure only show the connectivity of ports, not the actual distances between them.

TransSim also supports Interactive Plan Steering, where a human user or a software agent notices

problems (pathologies) in the execution of a plan and intervenes in an attempt to get the plan back on

course. Currently, our Plan Steering Agent works without reference to a plan or schedule. It attempts to

control the shipping tra�c by using limited look-ahead for prediction, and it reacts to pathologies as they

are detected. One important kind of pathology occurs when the number of ships arriving at a port exceeds

the capacity of the port (the number of docks), so that the ships must wait until docks are available before

they can unload. For example, in �gure 1, the Plan Steering Agent might try to re-route cargo traveling

through the port at the upper right, since it is near to being a bottleneck.

We have developed a \pathology demon" to try to predict this pathology. Its prediction is for a speci�ed

number of days in the future, say four days. The demon looks at each ship heading for a particular port and

uses the mean and variance on the ship's speed to estimate the probability that the ship will have arrived

by the day in question. If that probability exceeds some threshold, the demon assumes that the ship arrives.

2Advanced Research Projects Agency and Rome Laboratory

2

The demon also predicts how many ships will leave the port by that day, using heuristic estimates about

the time it takes to unload and load a ship. All this information is compiled into an estimate of how many

ships will be in port on the day in question. If the estimate is higher than the port capacity, the pathology

demon can alert the Plan Steering Agent (who may be human); the Plan Steering Agent can then decide

what to do, which might include re-routing some of the ships. On the other hand, the Plan Steering Agent

might ignore the problem because of global considerations. The pathology, of course, is only a local problem,

and may be no great hindrance to the overall plan. To study the extent to which local problems a�ect plan

performance, or whether the pathology demon is good at predicting the number of ships in port, or any of

myriad other questions, we will need to run experiments, collect statistics, and analyze them. To do that,

we will use Clip and Clasp.

3 Running experiments

A great many experiment designs are used in science, but most of them can be viewed as sets of trials, each

with a number of independent variables, representing the conditions under which the trial is run, and a

number of dependent variables, which are the objects of scienti�c scrutiny. This is the simplest of the kinds

of experiment designs that Clip supports.

One common kind of experiment within this paradigm is called a \fully factorial" design, in which there

are one or more factors, each of which has a small number of discrete levels. For example, factor A might be

the number of days in advance that the pathology demon tries to predict the number of ships in port, with

three values (levels)|2, 4 and 6 days. Factor B might be the probability threshold, above which the demon

assumes that the ship will be in port, say with levels 0.25, 0.5 and 0.75. A fully factorial experiment design

will test all combinations of levels; in this example, there are nine experiment conditions. Because of random

variation in the outcome of each trial, the experimenter will usually want multiple trials in each condition

and will probably analyze the data using the statistical technique of analysis of variance. It's easy to do this

kind of experiment using Clip and Clasp: we tell Clip how to modify the parameters of the pathology

demon and it takes care of iterating through all the conditions, setting the parameters, and collecting the

data. Later, Clasp can analyze the data, using just a few mouse clicks, since the analysis of variance is

built in.

Another common kind of experiment looks at the relationship of two or more continuous variables,

such as the correlation between them. For example, the independent variables (variables controlled by the

experimenter) might be the number of cargo units to be shipped and the amount of variance in ship speed,

while the dependent variable (a variable measured by the experimenter) might be the amount that the plan

is late or the number of missed deadlines. We expect that as the scenario becomes more di�cult (when the

values of the independent variables increase), the plan lateness and missed deadlines will go up|but will

this relationship be linear or non-linear? To answer such questions, we will want to run many trials, choosing

values for the continuous independent variables and measuring the dependent variables. Clip can help us

do this, while Clasp can graphically display the data and transformations of it, together with regression

lines, if desired.

3.1 Instrumentation

Adding code to extract information from a system is called instrumentation, hence Clip's name (Common

Lisp Instrumentation Package). Most of Clip's functionality is directed towards extracting di�erent kinds of

information from the target system|information that is calculated afterwards, collected periodically during

execution, or collected whenever some interesting event occurs. This aspect of Clip is deferred to section 3.2.

First, we present an overview of how Clip works and what you need to do to use it. (This article is no

substitute for the Clip/Clasp manual [2], where everything is rigorously explained.)

To use Clip to run an experiment,Clip �rst needs to know how to run your simulator (or whatever your

program is). Essentially, this is a single function or piece of code that Clip can call to start a trial and which

will return when the trial is over. Clip also works with simulators that run in multi-threaded (multiple

process) Lisps, but it nevertheless treats the simulator as a single piece of code.3 Between trials, Clip will

3This requirement may be lifted in future versions of Clip, but the impact is minor. Most multi-threaded Lisps provide a

3

(define-simulator transsim

:system-name "TransSim"

:start-system (simulate nil)

:reset-system reset-transsim-experiment)

Figure 2: An example of the define-simulator macro.

(define-experiment test-experiment ()

:simulator transsim

:instrumentation (prediction-score port-state-snapshot)

:variables ((prediction-threshold in '(0.1 0.2))

(eta-variance-multiplier in '(0.05 0.15 0.25))

(prediction-point in '(2 4 6)))

:before-trial

(setf *ports-to-consider* (list (port 'port-1)))

:after-trial

(write-current-experiment-data))

Figure 3: An example of the define-experiment macro.

need to reset your system, although this might be unnecessary if the simulator is purely functional (few are).

