
Proceedings of the 2004 Winter Simulation Conference

R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

THE HATS SIMULATOR

Paul R. Cohen
Clayton T. Morrison

Center for Research on Unexpected Events (CRUE)
USC Information Sciences Institute
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292-6601, U.S.A.

ABSTRACT

The Hats Simulator is designed to be a lightweight proxy
for many intelligence analysis problems, and thus a test
environment for analysts’ tools. It is a virtual world in
which many agents engage in individual and collective
activities. Most agents are benign, some intend harm.
Agent activities are planned by a generative planner.
Playing against the simulator, the job of the analyst
is to find harmful agents before they carry out their
plans. The simulator maintains information about all
agents. However, information is hidden from the analyst
and some is expensive. After each game, the analyst is
assessed a set of scores including the cost of acquiring
information about agents, the cost of falsely accusing
benign agents, and the cost of failing to detect harmful
agents. The simulator is implemented and currently
manages the activities of up to one hundred thousand
agents.

1 INTRODUCTION

The Hats Simulator was designed originally to meet the
needs of academic researchers who want to contribute
technology to Homeland Security efforts but lack access
to domain experts and classified problems. Most aca-
demic researchers do not have security clearances and
cannot work on real data, yet they want to develop
tools to help analysts. In any case, real data sets are
expensive: They cost a lot to develop from scratch or
by “sanitizing” classified data. They also are domain-
specific, yet much of the domain expertise is classified.
Because data sets are expensive, many that have been
made available to researchers are relatively small and
the patterns to be detected within them are fixed, few,
and known, so working with these data sets is a bit like
solving a single “Where’s Waldo” puzzle. Sometimes

there also is the problem that real data sets model “sig-
nal” (terrorist activities) not “noise” (everything else)
yet extracting signal from noise is a great challenge.
Data sets in general are static, whereas data become
available to analysts over time. It would be helpful
to have a data feed, something that generates data as
events happen. To validate analysts tools, it would be
helpful to have a generator of terrorist and non-terrorist
activities. The generator should be parameterized for
experimental purposes (e.g., varying the distinctiveness
of terrorist activities, to make them more or less easily
recognizable as such); and it should come up with novel
activities, requiring analysts and their tools to both
recognize known patterns and reason about suspicious
patterns.

Hats is home to thousands of agents (hats) which
travel to meetings. Some hats are covert terrorists and
a very few hats are known terrorists. All hats are
governed by plans generated by a planner. Terrorist
plans end in the destruction of landmarks. The object
of a game against the Hats simulator is to find terrorist
task forces before they carry out their plans. One pays
for information about hats, and also for false arrests and
destroyed landmarks. At the end of a game, one is given
a score, which is the sum of these costs. The goal is to
play Hats rationally, that is, to catch terrorist groups
with the least combined cost of information, false arrests,
and destroyed landmarks. Thus Hats serves as a testbed
not only for analysts’ tools but also for new theories of
rational intelligence analysis. Hats encourages players
to ask only for the information they need, and to not
accuse hats or issue alerts without justification.

The Hats simulator is very lightweight: Agents have
few attributes and engage in few elementary behaviors;
however, the number of agents is enormous, and plans
can involve simultaneously many agents and a great
many instances of behaviors. The emphasis in Hats is

Cohen and Morrison

not domain knowledge but managing enormous numbers
of hypotheses based on scant, often inaccurate informa-
tion. By simplifying agents and their elementary behav-
iors, we de-emphasize the domain knowledge required
to identify terrorist threats and emphasize covertness,
complex group behaviors over time, and the frighten-
ingly low signal to noise ratio.

The Hats Simulator consists of the core simulator
and an information broker. The information broker is
responsible for handling requests for information about
the state of the simulator and thus forms the interface
between the simulator and the analyst and her tools (see
Figure 1). Some information has a cost, and the quality
of information returned is a function of the “algorithmic
dollars” spent. Analysts may also take actions: they
may raise beacon alerts in an attempt to anticipate a
beacon attack, and they may arrest agents believed to be
planning an attack. Together, information requests and
actions form the basis of scoring analyst performance in
identifying terrorist threats. Scoring is assessed auto-
matically and serves as the basis for analytic comparison
between different analysts and tools. The simulator is
implemented, manages the activities of up to ten thou-
sand agents, and is a resource to a growing community
of researchers.

