
Finding Structure in Streams

Paul R. Cohen and Tim Oates

Experimental Knowledge Systems Laboratory

Department of Computer Science, LGRC

University of Massachusetts

Box 34610

Amherst MA 01003-4610

cohen@cs.umass.edu, oates@cs.umass.edu

Abstract

Finding structure in streams (series of categorical data) is an important task. Consider a patient

in an intensive care unit, where monitors record di�erent aspects of the patient's condition. There

is clearly utility in determining how current values of those monitors are indicative and predictive

of various features of the patient's health. We present four algorithms for �nding di�erent types

of structure in one or more streams. The �rst algorithm �nds predictive relationships among

the tokens in a single stream. The next two algorithms �nd predictive relationships between the

values in multiple streams over a �xed time interval; one is a batch algorithm and the other is

incremental. Finally, we present a representation for ongoing processes in streams, called uents,

and an algorithm for �nding uents and associations among them in multiple streams.

Keywords

dependency detection, time series, uents

Introduction

Streams are series of categorical data; for example, the letters in this sentence constitute a stream,

beginning \ S t r e a m s a r e . . .". Elements in streams, called tokens, can be com-

plex objects provided they are treated as atomic, that is, they are not decomposed when streams

are analyzed. Thus, letters, morphemes and words are three kinds of tokens in a paragraph stream.

Some data, such as text, is naturally represented as a single stream, but we often have several syn-

chronized streams. Suppose a baby is lying in its crib, occasionally waving a rattle, which produces

an alternating high-low tone:

Wave W W W W W O O O O O O O W W W W W W W W 0 0 ...

Tone H H L L H H X X X X X X X H L H H H L H H L ...

Gaze R R R C C C C C C R R R R R R R R R C C C C ...

1



Each column or multitoken represents the state of three streams at a particular time; for example,

< WHR > is the �rst multitoken. These streams contain a lot of structure. First, the rattle makes

a noise (High or Low tone) when it is waved (W), and the sound stops (X) almost simultaneously

with the cessation of waving (O). Second, Baby's gaze is directed to the rattle (R) when it starts

making a noise, but is diverted to the crib (C) after a while. Third, orienting the gaze to the rattle

precedes waving it. Fourth, the sound of a rattle is alternating H and L tones, not of identical

duration, but not longer than three time steps or shorter than two. Finally, once the baby starts

waving, it will wave for several time steps.

In the remainder of this paper we describe four algorithms for �nding structure in streams of data.

The �rst �nds structure in a single stream of data, and was successfully applied to facilitating

debugging of a planning system by analyzing program execution traces. The second, called MSDD,

attacks a more general problem than the �rst algorithm by �nding structure in batches of data

composed of multiple streams. The third algorithm, called IMSDD, was designed to perform the

same task as MSDD but in an incremental manner, without requiring access to a complete data

set prior to beginning the search for structure. Finally, we discuss a representation for ongoing

processes, called uents, and describe an algorithm for �nding uents and associations among

them in multiple streams of data.

Finding Structure in a Single Stream

The �rst algorithm was developed by Adele Howe and Paul Cohen for �nding dependencies in a

single stream (Howe and Cohen, 1995). Consider the Wave stream, above. It contains two tokens,

W and O, which apparently are not distributed uniformly. A simple G test on a contingency table

tells us that W follows itself more often than we'd expect by chance under the uniform distribution

hypothesis. The contingency table is shown in Figure 1.

W W Totals

W 11 2 13

W 1 7 8

Totals 12 9 21

Figure 1: Example contingency table from the Wave stream shown above.