If your simulator has a notion of time, such as having a clock, and you want Clip to schedule events for

particular times, Clip will need to know how to interact with the scheduler and the clock. For example, you

might want to collect data every day of the simulation, with the average being written to the data �le. To

describe how to run and control your simulator, there is a single Clip macro, called define-simulator.

Figure 2 shows a very simple example of the macro. (A more complete example appears in �gure 5.)

Notice that the macro tells Clip how to run TransSim, namely to call simulate with an argument of NIL,

and similarly the macro tells how to reset the simulator between trials and so forth.

Next, you will de�ne your experiment, which is again done with a single Clip macro, called define-

experiment. The heart of an experiment is the set of independent and dependent variables, which are

speci�ed using that macro. The independent variables are described with a simple syntax much like the

Common Lisp loop macro. The names of dependent variables are simply listed|how to collect and report

the data for each dependent variable is separately de�ned via objects called \clips," which will be discussed

in the next subsection.

Figure 3 shows a simple example of the define-experiment macro. Notice how the macro refers to the

TransSim simulator, telling Clip how to run the user's program. Next, it mentions the names of the data

to collect; later we will see how those are de�ned. The :variables are the independent variables|this

experiment has three, with 2, 3 and 3 levels, for a total of 18 conditions.

The define-experimentmacro also provides ways for users to run code of their own choosing during the

experiment, at four distinct times. Those times correspond roughly to the following pseudo-code de�nition

for an experiment:

before experiment

LOOP

before trial

RUN TRIAL

after trial

ENDLOOP

after experiment

process-wait function, which can be used to make the simulator seem like a single piece of code.

4

These opportunities to run code might be used as follows:

Before the Experiment: When an experiment gets started, you may want, for example, to load special

knowledge-bases or set scenario parameters. This is also a chance to do more mundane things, such as

allocating data structures or turning o� the screen-saver (some computer systems get confused when

writing to a screen that is under the control of a screen-saver).

Before Each Trial: At each trial, you may want to reinitialize parameters and data structures. One

important thing to do is to con�gure your simulator for the current experimental condition. For

example, if you are running a two-factor experiment, Clip will have two local variables bound to the

correct values of those two factors. You may then use those variables to, perhaps, set parameters

of your simulator or use them as arguments to initialization functions. After all, only you know the

semantics of your factors.

After Each Trial: The most important thing that is typically done after each trial is to call the function

write-current-experiment-data, the Clip function that writes all the data for this trial. (You can

see this in the define-experiment example above.) This is also a good time to run the garbage

collector, if you want to minimize garbage collection during trials.

After the Experiment: Typically, code run after the experiment undoes the code run before the experi-

ment, such as deleting data structures or turning the screen-saver back on.

Of course, any arbitrary code can be executed at these times, for whatever purposes you want. The key

idea is that the before- and after-trial code surrounds every trial and runs many times, while the before-

and after-experiment code surrounds the whole experiment and runs only once. This ability to run arbitrary

code is more than just an opportunity for hacks|it is a clear and precise record of the exact experimental

conditions. Records are important as a memory aid and as a means for replicating experiments.

When the experiment has been de�ned, you start it running with the function run-experiment. This

function takes arguments, which you can refer to in the before/after code, so that the �nal speci�cation of

the experimental conditions can be deferred until run-time. (For the sake of record-keeping, these arguments

should be written to the data �le, by using the Clip function append-extra-header in the before-experiment

code.) The run-experiment function also allows you to specify the output �le for the data, the number of

trials, the length of the trial, and other such information. An example appears in section 5.

De�ning the simulator and the experiment, and then running the experiment is fairly straightforward

and is only a fraction of what must be done to run an experiment. The bulk of the e�ort is in de�ning

\clips"|functions that measure the dependent variables of your experiment. Fortunately, they are modular

and reusable.

3.2 Clips

Clips are named by analogy with the \alligator clips" that connect diagnostic meters to electrical devices.

They measure and record aspects of your system (the values need not be numerical). Essentially, they are

Lisp functions that you de�ne and which Clip runs if they are included in the de�nition of the experiment.

Once written, they can be mentioned in any number of experiments. Indeed, it's common to build up �les

of clips, so that a new experiment can be quickly de�ned by writing a define-experiment form (or editing

an old one) and listing the clips in the :instrumentation argument to define-experiment.

Clips are de�ned with the defclip macro, which is syntactically very much like defun, except that

information given before the function body is read by Clip. The function body is entirely up to you, the

user; its purpose is to extract information about the state of your system. What Clip needs to know is

the time that it should run the clip. Most clips simply measure values after a trial is �nished, for variables

such as \�nish date," \number of bottlenecks," and \total waiting time for ships." More complicated clips

may need to run periodically, although this only makes sense for simulators that have a clock of some sort.

Time-dependent clips are scheduled using the schedule-function speci�ed in the define-simulator form.

(This aspect of the macro is illustrated in the example in �gure 5.) Other clips may need to run when

some particular event happens; this is accomplished by tying the clip to a function in your simulator that is

associated with that event, using a mechanism like the \advise" facility found in many Lisp implementations.

5

Variance Days Err RateTrial Number

(1 0.05 2 0.15)
(2 0.05 4 0.17)
(3 0.05 6 0.18)
(4 0.15 2 0.16)
(5 0.15 4 0.20)

Figure 4: Clip writes data to a �le in a format like this. Each row corresponds to the data for a single trial.

Generally, each clip function writes a single element of the row, although clips that write multiple elements

are easily de�ned.

Consequently, the defclip form has syntax for tying the clip to a user function. When a clip is run many

times during a trial, it can either report the mean of the values or it can report all the values (or some

function of them), as time series data (see section 3.3). Figure 4 shows the format of a Clip data �le.