Figure 1: Information Broker Interface to Hats Simula-
tor

The following sections outline the Hats domain,
including how we generate populations of hats and how
the planner schedules meetings for hats to attend. We
describe the information request framework, the actions
the analyst may take, and scoring. We conclude with a
discussion of the future of the Hats Simulator.

2 THE HATS DOMAIN

The Hats Simulator is a virtual world in which agents
move around, go to meetings, acquire capabilities, do
business, and, for a small subpopulation of agents, do
harm. Agents move on a two-dimensional board which
has only two kinds of locations: Beacons are high-value
places that terrorist agents would like to destroy, other
locations have low value. All beacons have a set of
attributes, or vulnerabilities, corresponding to the ca-
pabilities that agents carry. To destroy a beacon, a
task force of agents must be in possession of a set of

capabilities that match the beacon’s vulnerabilities, as
a key matches a lock. In general, these sets of capabili-
ties are not unique to terrorists, so one cannot identify
a terrorist task force from its constituent capabilities,
alone.

Henceforth, agents are called hats and identified as
benign and terrorist; overt and covert are subcategories
of terrorist hats. (The “hats” name is an allusion to
the classic spaghetti western, in which the villain and
hero are identifiable by the color of their hat.) In
general, benign hats outnumber terrorists by orders of
magnitude.

Some agents are known, a priori, to intend harm –
they are “known terrorists” – others are covert. This is
modeled easily by assigning each agent a true and an
advertised hat class:

True Hat Class Adv. Hat Class

Benign Benign Unknown
Known Terrorist Terrorist Terrorist
Covert Terrorist Terrorist Unknown

The Hats Simulator knows the true class of each hat, and
it plans agents’ activities accordingly, but analysts must
infer hat class from how agents behave. While agents
that advertise terrorist hats are “known terrorists,” a
very small fraction of agents that advertise an unknown
class are also terrorists. They are the ones to worry
about.

2.1 Organizations and Population Generation

Hats populations consist of known terrorist hats, covert
terrorist hats andbenignhats. All hats aremembers of at
least one organization; some belong to many. There are
two types of organizations. Terrorist organizations are
made up of only known and covert terrorists. Benign
organizations, however, may contain any kind of hat
– that is, while known and covert terrorists must be
members of at least one terrorist organization, they
may also be members of benign organizations.

Hats populations may be built by hand or gener-
ated by the Hats Simulator. Because the constitution of
a population affects the difficulty of identifying covert
terrorists, population generation is parameterized. The
organization-overlap parameter, a real number be-
tween 0 and 1, determines the percentage of hats in
each organization that are members of other organiza-
tions. For example, if organization-overlap is 0.4,
then 40% of the members of each organization are also
members of other organizations, but the remaining 60%
are only members of their native organization. The
number of organizations an overlapping hat may belong
to is determined by an exponential random number

Cohen and Morrison

(thus, overlapping 3 organizations is rare, 4 is very rare,
5 is extremely rare, etc., ...). The population genera-
tor manages overlap so that the organization-overlap
percentage is as close as possible to its parametric value.

The total numbers of known terrorist, covert terror-
ist and benign hats in the population are determined by
the num-terrorists, num-coverts and num-benigns

parameters, respectively. Known and covert terrorists
must be members of at least one terrorist organiza-
tion and may also be members of benign organiza-
tions. Benign hats, on the other hand, may only be
members of benign organizations. Not all organiza-
tions have the same number of members. The vari-
able covert-org-members-ratio represents the ratio
of covert terrorist hats assigned to each terrorist organi-
zation and benign-org-members-ratio represents the
ratio of benign hats to each benign organization.

Assignments of hats to organizations (respecting the
parameters for organization-overlap, organization mem-
bers ratios, and the numbers of hat types) takes place
before any actual hats are created. Once assignments
have been determined, the hats themselves are gener-
ated and given their organization assignments. At this
time, each hat is also assigned a native capability, which
the hat will carry throughout the simulation, and a set
of “traded” capabilities which are temporary, expiring
after some number of ticks (e.g., within 40 ticks). Hats
are also assigned random locations in the Hats world
game board.