The Wave stream contains 11 cases of W following itself (i.e, W is both predecessor and successor),

2 cases of W followed by something other than W (denoted W ), one case of W followed by W

and seven cases of W followed by W . The G statistic for this table is 11.49, p = .0012. In

short, occurrences of W are not independent of immediately prior occurrences. It would be easy

to introduce a lag into the analysis to �nd dependencies between one token and another after,

say, �ve time steps, and Howe has designed an adaptive algorithm to �nd the most predictive lag

for dependencies (Howe, 1995). Note also that the average length of a \run" of W's is just the

�rst row margin (13) divided by the cell 2 count, that is, 13/2 = 7.5. Although this technique is

very simple, Howe used it to �nd dependencies between di�erent events in the execution traces of

complex computer programs, facilitating debugging (Howe and Cohen, 1995).

2



Finding Structure in Multiple Streams

We can also �nd dependencies between multitokens rather than just between token values in a single

stream. For instance, the multitoken < � � R > precedes < W � � > more often than expected

by chance under the hypothesis that multitokens are independent of their predecessors. Note the

wildcards in the multitokens. The rule < � �R >)< W � � > says, \when baby gazes at the rattle

at time t, expect waving at time t+1." A more speci�c rule might include the state of the Tone

stream; for example < �HR >)< W � � > says gazing at the rattle when its tone is high predicts

waving. We have implemented two algorithms to �nd generalization hierarchies of such rules. The

multi-stream dependency detection (MSDD) algorithm (Oates et al., 1995) starts with the most

general possible rule (for the current example, < � � � >)< � � � >) and specializes it. The space

of specializations is exponential, so MSDD uses a best-�rst search heuristic based on contingency

tables for multitoken dependencies. For example, the rule < � �R >)< W � � > and the streams

above result in a contingency table (shown below in Figure 2) in which < � � R > is followed by

< W � � > ten times, and by < W � � > twice; whereas < � �R > is followed by < W � � > twice

and by < W � � > seven times. This table is signi�cant (G = 5.8, p=.017), but its specialization, for

the rule < �HR >)< W � � >, is not. Hence, MSDD doesn't explore this more speci�c rule until

it has explored other, higher scoring rules. We have tested MSDD on arti�cially generated data

sets and on standard classi�cation problems from the UC Irvine collection. Note that classi�cation

tasks represent a subset of the problems to which MSDD can be applied. Classi�cation typically

involves �nding a set of attribute values that accurately predict a single attribute value, whereas

MSDD can �nd multiple attribute values that in turn accurately predict multiple attribute values.

MSDD is surprisingly e�cient and very accurate in comparison with other algorithms (Oates et

al., 1995).

< W � � > < W � � > Totals

< � �R > 10 2 12

< � �R > 2 7 9

Totals 12 9 21

Figure 2: Contingency table built from multitokens.

Incremental Multi-Stream Dependency Detection

MSDD is a batch algorithm, which means it needs to see all the streams before it starts work. That

may not be possible or desirable in cases where learning about structure must be interleaved with

acting on what has already been learned, or when structure in the environment changes over time.

To overcome these problems, Matthew Schmill and Paul Cohen developed an incremental version

of the MSDD algorithm, called IMSDD, that forms generalizations of multitoken prediction rules

in a data driven manner.

IMSDD deals with precursor/successor pairs of multitokens, called words. As each new word

appears, IMSDD parses the precursor portion through a data structure called a precursor tree by

following the link at depth i that is labeled with the ith token value in the precursor. Figure

3



<a b a c>

Successor Counts

1

2

(a 12)   (b 2)

(a 3)   (b 4)   (c 3)   (d 4)

a

b

Figure 3: An example IMSDD precursor tree.

3 shows how < AB >, the precursor portion of < ABAC >, is parsed. Each leaf in the tree

contains a successor table that indicates the frequency with which token values in particular streams

follow the precursor that parsed to the leaf. Precursors can be generalized by looking for paths

in the tree that di�er in exactly one position and creating a new path with a wildcard in that

position. For example, the precursors < AB > and < BB > would generalize to form the precursor

< �B >. The successor tables of the more speci�c precursors are summed to initialize the successor

table of the generalization. Given a precursor multitoken, a successor multitoken is predicted by

heuristically selecting from among all successor tables reachable by parsing the precursor through

the precursor tree (including paths with wildcards). To limit the size of the precursor tree, we

employ a pruning method that dynamically excises old rules that have not proven to be accurate.