Clip implements several features to make clips more useful and powerful. The �rst feature allows a clip to

report several values to the data �le. In other words, if we think of the data �le as a large table (see �gure 4),

with a row for every trial and a column for each variable, a clip may report the values for several columns.

For example, a clip that interrogates a port might want to report the minimum, maximum, and mean queue

length. The user can de�ne a clip called queue-info to report all three of these values during an experiment.

The second feature allows users to report a value for each of several objects. For example, they might want

to report the maximum queue length at each port, or the tons of cargo carried by each ship. Given a clip to

report the value for a single object, another clip can be de�ned that maps over the objects, calling the simpler

clip for each object. These two features can be combined, yielding one clip that reports a lot of information

about many objects, all in one powerful step. An important restriction is that the number of values must be

consistent, because the data �les need to have the same number of values (columns) reported for every trial.

This is not a requirement of Clip so much as a requirement of the statistical package, whether Clasp or

any other package. Missing values are a headache for any statistical operation, and so it is better to always

produce the same number of values. Typically, this is easy to accomplish. For example, the number of ports

should be the same in every trial. If they are not, you will probably be comparing average behavior (since

you cannot compare them pairwise), in which case the average can be reported, rather than data for each

port. Section 5 describes an entire experiment, showing how all the pieces described in the last few sections

�t together.

3.3 Time series data

So far, we have described di�erent kinds of data that can be extracted into a \snapshot" of the scenario.

We can also collect data that is a \movie" of the system: a series of snapshots at di�erent points in time.

Data like this is called time series data. For example, we could report the queue length at a port each day,

allowing us to see bottlenecks arise and subside as the tra�c ebbs and ows. We can statistically analyze

such data to see if there are temporal correlations. For example, we could see whether a bottleneck truly

subsides or merely moves to another port at a later time. We just cannot answer such questions by looking

at mean values after a trial is over.

Early in our work with TransSim and the pathology demons, we wanted to see whether the prediction

accuracy (error rate) of the pathology demon varied over time. The demon might, for instance, become

increasingly confused as time progresses. Therefore, we need a clip to run every simulated day, to record

a large amount of data about the state of ports. Two clips are shown in �gure 5. (The �gure also shows

the more elaborate de�nition of the simulator that is needed to tell Clip how to schedule data collection

6

(define-simulator transsim

:system-name "TransSim"

:start-system (simulate nil)

:reset-system reset-transsim-experiment

;; a function that places functions to run on the queue of events.

:schedule-function schedule-function-for-clips

;; a function that removes functions from the queue of events.

:deactivate-scheduled-function transsim::reset

:seconds-per-time-unit 3600

:timestamp current-day)

(defclip port-state-snapshot ()

"Record state information for a port at the end of each day."

(:output-file "christa:oates.data;port-time-series.clasp"

:schedule (:period "1 day")

:map-function *ports-to-consider*

:columns (ships-en-route

ships-queued

ships-docked

expected-ship-arrivals

predicted-queue-length

time-to-clear)))

(defclip ships-en-route (port)

"Record the number of ships en route to a port."

()

(length (apply #'append (mapcar 'contents (incoming-channels port)))))

Figure 5: A simulator de�nition and time-series clips to capture the state of the ports during a TransSim

simulation.

at particular times; compare this to �gure 2.) The �rst clip is one of the complex clips that were described

earlier: it maps over a set of ports (*ports-to-consider*) and collects a bunch of information on each

one, as speci�ed by the :columns keyword argument. Each column entry is the name of a clip that simply

reports one value. One example is the ships-en-route clip, which is also shown in the �gure. Finally, of

course, we see that port-state-snapshot is scheduled to run once a day.

You may have also noted that port-state-snapshot speci�es its own output �le. The reason is that

time series data is incompatible with the data collected after the trial. Di�erent kinds of data are collected

by time series clips: individual values during a trial versus means and totals afterwards. Usually, a di�erent

number of values are produced. It doesn't make sense to mix the two. Therefore, time series data are written

to a di�erent �le than the main data �le. In fact, you can collect several di�erent kinds of time series data in

one experiment. For example, you can collect information on port queues every day and collect information

every time a ship is loaded. Again because of incompatibility of the data, these two di�erent time series

would be written to di�erent �les. Someone with such a complex experiment often makes a directory into

which all of the data �les will go.

3.4 Summary

The capabilities of Clip have been driven by the needs of experimenters. There are a great many features,

all of which have proven useful to someone. Nevertheless, the essence is fairly straightforward. To run an

experiment using Clip, you must do the following: (1) de�ne the simulator, (2) de�ne the clips, (3) de�ne

the experiment, and (4) run the experiment.

7

Clip has other features to support experimentation, such as aborting a trial but continuing the exper-

iment, say when some intermittent error has occurred|very common in stochastic simulations. Clip also

lets you run only part of the experiment, which facilitates breaking the experiment into parts to run on

di�erent machines. These are all explained at length in the Clip/Clasp documentation [2].

4 Data Analysis

The idea of Clasp began when we wanted to run a t-test on some experiment data without having to write

out the data to a �le in some tab-delimited format, move the code to another machine, run a statistics

program, and load the data. From this small beginning, we have added most of the workhorse statistical

functions, data manipulation (regrouping, selecting subsets), data transformation (such as log transforms),

and graphing software (now replaced by SciGraph, by Bolt, Beranek and Newman, Inc.).4 We have

a convenient graphical user interface implemented in CLIM, and a programmatic interface so that Clasp

functions can be called by the user if a desired data manipulation isn't already on a menu. Ideally, everything

can be accomplished by menus in the graphical user interface.