2.2 Meeting Generation

Hats act individually and collectively, but always plan-
fully. In fact, the actions of hats are planned by a genera-
tive planner. Benign hats congregate for commerce and
pleasure at locations including beacons. Terrorist hats
meet, acquire capabilities, form task forces, and attack
beacons. Several hats might plan to visit a beacon, and
might collectively have the capabilities to destroy the
beacon, yet are benign. Or, one covert terrorist might
plan to visit three known terrorists in succession, ac-
quiring from each a capability that threatens a beacon;
and yet might remain dormant, approaching no beacon,
for a time.

Each organization has a generative meeting planner
associated with it that plans tasks for its members. A
task is a set of meetings planned to deliver a set of
capabilities to some goal location in the Hats World.
Hats that participate in a task are reserved. Hats not
part of a task are free. At each tick each organization
has a chance of beginning a new task according to the
probability specified by the p-start-new-task param-
eter. When a new task is started, the Hats meeting
planner selects a subset of hats from the free hats of

the organization. This subset of hats is called a task-

force. The size of the taskforce is determined by the
num-in-meetingsparameter. The meeting planner also
selects a coordinate in the Hats World game board as the
target location of the task. With probability specified
by the p-beacon-meeting parameter, the planner will
select a beacon location as the task target. Otherwise a
random Hats World coordinate is selected. If a beacon
is the task target, then the set of vulnerabilities of the
beacon determines the set of capabilities the taskforce
must bring to the target. If the target is not a beacon,
then a random set of capabilities is selected – the size
of the set of random capabilities is determined by the
num-requirements parameter. The set of capabilities
the taskforce must bring to the task target is referred
to as the taskforce’s required capabilities. The taskforce
members may or may not already possess the required
capabilities.

In fact, if the taskforce members generally do not
have all these capabilities, then the meeting planner can
construct an elaborate “shell game” in which capabilities
are passed among hats at a long sequence of meetings,
culminating in the fatal meeting at the target. By
moving capabilities among hats, the planner can mask
its intentions. It certainly is not the case that, say, half a
dozen hats with required and known capabilities march
purposefully up to a beacon. Instead, the hats with the
required capabilities pass them on to other hats, and
eventually a capable task force appears at the beacon.

Figure 2: Example Meeting Tree

Once the taskforce, target location, and required ca-
pabilities have been chosen, the meeting planner creates
a set of meetings designed to ensure that the taskforce
acquires all of the required capabilities before going to
the target location. The meeting planner accomplishes
this by constructing a meeting tree. Figure 2 shows an
example meeting tree, where the contents of each box
represent the hats participating in a meeting. The tree
is “inverted” in the sense that the root is the last meet-
ing, with branches from the root representing parent
meetings that take place prior to the target meeting

Cohen and Morrison

– Figure 2 depicts the temporal ordering of meetings
by directed arrows. At this point, the meeting planner
incrementally fills-out the meeting tree, starting with
the final meeting. The final, root meeting takes place at
the target location and involves all of the taskforce hats.
The parent meetings of the final meeting each have one
taskforce member. The locations of all other meetings
added to the meeting tree are selected randomly.

The meeting planner selects a second set of hats
(from the organization’s free hats) that carry required
capabilities that the taskforce does not currently carry;
these hats are called resource hats. Each of the resource
hats are randomly assigned to taskforce members. Meet-
ings between resource hats and taskforce members are
called resource meetings. Resource meetings are added
to the meeting tree as follows. The planner traverses
a branch of the meeting tree which a taskforce mem-
ber originates from (initially, these are just the direct
parents of the final, root meeting). With probability
p-required-resource-meeting-origin, the meeting
planner adds a new meeting as a parent of the cur-
rent meeting, which initially contains only the task-
force member. The planner traverses to that meet-
ing and checks the probability again. With proba-
bility 1−p-required-resource-meeting-origin, the
currentmeeting becomes a resourcemeeting between the
resource hat and the taskforce member. In a resource
meeting, capability trades are planned to transfer the
required capabilities to the taskforce members. This
process is repeated until all of the resource hats have
been assigned to taskforce members.

At this point, the meeting tree has all of the neces-
sary meetings with trades to ensure that the taskforce
will arrive at the task target with all of the required
capabilities. The meeting planner then fills out the
tree with additional meetings, participants, and ca-
pability trades. The additional meetings and trades
are referred to as “decoys” because they are not di-
rectly involved in the task completion. The param-
eter p-produce-decoy-meeting is used to determine
whether a decoy meeting should be added to a leaf
meeting of the current meeting tree.