Preliminary experiments with arti�cial data sets are encouraging (Schmill and Cohen, 1995).

Representing, Finding and Associating Ongoing Processes

Multitokens are a poor representation of ongoing processes; they are snapshots of the state of

streams. In most real world environments, states persist for some amount of time before changing.

In such situations, we are typically more interested in what the next state will be when the current

one ends than what the state at time time t + � will be given the state at time t. We have

developed a representation for persistent states, called uents, and an algorithm for �nding uents

and dependencies among them.

The simplest kind of uent is called a base uent, and it represents a persistent token in one stream.

For example, the fact that waving tends to continue once it has started is denoted W+. We showed

earlier how the G statistic captures the propensity of waving to follow waving, that is, to continue

over time. The �rst step in uent learning, then, is to discover base uents by building contingency

tables for individual token values in individual streams. When a token, say W , predicts itself

signi�cantly more often than one would expect by chance, we turn it into the base uent W+.

Next in order of complexity are uents we call basic dependencies. These have to do with temporal

relationships between the beginnings and ends of uents. For example, the Open(Waving,Noise)

dependency is learned when the Waving uent starts at or slightly before the time that the Noise

uent (a high tone followed by a low tone) starts. This happens, for example, when the baby

is waving its rattle. Next come composite uents. We currently form two kinds of composites:

conjunctions and sequences. Composite uents are formed by rules called uent generators, of

which we currently have two { one for conjuncts and one for sequences. The �rst says that if two

uents start together and end together, then they are the same thing, and conjoined. The second

4



says that when an occurrence of one uent predicts the occurrence of another, they are conjoined

in a sequence. For example, the uent shown below says that we expect the high tone (H+) and

the low tone (L+) to follow each other in a sequence, and that they will occur in conjunction with

waving (W+).

(AND (SEQ H+ L+)

W+)

As with base uents, we use the G statistic to determine if observed co-occurrences of uents

represent true structure or are due to random chance. We have tested uent learning in a simulated

world in which a baby interacts with objects in its environment (Cohen et al., 1995). One of the

goals of that project is to develop general algorithms that will allow an embedded agent to learn

about the structure of its environment.

Conclusion

Single-stream dependency detection has helped us discover bugs in complex programs by examining

their execution traces. Multi-stream dependency detection �nds structure in arti�cially-generated

streams, and performs very well on a related classi�cation task with the Irvine Machine Learning

datasets. IMSDD was developed to perform the same task as MSDD in an incremental manner.

Fluent learning, in which we �nd evidence of ongoing processes and dependencies between them,

has been tested in a complex arti�cial environment; we hope to test it with intensive care unit data

(i.e., streams of readings from instruments over time) in the near future.

References

Cohen, P.R., Atkin, M., Oates, T. and D. Gregory. (1995)A representation and learningmechanisms

for mental states. In Working Notes of the AAAI Spring Symposium on Representing Mental States

and Mechanisms. pp. 15 { 21.

Howe, A.E. (1995) Finding Dependencies in Event Streams Using Local Search. In Preliminary

Papers of the Fifth International Workshop on AI and Statistics. pp. 271 { 277.

Howe, A.E. and P.R. Cohen. (1995) Understanding Planner Behavior. To appear in AI Journal.

Oates, T., Gregory, D. and P.R. Cohen. (1995) Detecting Complex Dependencies in Categorical

Data. In Preliminary Papers of the Fifth International Workshop on AI and Statistics. pp. 417 {

423.

Schmill, Matthew D. and P.R. Cohen. (1995) Learning Predictive Generalizations for Multiple

Streams: An Incremental Algorithm. Department of Computer Science Technical Report 95-36,

University of Massachusetts, Amherst.

5