Clasp's screen interface, an example of which is shown later in �gure 6, comprises four areas: the menus,

the datasets, the results, and the notebook:

Menus The Clasp menus will appear across the top of the window. See, for example, �gure 6. The menus,

which will be discussed below, are: File, Graph, Describe, Manipulate, Transform, Test, and Sample.

Datasets When you load a �le of data into Clasp, such as a �le written by Clip, it becomes a Clasp

dataset and appears on this menu (the upper left of �gure 6). The name of the dataset is the name of

the experiment. Each column of data is called a variable; the name of the variable is usually the name

of the clip that returned that variable, unless you specify a di�erent name in the defclip.

When analyzing the main data �le (as opposed to a �le of time series data), there will be as many

variables as there were clip values, and each variable will have as many elements as there were trials,

since each clip reports once at the end of each trial. (Clip has a naming scheme to handle clips that

produce multiple values.)

Most operations in Clasp take either datasets or variables as arguments, and the items in the dataset

pane become mouse-sensitive when appropriate. For example, if you want to �nd the mean number of

days cargo spends in transit (and you had a clip that reported that value), you would just select the

\Mean" item from the \Describe" menu, whereupon all the variables would become mouse sensitive,

and you could select the one you want. Similarly, when you want to partition a dataset, say to separate

trials where the Plan Steering Agent was used from those where it wasn't, you would �rst select the

\partition" command from the \Manipulate" menu item, and then click on your dataset.

Results Display When a Clasp operation yields a complex result, such as a table or graph, the name of

that object goes into a menu of results (the lower right of �gure 6). The most common use for this

menu is to bring up two results side-by-side, so they can be compared. Graphs can often be overlaid, so

that similarities are obvious. There are also Clasp commands to delete, print, display, and otherwise

operate on results, whereupon they become mouse sensitive.

Notebook The notebook is by far the largest part of the Clasp window because most of the action goes

on here (in �gure 6, it is the large pane overlaid with the graph). It is a complete Lisp read-eval-print

loop, except that Clasp commands are also accepted. Having Lisp available is important and powerful,

because users can operate on the data in ways we have not yet implemented or even thought of.

Clasp commands can be typed instead of using the menus; indeed the menus just type the appropriate

thing into the notebook. When the command is fully entered, it's executed and its results are printed

to the notebook. Clasp output in the notebook is also mouse-sensitive when appropriate.

One of the nice features of the notebook is that it provides a record of the statistical operations on the

data. This record can be saved to a PostScriptR �le and printed.

4Clip and Clasp have been integrated into the Common Prototyping Environment of the ARPA/RL Planning Initiative as

a tool for evaluating planning technology. See section 7.

8

Clasp uses a pre�x command syntax, very much like Lisp, in that you give the command name �rst, such

as :T Test Two Samples X Y, where X and Y are variables. Using the features of CLIM, Clasp allows

command completion and prompts for arguments. Clasp also allows certain arguments to be \mapped,"

which means that when a list of arguments is given where a single argument is expected, the command is

executed for each element of that list. For example, to �nd the means of three variables, (X Y Z), you can

use the following syntax:

:Mean X,Y,Z

Clasp groups related commands in the main menus, as sketched below; full information is in the

Clip/Clasp manual.

File This menu allows you to load Clasp datasets from �les and to save them to �les, say if you've made

changes or created new datasets. It also allows you to read and write datasets in formats understood

by other statistical packages. A number of other utilities are on this menu, such as printing objects

(graphs or tables) to PostScript �les.

Graph Being able to look at your data in various ways is important in exploratory analysis. You may �nd

discontinuous or skewed distributions, non-linearities in trend, or peculiar clusters of data. Looking

at the data will suggest new hypotheses and statistical operations, such as smoothing or correlation.

This menu allows a number of displays of data, including histograms, scatter plots, line plots, and

regression plots. The grapher, BBN's SciGraph, allows graphs to be overlaid for ease of comparison.

It also allows the objects (points or lines) in a plot to be colored based on some other property, another

important tool for exploratory data analysis.

Describe Statistics are often divided into descriptive statistics and inferential statistics. The former are

functions that capture some property of one or more samples, such as location (mean, median), spread

(variance, interquartile range) or other properties (correlation between two variables). The latter are

functions that test hypotheses about the populations that the samples were drawn from. This menu

contains many of the descriptive statistics, including all the ones just mentioned, and a few others,

such as modes, trimmed means, arbitrary quantiles, cross-correlations, and auto-correlations. There is

also a \statistical summary" operation that prints most of the interesting one-sample statistics in one

convenient table.

Manipulate An experiment usually produces lots of data, which must be broken into pieces to be looked

at and understood. Therefore, Clasp provides several ways to extract subsets from a dataset. One

example is partitioning, where you select a dataset and a categorical variable from that data. A

categorical variable has a few discrete values: for instance, in the shipping domain used in TransSim,

the variable ship-type might have discrete values like container, tanker, and Roll-on/Roll-off.

The partition operation produces new datasets (which appear in the dataset window), one for each

distinct value of the categorical variable. You can then select one of these datasets if you want to

look just at one value of the variable, say, the \Roll-on/Roll-o�" data. Similar operations allow you

to partition datasets by an arbitrary predicate (one that you type in).

Other operations on this menu allow you to create new datasets. The values for these new datasets may

be cobbled together from existing datasets or come from Lisp functions you execute in the notebook.