Once a meeting tree has been completely filled-
out, it is added to a queue of current tasks and it will
start to be executed at the next step of the simulation.
During execution, the current leaves of each meeting tree
are added to the currently-executing-meetings list
and the Hats engine starts moving currently executing
meeting participants toward their meeting locations.
Once all of the meeting participants have arrived at a
meeting location, the meeting lasts for two ticks, after
which all hats not participating in more meetings are set
“free” (and thus available to participate in new planned

tasks). All other hats still reserved for meetings then
begin moving to their next meeting.

The meeting trees created by this meeting planner
typically have a depth ranging from2 to 5. The frequency
of tasks planned depends on both p-start-new-task

and the number of hats in each organization (which
comprise the resources available to the planner).

The Hats Simulator is designed to accommodate
any meeting planner that adheres to a planner API.
We are developing the API and anticipate using other
planners. For example, a variation on the above plan-
ner would plan tasks that relate meetings as directed
acyclic graphs (DAGs) as opposed to trees. This allows
taskforce members to meet with one another repeatedly
before the final meeting. We are also exploring other
meeting topologies in conjunction with researchers in
social network theory.

3 THE INFORMATION BROKER

Think of the Hats Simulator as a society in a box and
your job, as an analyst, is to protect the society against
terrorist taskforces. Specifically, you need to identify
terrorist task forces as such before they damage beacons.
To do so, you require information about the hats in
the box. Information is acquired from an Information

Broker, as shown previously in figure 1. The Information
Broker will respond to questions from you, such as,
Where isHat27 now? and itwill also provide information
by subscription to analysts’ tools (which in turn make
requests for information). For example, a tool might
issue a request like, Identify everyone Hat27 meets in

the next 100 steps, or, Tell me if Hat27 approaches a

beacon with capabilities c1, c7 or c29.
Information comes at a price. Some is free, but in-

formation about states of the simulator that change over
time is costly. The quality of the information obtained is
determined by the amount paid. The following two sec-
tions describe the two central components to the request
framework: the cost of information and noise. Together,
these components make the Hats simulator an exper-
imental environment in which to study the economics
of the value of information in the task of identifying
malevolent behavior in the Hats domain.

3.1 The Cost of Information

Three kinds of information are available from the In-
formation Broker for free: (1) information about the
population assumed to be available to the user (e.g.,
who the known terrorists are), (2) information about
the Hats simulated world (e.g., the world-map dimen-
sions, the list of beacons and their names, and the list
of all of the capabilities that exist), and (3) some event

Cohen and Morrison

bookkeeping (an event history, list of currently arrested
hats, etc.). Information types 1 and 2 are determined
when the simulation is initialized and do not change over
time; type 3 is updated at each step of the simulation.

For Information Broker requests that require pay-
ment, the amount paid (a real number) will determine a
base probability, which in turn determines the accuracy
of the requested information. In the current implemen-
tation, increased accuracy requires exponentially more
“algorithmic dollars.” The payment function, shown in
Equation 1, maps payment to probability.

probability = 1 −

1

log2(
payment

5
+ 2)

(1)

The same function is applied to every payment-based
request.

3.2 Noise Model

The development of a suitable noise model and the
schemes for how noise is applied to requested information
is, itself, an entire field of study. We list here three
approaches, in increasing order of complexity:

1. The analyst may only request a particular piece
of information once and must choose the level
of payment for (and therefore quality of) the
information at the time of request. No addi-
tional requests may be made. The analyst must
decide at the time of request the value of that
piece of information.

2. The analyst may request information multiple
times. However, in order to receive information
beyond previous request(s), the analyst must
pay more than previous requests (according to
the payment scale). Repeated requests at or
below the same level will return precisely the
same information, but paying more returns less
noisy versions of the original request.

3. The analyst may request information multi-
ple times, paying varying amounts. This ap-
proximates the existence of multiple informa-
tion sources (for example, acquiring informa-
tion from multiple witnesses of an event). Such
multiple information sources might be made
explicit, introducing the potential of modeling
sources of trust relationships.

Many other schemes are possible, but these provide some
indication of the wide variety of approaches to modeling
noise.