When new datasets are produced, whether by partitioning or other operations, a new name is generated,

by combining the old name with the operation. This means you can often remember what a dataset is

just by looking at its generated name. For example, a dataset SHIPS that has been partitioned by its

TYPE variable, which has a TANKER value, will result in a new dataset named SHIPS (TYPE = TANKER).

Transform This menu has commands that produce new variables from old ones. A trivial example is just

to sort the variable. A more interesting one is a logarithmic transformation that might be used prior

to linear regression, resulting in an exponential model of the data. Another example is smoothing the

data, which might be used prior to autocorrelation in order to �nd cyclical patterns in time-series data.

As with datasets, when a new variable is produced, a new name is generated by combining the old

name with the operation. For example, a variable named QUEUE-LENGTH that has been smoothed will

result in a new variable named SMOOTH-OF-QUEUE-LENGTH.

9

Test This menu contains the inferential statistics that were omitted from the Describe menu. Most of these

commands, such as the t-test, con�dence intervals, analysis of variance, chi-square and regression, are

described in any statistics textbook.

Sample This menu contains commands that produce arti�cial data by sampling from a given probability

distribution. These commands would rarely be used in ordinary data analysis, but they are ped-

agogically useful to see how various graphing options and statistical tests work on data with known

properties. The commands can draw numbers from the uniform, normal, binomial, Poisson, and gamma

distributions.

5 Example

Rather than try to describe in detail how Clip and Clasp work, we will present an example in which we

use them to run and analyze an experiment in the Transportation Planning domain. The example uses the

TransSim simulator and is based on a pilot experiment that Tim Oates used in designing his Plan Steering

Agent [3, 4]. The purpose of the experiment is to assess the error rate of a demon that predicts the queue

length at a port d days in advance, as a function of the variability of ship speed and the time delay, d.

The following de�nes the TransSim simulator. It's quite simple because we won't be using any time-

series collection in this experiment. A more complete example was given earlier, including the information

necessary for time-series data.

(clip:define-simulator transsim

:system-name "TransSim"

:start-system (simulate nil)

:reset-system initialize-simulation)

Our example experiment will measure the accuracy of the demon that predicts queue lengths at ports

and is de�ned below. Its :instrumentation clause mentions three clips for the dependent variables: in this

experiment, we are interested in the error rate of the demons in predicting queue length, and in their misses

and false positives in predicting bottlenecks. The :variables clause speci�es two independent variables|

the variance in ship arrival time and the number of days in the future to predict the queue length. In this

experiment, the only thing to do before each trial is to transfer (using setq) the values of the independent

variables to the appropriate global variables of the TransSim simulator. After each trial, the trial number

and the values of independent variables and the clips are written to the data �le.

(clip:define-experiment pred-accuracy ()

:simulator transsim

:instrumentation (err-rate fp misses)

:variables ((eta-var in '(0.05 0.15 0.25))

(pred-pt in '(2 4 6)))

:before-trial (setf *eta-variance-multiplier*

eta-var

prediction-points

(list pred-pt))

:after-trial (write-current-experiment-data))

Below is the code for one of the clips in the experiment. It looks just like a Lisp defun, except for the

() before the code. That list is used for specifying additional information such as whether this is a time

series clip (by default, clips are not time series), whether it maps over several objects, and so forth. The

information is speci�ed in keyword style, as was shown in the example in �gure 5. Since each port has its

own prediction demon, this clip reports the mean error rate over all the demons.

(defclip err-rate () ()

(loop for p in *ports*

sum (demon-error-rate (port-demon p))

into total

finally (return (/ total (length *ports*)))))

10

Figure 6: Excerpt from sample interaction with Clasp.

The experiment is run by executing the following form. The :repetitions clause says how many trials

to run under each condition (combination of levels of the independent variables). In this experiment there

are nine conditions (3 levels of variance and three prediction points), so with thirty repetitions in each, Clip

will run 270 trials, resulting in 270 rows in the output �le.

(run-experiment 'pred-accuracy

:output-file "~/data/demon-summary.clasp"

:repetitions 30)

When the experiment is complete, we will want to analyze the data using Clasp. We are interested in

whether either independent variable a�ects the demon's error rate, and, if so, whether those e�ects interact.

Therefore, we will analyze the data with a two-way analysis of variance (Anova). Obviously, we cannot

show the sequence of mouse-clicks that did the analysis, but Figure 6 shows the Clasp screen afterwards.

The data show that there is a signi�cant interaction between the two factors (F = 10:09; p = 0:0), because

increasing variancedidn't a�ect the error rate much when predicting two and four days in advance, but greatly

increased the error rate when predicting six days in advance. We have superimposed a Clasp-generated

graph to depict the interaction; note that one of the lines slopes upward, while the other two decline slightly.

The data also show that, overall, the point of prediction was highly signi�cant (F = 144:9; p= 0:0), but the

amount of variance in the ship speed was not (F = 1:6; p = 0:2).

11

AIDE (EDA)

C
A D

B

Robbie

CLASP
w/boot

CI

CLIP

DD

SEA

Figure 7: Additional experiment modules are being added to Clip and Clasp. The Sea system will help

design experiments using Clip. Clasp has been augmented with bootstrapping functions, and provides

basic statistical operations for Dependency Detection (DD), Causal Induction (CI), and automated data

analysis, including Aide and other Experimental Data Analysis work.

6 Empirical Analysis Toolbox

Clip and Clasp were originally developed to analyze the behavior of an AI planning system online|

that is, to instrument the system, run experiments, analyze the results, and build predictive models of the

planner's behavior, all in the same Common Lisp environment. We were successful in the sense that Clip and

Clasp are well-integrated and provide the simple tools we need to model behavior. However, we discovered

that using this simple tool set has two problems: tedium and lack of expertise. It can be tedious and time-

consuming to use basic instrumentation and statistics methods to address sophisticated modeling issues.