The current implementation of the information bro-
ker employs the first scheme. The payment the analyst

specifies determines the base probability p of whether,
and to what degree, the information requested will be
noisy: with probability p, the information requested is
returned in its entirety, otherwise the noise model is
applied.

Although the basic noise application scheme is sim-
ple, there still is a variety of types of information each of
which requires a different noise model variant. The table
in Figure 3 summarizes how different types of requested
information are made noisy. Following the noise applica-

Figure 3: Noise Model

tion scheme, analysts may only request each piece of in-
formation once. Some information, such as the capabili-
ties currently carried by a hat (ib-hat-capabilities),
is updated at each tick, so the analyst may request that
information once each tick. Other information does not
update, such as information about the members of a
meeting that took place (ib-meeting-participants)
– here the analyst is allowed only one request of this
information. The column labeled “Request Frequency”
shows the frequency with which an analyst may request
information.

The table is split into two groups based on whether
the requested information is a single element (bottom
portion of the table) or a list of elements (top portion
of the table).

3.2.1Lists

Noise is applied to lists in two stages: first, noise affects
the length of the list to be returned, and then noise
is applied to each element of the list. The two main
columns on the right-hand side of the list portion of
the table indicate how noise is applied to list-length
and to each element; in either case, noise is applied
differently depending on whether or not the request is
for information about entities that exist or events that

Cohen and Morrison

occurred – true, non-noisy information about entities
that do not exist or events that did not occur is returned
as NIL.

List length is determined by sampling a random
value from a normal distribution with a standard devi-
ation of 1.0 and a variable mean. (The sampled value
is rounded to make it a valid list length.) The “Mean
List Length” column describes how the mean for the
normal sampling distribution is set. For example, if the
analyst requests the current contents of a Hats world
location (using ib-location-contents), and there are
in fact 3 hats at that location, then the length of the
potential return information (3) determines the mean;
subsequently, the noisy length of the list of hats that
will be returned as a result of the request will be a ran-
dom number selected from a normal distribution with
mean 3, standard deviation 1. If, on the other hand, no
hats exist at that location, then the mean of the normal
distribution is 2 (as specified in Figure 3). These means
have been chosen because they resulted in reasonable
values during experimentation. If the analyst requests
information involving a list and the selected random
value rounds to 0 or lower, then the return value will
be an empty list (or NIL).

Next, assignments are made for each element slot in
the list to be returned. For each element, the noise model
again uses the base probability p to determine whether
the element slot will be noisy. If it is to be noisy, an
element of the requested information type is uniformly
randomly selected (with replacement) from the set of all

elements of that type. For example, a random hat would
be selected from all existing hats. In the case of trades, a
noisy trade consists of two randomly chosen hats and one
randomly chosen capability. With probability 1− p the
element will not be noisy. In this case, the element will
be uniformly selected, without replacement, from the list
of elements that would be returned if the information
was uncorrupted; if the request is for information that
does not exist, then that element of the list will be
empty.

3.2.2Elements

The elements portion of the table describes noise applied
to information consisting of single elements. Random
locations are selected when noise is applied to location
information. A random location is chosen by selecting
two random numbers, one for each coordinate compo-
nent (x, y). The random numbers are selected from
a standard normal distribution (mean 0, standard de-
viation 1.0). The value selected is then multiplied by
the entire range of the x or y axis of the Hats World
game board and divided by 10. This heuristic returns
reasonable distances relative to the size of the game

board dimensions. The adjusted value is then added
to the true coordinate component. If the adjusted co-
ordinates exceed the boarders of the game board, the
amount exceeded is “reflected”. For example, if a hat is
at x-coordinate 3 and the adjustment is -5, then rather
than returns an x-value of -2, the value is “reflected” to
x = 2. If, on the other hand, the Game World maximum
x size is 10 and the adjusted value is 12, then the value
is “reflected” to x = 8.

4 ACTIONS

In addition to requesting information, the analyst play-
ing the Hats game can also change a beacon’s alert
level and arrest hats. These actions affect the analyst’s
performance score (described in the next section).

4.1 Beacon Alerts

Each beacon can be set, by the analyst, to be in one of
three alert levels: off (default), low or high, indicating
no threat of an impending attack, a chance of an attack,
and a likely attack, respectively. The Hats Simulator
keeps track of beacon alert levels, including the amount
of time a beacon alert is elevated (low or high) and
whether actual attacks actually occur during elevated
alerts. These statistics include counts of “hits” and
“false positives,” where “hits” ≡ occurances of an attack
while alert is elevated (above off), and “false-positives”
≡ elevated alerts that begin and end with no beacon
attack occurring. These scores are kept for both low

and high alert levels. In general, the goal is to minimize
the time beacon alerts are elevated, and high alerts are
deemed “more costly” than low alerts. On the other
hand, if an attack does occur on a beacon, it is generally
better to have a higher alert level.

4.2 Arresting Hats

Analysts can also issue an arrestwarrant for hats in order
to prevent beacon attacks. A successful arrest results
when the arrested hat is currently a member of terrorist
taskforce. Arrests of any other hats, including hats
that are terrorists but not currently part of a terrorist
taskforce, result in arrest failure and are equivalent to
a false arrest (a false positive). This is an important
aspect of the semantics of “being a terrorist” in the Hats
model: one can be a terrorist but not be guilty of any
crime. Under this interpretation, “being a terrorist” is
a matter of having a propensity to engage in terrorist
acts. A terrorist act in the Hats domain is participating
in an attack on a beacon. Thus, terrorist hats must be
engaged in an ongoing terrorist activity to be successfully
arrested. According to this model, if a hat previously

Cohen and Morrison

committed a terrorist act but is not currently part of a
terrorist taskforce, it cannot be successfully arrested.

Successful arrests do not guarantee saving beacons.
As noted, a beacon is only attacked when some subset
of members from a taskforce carry the requisite capa-
bilities that match the target beacon’s vulnerabilities
engage in a final meeting on said beacon. Thus, it is
possible to successfully arrest a terrorist taskforce mem-
ber but the other terrorist taskforce members still have
the requisite capabilities to attack the beacon. If, on
the other hand, the analyst successfully arrests a terror-
ist taskforce member carrying required capabilities that
no other taskforce member carries, then the taskforce
meeting will take place on the beacon, but it will not
be attacked. This is counted as a “beacon save.”

In the present version of Hats, the successful arrest
of a hat does not remove it from the game – the hat
will still behave as if it had not been arrested. It will
still move toward goals and go to meetings. However,
it will not be able to trade any of its capabilities nor
contribute to enabling a beacon attack – it will be as
though the hat were not present.

Currently, the statistics on beacon alert “hits,”
“false positives,” “successful arrests,” and “false arrests”
are not combined into a uniform cost model. They are
simply reported as additional measures of comparative
player performance.

5 SCORING ANALYST PERFORMANCE

The Hats Simulator and Information Broker together
provide an environment for testing analysts tools. Recall
that the object of the game is to identify terrorist task
forces before they damage beacons. Three kinds of costs
are accrued:

• The cost of acquiring and processing informa-
tion about a hat. This is the government in the
bedroom or intrusiveness cost.

• The cost of falsely identifying benign hats as
terrorist

• The cost of harm done by terrorists

The skill of analysts and the value of analysts tools
can be measured in terms of these costs, and these
are assessed automatically by the Hats simulator as the
analyst plays the Hats game. The final report generated
by the Hats Simulator after terminating a simulation
run is divided up into four categories, as described in
the following list:

• Costs: the total amount of “algorithmicdollars”
spent on information from the Information Bro-
ker.

• Beacon Attacks: including the total number of
terrorist attacks that succeeded and the total
number of attacks that were stopped by suc-
cessful arrests.

• Arrests: the number of successful arrests and
the number of false-arrests (false-positives)

• Beacon Alerts: the number of low and high hits
(the number of raised alerts during which an
attack occurred), and the number of low and
high false-positives (the number of raised alerts
during which no attack occurred).

6 DISCUSSION

We are told by intelligence analysts that Hats has many
attributes of “the real thing.” Some say in the same
breath that Hats ought to have other attributes, for in-
stance, telephone communications, rapid transportation
of hats around the board, different kinds of beacons,
and so on. We resist these efforts to make Hats more
“realistic” because for us, the purpose of Hats is to
provide an enormously difficult detection problem with
low domain knowledge overhead. No doubt Hats will
change over time, but we will strive to keep it simple.
Big, complex, covert, but simple. The other goal that
guides our development of Hats is what we might call the
“missing science” of intelligence analysis. To the best of
our knowledge, in the current climate, analysts penalize
misses more than false positives. This sort of utility
function has consequences – raised national alert levels,
lines at airports, and so on. Hats is intended to be a
simulated world in which analysts can experiment with
different utility functions. It is a laboratory in which
scientific models of intelligence gathering, filtering, and
use – models based on utility theory and information –
can be tested and compared.