(For example, what are the important contributing factors to plan failure and do their relative inuences

change as environmental conditions worsen?) Moreover, while tedious, using such methods requires care and

some experimental and statistical sophistication to produce sound models.

Commercial statistical packages face the same problem, and like many, we have chosen a solution that

provides add-on modules that work with Clip and Clasp to perform speci�c kinds of data analysis and

modeling tasks. Unlike other packages, our modules are designed speci�cally for modeling the behavior of

AI programs. Each is tailored to a speci�c aspect of program analysis, such as �nding the major factors

contributing to program success or identifying interactions of program components that degrade perfor-

mance. The modules we are currently building, while by no means complete, include four that have proven

particularly useful and are described below. Also unlike other packages, our add-on modules incorporate

AI techniques wherever possible (knowledge representations, search heuristics, reasoning strategies and so

forth), in the hope that we can eventually automate many aspects of empirical analysis that are now done

under the user's direction.

Exploratory Data Analysis After running an exploratory experiment and gathering data, the user is

faced with the task of identifying signi�cant relationships among the factors measured. This is called

Exploratory Data Analysis (EDA). We are building a module that assists the user in this e�ort by

employing EDA techniques [5, 6]. These techniques can partition data to distinguish di�erent modes

of behavior and generate functional descriptions of interactions between factors. Through detailed

exploration of experimental data the user can gain a more complete picture of program behavior.

Bootstrapping Bootstrap statistics [7,8] replace the parametric and distributional assumptions of statistics

like the t test with an empirical approach using computerized resampling of the data. This frees the

user from many of the restrictive parametric assumptions made by commonly used statistics. The d

test, for example, is used just like the two-sample t test, especially when the data don't satisfy the

normality and equal-variance assumptions of the t test.

We have implemented a number of resampling techniques including Monte Carlo and bootstrapping.

These are generic techniques that can be used with most kinds of statistical functions. The idea is

to specify an arbitrary univariate or bivariate statistical function (such as the median or correlation

coe�cient), one or two sets of data, and the number of times to resample. Random samples are drawn

12

from the data,5 the function is run on the random sample, and the result recorded. The distribution

of the results can indicate what the distribution of the statistic is under the null hypothesis, and hence

the signi�cance of the statistic when computed on the actual data. Clasp's bootstrapping code can

work with any statistical function, including one de�ned by the user. A d test, described above, could

have been speci�ed as follows:

(compute-bootstrap-special #'mean-diff sample-1 sample-2 1000

:mode :joint-with-replacement)

This would run a user-de�ned mean-diff function on each of 1000 pairs of samples, where :joint-

with-replacement means that the elements of each sample are drawn randomly from the union of

sample1 and sample2.6 The mean-diff function computes the di�erence in the means of two samples.

The distribution of these 1000 values indicates how signi�cant the true di�erence of the means is, just

as in the t test.

Dependency Detection The complexity of AI programs has grown to a point where their behavior is

di�cult to predict and problems di�cult to replicate. Program actions often interact in unforeseen and

deleterious ways. We employ a technique we call dependency detection, analyzing program execution

traces with a statistical �lter to �nd signi�cant dependencies among interacting actions [9]. Once

identi�ed, these dependencies can be examinedmore carefully to �nd and �x the unforeseen interactions

that often cause them. We have successfully employed dependency detection to identify and debug

such interactions in the Phoenix planner, using execution traces that consist of a single stream of

tokens representing each action taken by the planner (including plan repair actions) and each recorded

instance of plan failure.

This single-stream form of dependency detection has recently been enhanced by the incorporation of

e�cient heuristic techniques to guide the search for dependencies [10]. In addition, we have developed

an algorithm for multi-stream dependency detection, which identi�es signi�cant dependencies in multi-

ple concurrent streams (for example, the various sensor readings taken for an intensive care patient).

Using this algorithm, we generated a set of predictive rules for port bottlenecks in TransSim that

were better than the hand-crafted rules previously used [11].

Causal Induction Other techniques, in addition to dependency detection, can be employed to model pro-

gram behavior. A predictivemodel should tell us how we can change the program to improve or correct

its behavior. This requires that we understand the underlying causal relationships among the factors

inuencing its behavior. We are developing a module that builds causal models from data [12]. The

input to this module is a set of factors whose relationships are to be modeled. The output is a graph

with factors at the nodes and with arcs that show both causal direction and strength of inuence.

Some of the causal induction techniques are based on path analysis [13, 14]. In addition, this module

will provide several new algorithms that induce structural equation models from data [15]. These

algorithms, which are based on linear regression, compare quite favorably with two other well-known

causal modeling algorithms that are based on conditional independence: the IC algorithm by Pearl

and Verma [16] and the PC algorithm by Spirtes, et al. [17], often outperforming them. This is

most remarkable given the relative simplicity and computational e�ciency of these algorithms when

compared to IC and PC. The key is our reliance on regression techniques [18] and on a simple �ltering

heuristic we call !. (Roughly, ! is the percentage of the correlation that is indirect.)

Case studies using these and other empirical techniques to analyze AI programs are included in a forth-

coming textbook on empirical methods for AI research [19]. It is possible that the major contribution of

Clip/Clasp will not be as a standalone instrumentation and analysis package, but rather as a platform for

the integration of more powerful techniques such as those described above. We envision a new generation

5Various resampling schemes are possible, such as whether the elements are drawn with replacement and whether bivariate

data can be exchanged between groups.
6Actually, the concatenation of the two samples, in case there are duplicates.