To meet these goals, our ongoing development of
Hats includes the following: (1) increasing the scale and
efficiency of the simulator to accommodate hundreds of
thousands of hats running in reasonable time to con-
duct experiments and play in real-time; (2) building
WebHats, a web-based interface to Hats, enabling any
researcher with access to the web to make immediate
use of Hats as a data source; (3) providing league ta-
bles of analyst/tool performance scores from playing
the Hats game, promoting public competition to better
intelligence analysis technology; and (4) developing a
user-friendly interface to Hats, including more complex
information querying and visual aids so that human
analysts can play the Hats game more naturally.

Cohen and Morrison

7 ACKNOWLEDGMENTS

The Hats Simulator was conceived of by Paul Cohen
and Niall Adams at Imperial College in the summer
of 2002. Cohen implemented the first version of Hats,
and David Westbrook, Clayton Morrison, Andrew Han-
non and Michiharu Oshima have subsequently devel-
oped major portions of the simulator. Thanks also are
due to Gary King for help. Bob Schrag at IET con-
tributed useful ideas and built a simulator similar to
Hats for DARPA’s Evidence Extraction and Link Dis-
covery (EELD) program. Work on this project was
funded by EELD.

AUTHOR BIOGRAPHIES

PAUL R. COHEN is the deputy division director of
the Intelligent Systems Division of the University of
Souther California’s Information Sciences Institute. In
2003 he became the Director of the Center for Research
on Unexpected Events (CRUE). Dr. Cohen is currently
on leave from the Department of Computer Science at
the University of Massachusetts, where he has served for
20 years as a Professor and Director of the Experimental
Knowledge Systems Laboratory. His PhD is from Stan-
ford University in Computer Science and Psychology,
in 1983. He served as a Councillor of the American As-
sociation for Artificial Intelligence, 1991–1994, and was
elected in 1993 as a Fellow of the AAAI. His projects
include AIID, an Architecture for the Interpretation of
Intelligence Data; Capture the Flag, a wargaming envi-
ronment; theRobotBabyproject, inwhich a robot learns
representations and their meanings sufficient for natu-
ral language and planning; and the Packrats project,
in which rats are trained to carry video cameras for
search-and-rescue operations. He also works on algo-
rithms for finding patterns in temporal data. Dr. Cohen
is interested in AI methodology, particularly empirical
methods. His e-mail address is <cohen@isi.edu>, and
his web page is <eksl.cs.umass.edu/∼cohen/>. .

CLAYTON T. MORRISON is a Postdoctoral Re-
search Fellow in the Information Sciences Institute at
the University of Southern California. Formerly, Dr.
Morrison was a Senior Research Fellow in the Experi-
mental Knowledge Systems Laboratory of the Computer
Science Department at the University of Massachusetts.
Dr. Morrison holds a Bachelors degree in Cognitive Sci-
ence from Occidental College, and received his Masters
and Ph.D. in Philosophy from Binghamton University.
His research interests include the nature of representa-
tion and knowledge in humans and machines, cognitive
development, and the rapid identification of unexpected
behaviors in large populations. He is currently working

on the development of a Bayesian blackboard system
for the interpretation and analysis of asynchronous and
noisy data from a variety of complex domains. His e-
mail address is <clayton@isi.edu>, and his web page
is <eksl.cs.umass.edu/∼clayton/>.

mailto:cohen@isi.edu
http://eksl.cs.umass.edu/~cohen/
mailto:clayton@isi.edu
http://eksl.cs.umass.edu/~clayton/

	INTRODUCTION
	THE HATS DOMAIN
	Organizations and Population Generation
	Meeting Generation

	THE INFORMATION BROKER
	The Cost of Information
	Noise Model
	 Lists
	 Elements

	ACTIONS
	Beacon Alerts
	Arresting Hats

	SCORING ANALYST PERFORMANCE
	DISCUSSION
	ACKNOWLEDGMENTS