13

of statistical software in which knowledge and heuristics will guide application of the data analysis and

modeling techniques described above.

With this vision in mind we are currently developing the Assistant for IntelligentData Exploration (Aide)

to assist human analysts in exploratory data analysis (EDA) [5]. Aide adopts a planning approach to au-

tomating EDA. Data-directed mechanisms extract simple observations and suggestive indications from the

data. Scripted combinations of EDA operations are then applied in a goal-directed fashion to generate sim-

pler, deeper, or extended descriptions of the data. The system is mixed-initiative, capable of autonomously

pursuing high- and low-level goals while still allowing the user to guide or override its decisions. It is also

modular and has already incorporated several of the causal-modeling algorithms described above to drive

goal-directed processing.

Another intriguing problem that is a candidate for partial or full automation is experiment design. We

are currently designing a Scientist's Empirical Assistant, Sea, that will provide an intelligent, goal-driven

approach to creating scienti�c experiments [20]. Sea will use a large repository of knowledge to create one

or more experiment plans. Clip will provide the basic building blocks by which experiments are run. We

are developing a representation based on function modeling to model the knowledge and information ow

required to design empirical experiments such as those we use to analyze AI programs.

7 Related Work

We know of no other Common Lisp instrumentation tool like Clip, with the exception of a package called

Meters by Bolt, Beranek and Newman, Inc. [21]. LikeClip,Meters was developed for use in theArpa/rl

Planning Initiative (Arpi). Unlike Clip which primarily (though not exclusively) focuses on instrumenting

a single AI program, Meters is designed to measure the performance of various AI programs running

in a distributed network called the Common Prototyping Environment, or Cpe. AI components such as

planners, case-based reasoners and schedulers, often running on di�erent machines, work together in the

Cpe on di�erent aspects of a common problem. This environment allowsArpi developers to mix and match

di�erent components (for example, swapping one planner for another) to test their relative performance

within the larger system. Meters provides a number of helpful facilities for pro�ling components in such

a distributed system, such as the time spent inside individual modules or the communication overhead for

each module and among subsets of modules.

Two well-developed Common Lisp statistical packages provide alternatives for the user requiring statis-

tical or quantitative reasoning methods not (yet) implemented in Clasp: Xlisp-stat and Quail.

Xlisp-stat [22, 23] was developed under Luke Tierney at the School of Statistics at the University of

Minnesota. Xlisp-stat provides a rich set of statistical and dynamic graphing capabilities. Some features

found in Xlisp-stat and not in Clasp include: nonlinear regression, maximization and minimum likelihood

estimation, and approximate Bayesian computation. Written in a subset of Common Lisp (though not

including Clos), Xlisp-stat provides many extensions to that subset to support further development of

statistical methods. Originally developed for the Apple Macintosh,TM Xlisp-stat now runs on a variety of

platforms (including Macintoshes, PCs and selected Unix workstations), using native interface-management

tools for each platform. A set of tools is provided for interface customization, including menu-, plot- and

dialog-construction methods. Xlisp-stat is available free of charge.

Quail7 (Quantitative Analysis In Lisp) is a quantitative programming environment in Common Lisp

developed under R. W. Oldford at the Statistics Computing Laboratory, University of Waterloo. Quail is a

sophisticated mathematical and statistics package providing a number of useful features including: extended

arithmetic functions, a variety of array manipulation facilities, many specialized mathematical functions,

probability calculations for an assortment of distributions, and statistical response models. Quail is Clos-

based and provides extensions to Common Lisp to support quantitative analysis. One distinctive feature of

Quail is an easily-con�gurable user interface. Quail runs on Unix workstations and the Macintosh. Users

must pay a minimal license fee.

Clasp has two important features that set it apart. The �rst is that its interface is easy for novices

to use, especially students. The Unix version uses the same object-oriented, menu-based CLIM interface

across all platforms and Lisp implementations: the Macintosh version of Clasp, while including most of

7Information about Quail may be obtained at http://setosa.uwaterloo.ca/~ftp/Quail/Quail.html.

14

the features of its Unix counterpart, has been customized for teaching a graduate-level course in empirical

research methods. A second feature is that Clasp is designed speci�cally for the analysis of AI programs,

providing support for the add-on experiment modules described above as well as an open architecture that

is fully Common Lisp compatible, making it a substrate for portable extensions.

8 Current Status

Clasp has been ported to a variety of platforms, from its beginnings on the Texas Instruments ExplorerTM

Lisp machines to the latest native Macintosh interface and every other major Common Lisp implementation.

Development of Clip/Clasp continues, and is largely driven by user demand. We will continue to add useful

statistical tests and data manipulation functions.

Clasp for UnixTM platforms uses CLIM 2.0 and is available by anonymous FTP from ftp.cs.umass.edu

/pub/eksl/clasp. Clip for all platforms is similarly available in pub/eksl/clip. A demonstration version

of Clasp for the Macintosh can be found in pub/eksl/clasp. All versions include a manual and current

release notes. The Macintosh version includes a brief tutorial. A tutorial featuring the Unix version can be

found in pub/eksl/clasp-tutorial.

Comments, bugs and requests for more information can be sent to clasp-support@cs.umass.edu. Addi-

tional information on Clasp and Clip is available on the WorldWide Web at http://eksl-www.cs.umass.

edu/clasp.html.

9 Conclusion

The purpose of this article is to demonstrate how Clip and Clasp can help in doing statistical studies

of the behavior of complex programs, such as Arti�cial Intelligence programs, using an example grounded

in transportation planning. Clip works directly with a user's simulator, helping the experimenter de�ne

the dependent measures, control the independent variables and run the experiment. Clasp is a statistics

package and as such competes with many good statistics packages on the market. Its main advantage is that

it is implemented in Common Lisp and CLIM, so that it can easily be combined with your simulator and

with Clip, allowing for a completely integrated experimental environment. It also allows the data �le to be

annotated with the names of variables, which can make data analysis more convenient. Finally, the article

describes our more recent work on data analysis and experiment design built on top of the Clip and Clasp

ideas. We believe that such support for empirical science will be of signi�cant bene�t to the AI community.

Acknowledgements

This research is supported by ARPA/Rome Laboratory under contracts #F30602-91-C-0076 and #F30602-

93-C-0100. The US Government is authorized to reproduce and distribute reprints for governmental purposes

notwithstanding any copyright notation hereon. We thank Tim Oates for the use of his code and data, and

Rob St. Amant for help in preparing this paper.

David Fisher wrote the �rst implementation of Clasp on the TI Explorer, using database software by

Paul Silvey. Adam Carlson helped design and develop Clasp's �rst CLIM interface and did a great deal

of work on the internal representations. Matthew D. Schmill, with help from Matt Cornell, developed the

Clasp interface for the Macintosh. Matt Schmill also implemented the bootstrapping code. We thank them

for their creativity and industry.

References

[1] Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E. Howe. Trial by �re: Understanding

the design requirements for agents in complex environments. AI Magazine, 10(3):32{48, Fall 1989.

[2] Scott D. Anderson, Adam Carlson, David L. Westbrook, David M. Hart, and Paul R. Cohen.

Clasp/Clip: Common Lisp Analytical Statistics Package/Common Lisp Instrumentation Package.

Technical Report 93-55, University of Massachusetts at Amherst, Computer Science Department, 1993.

15

[3] Tim Oates and Paul R. Cohen. Mixed-initiative schedule maintenance: A �rst step toward plan steering.

In Mark H. Burstein, editor, ARPA/Rome Laboratory Knowledge-based Planning and Scheduling Initia-

tive Workshop Proceedings. Advanced Research Projects Agency and Rome Laboratory, February 1994.

Also available as Technical Report 94-31, University of Massachusetts Computer Science Department.

[4] Tim Oates and Paul R. Cohen. Toward a plan steering agent: Experiments with schedule maintenance.

In Proceedings of the Second International Conference on Arti�cial Intelligence Planning Systems, 1994.

Also available as Technical Report 94-02, University of Massachusetts Computer Science Department.

[5] Robert St. Amant and Paul R. Cohen. Preliminary system design for an EDA assistant. In Preliminary

Papers of the Fifth International Workshop on AI and Statistics, pages 502{512, 1995.

[6] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[7] Bradley Efron and Gail Gong. A leisurely look at the bootstrap, the jackknife, and cross-validation.

The American Statistician, 37(1):36{48, February 1983.

[8] Bradley Efron and Robert Tibshirani. Statistical data analysis in the computer age. Science, 253:390{

395, July 1991.

[9] Adele E. Howe and Paul R. Cohen. Understanding planner behavior. Arti�cial Intelligence. To appear.

[10] Adele E. Howe. Finding dependencies in event streams using local search. In Preliminary Papers of the

Fifth International Workshop on AI and Statistics, pages 271{277, 1995.

[11] Tim Oates, Dawn E. Gregory, and Paul R. Cohen. Detecting complex dependencies in categorical data.

In Preliminary Papers of the Fifth International Workshop on AI and Statistics, pages 417{423, 1995.

[12] Paul R. Cohen, Adam Carlson, L. A. Ballesteros, and Robert St. Amant. Automating path analysis for

building causal models from data. In Proceedings of the Tenth International Conference on Machine

Learning, pages 57{64. Morgan Kaufmann, 1993.

[13] H. B. Asher. Causal Modeling. Sage Publications, 1983.

[14] C. C. Li. Path Analysis | A Primer. Boxwood Press, 1975.

[15] Paul R. Cohen, Dawn E. Gregory, L. A. Ballesteros, and Robert St. Amant. Two algorithms for inducing

structural equation models from data. In Preliminary Papers of the Fifth International Workshop on

AI and Statistics, pages 129{139, 1995.

[16] J. Pearl and T. Verma. A statistical semantics for causation. Statistics and Computing, 2:91{95, 1991.

[17] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. Springer-Verlag, 1993.

[18] L. A. Ballesteros. Regression-based causal induction with latent variable models. In Proceedings of the

Twelfth National Conference on Arti�cial Intelligence, page 1426. American Association for Arti�cial

Intelligence, AAAI Press/The MIT Press, 1994. Student Abstract.

[19] Paul R. Cohen. Empirical Methods in Arti�cial Intelligence. MIT Press, 1995.

[20] Dawn E. Gregory and Paul R. Cohen. A function modeling approach to empirical science. To be

presented at the 10th International Conference on Mathematical and Computer Modelling.

[21] Bolt Beranek and Newman, Inc. and ISX Corporation. Common prototyping environment testbed

release 1.0: User's guide. BBN Systems and Technologies, 10 Moulton Street, Cambridge, MA 02138,

1993.

[22] Luke Tierney. XlispStat. School of Statistics Report #528, University of Minnesota, 1988.

[23] Luke Tierney. LISP-STAT: An Object-Oriented Environment for Statistical Computing and Dynamic

Graphics. John Wiley & Sons, 1990.

16

