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ABSTRACT

Large-scale multi-agent simulations must generate agent populations that satisfy a large set of constraints in
order to recreate the population structure and demographic properties of the world being simulated. The Hats
Simulator is a lightweight model of an urban space in which agents engage in individual and collective activities.
In Hats, we generate hundreds of thousands of agents, each of whom belongs to a subset of thousands of benign
or terrorist organizations. The population of Hats and organizations must satisfy multiple local and global
constraints. Populations need to be generated quickly and reliably to facilitate repeated runs of the simulation.
We present two algorithms for solving this problem: one exact but slow and another much faster one based on
random bipartite graphs.
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1. INTRODUCTION

Computer simulation is used to research phenomena ranging from the structure of the space-time continuum
to population genetics and future combat.1–3 Multi-agent simulations in particular are now commonplace in
many fields.4, 5 By modeling populations whose complex behavior emerges from individual interactions, these
simulations help to answer questions about effects where closed form solutions are difficult to solve or impossible
to derive.6 To be useful, simulations must accurately model the relevant aspects of the underlying domain.
In multi-agent simulation, this means that the modeling must include both the agents and their relationships.
Typically, each agent can be modeled as a set of attributes drawn from various distributions (e.g., height, morale,
intelligence and so forth). Though these can interact – for example, agent height is related to agent weight – they
are usually independent. Modeling relations between agents, on the other hand, adds a new layer of complexity,
and tools from graph theory and social network analysis are finding increasing application.7, 8 Recognizing the
role and proper use of these techniques, however, remains the subject of ongoing research.

We recently encountered these complexities while building large scale social simulations.9–11 One of these,
the Hats Simulator, is designed to be a lightweight proxy for intelligence analysis problems. Hats models a
“society in a box” consisting of many simple agents, called hats. Hats gets its name from the classic spaghetti
western, in which the heroes and villains are known by the color of the hats they wear. The Hats society also has
its heroes and villains, but the challenge is to identify which color hat they should be wearing based on how they
behave. There are three types of hats: benign hats, known terrorists, and covert terrorists. Covert terrorists look
just like benign hats but act like terrorists.∗ Population structure can make covert hat identification significantly
more difficult. Investigators using the Hats Simulator must be able to control population parameters, and
population generation must be fast enough to support studies that vary these parameters. This paper reports
our experiences developing algorithms to generate populations whose structure is dependent on experimenter
controlled parameters.

In the next section, we outline the general problem of population generation and the details of building
populations for the Hats Simulator. This is followed by a brief description of our initial, brute force algorithm

Further author information: (Send correspondence to Andrew Hannon.)
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∗The Hats Simulator is used as a test bed to study intelligence analysis tools that could be used to identify covert
hats, including algorithms for finding community structure,12, 13 suspicion scoring14, 15 and reasoning about behaviors
over time.
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(section 3). It was sufficient for small populations, but scaled horribly. We realized that the Law of Large
Numbers would allow randomized methods to generate large populations that satisfied our constraints within
acceptable bounds (section 5). It was while developing this algorithm that we discovered the connection between
our population generation problem and recent results from the theory of random bipartite graphs (section 4).
Finally, section 6 examines the properties and performance of our randomized algorithm. Though we will describe
our results in terms of the Hats Simulator, these methods apply to any modeling situation in which populations
of agents share multiple, overlapping structures, each of which is independent from the others. Our hope is that
our experience will benefit others facing the task of generating large populations that require similar overlapping
group structure.

2. POPULATION GENERATION IN HATS

In this section we describe the parameters for Hats population generation. All hats belong to multiple or-
ganizations and their behavior is generated based on their organization membership. There are two types of
organizations: terrorist organizations have only terrorist hats as members (known or covert); benign organiza-
tions may include every kind of hat. There are four parameters that control the organizational structure of a
Hats population.

1. The total number of each kind of hat,

2. The number of each kind of organization,

3. The relative size (numbers of hats) of each organization for each kind of hat,

4. How often hats are in multiple organizations – the “organization overlap”.

Figure 1 contains a portion of an example Hats scenario description. This scenario has 20 benign hats and
12 terrorist hats, 6 of which are covert. There are 2 terrorist organizations and 7 benign ones.† At the end

(num-benigns 20)
(num-coverts 6)
(num-terrorists 6)
(benign-org-members-ratio ’(1 2 3 3 3 2 5))
(covert-org-members-ratio ’(2 1))
(terrorist-org-members-ratio ’(1 2))
(organization-overlap 0.3)

Figure 1. Scenario specification used to generate the organization graph in figure 2.

of population generation, OT0 should have a 2:1 ratio of covert to known terrorists, and OT1 should have a
1:2 ratio of covert to known terrorists. Lastly, the counts of all members (benign and terrorist) of the benign
organizations should match the ratios specified in the benign-org-members-ratio parameter.‡

Figure 2 depicts the population generated from the parameters in figure 1, represented as a graph relating
individual hats to organizations. Vertices along the top represent hats whereas those at the bottom represent
organizations; links represent membership of a hat in an organization. Benign agents and organizations are
represented as ellipses; terrorists ones as triangles; and covert agents as circles. Though we did not initially make
the connection, it is clear that Hats populations can be viewed as several overlapping bipartite graphs (graphs
with two distinguished kinds of vertices whose edges are only between vertexes of different types) and that the
goal of population generation is to build edges between the vertex kinds such that the parameters of the scenario
are matched as closely as possible. We will discuss this connection in section 4.

†Hats scenarios typically have many more hats and organizations!
‡However, this illustrative example does not satisfy those constraints, since the algorithm performs poorly at small-

scales, as covered in section 6.
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Figure 2. Representation of hat memberships in organizations as a (bipartite) graph. Agents are displayed along the top
and their organizations along the bottom. Benign agents and organizations are represented as ellipses; terrorists ones as
as shaded triangles; and covert hats as shaded circles.

One of the purposes of the Hats Simulator is to model terrorists embedded within a population. Terrorist
organizations consist of known and covert terrorists, but terrorists also belong to benign organizations in order
to blend into the population. The organization-overlap parameter specifies the degree of inter-organizational
mixing. Increasing overlap makes it more difficult to identify organizational structure and, by extension, covert
hats. All hats must be in at least two organizations; otherwise the problem of covert agent identification becomes
too simple. Suppose covert agents were allowed to belong to only one organization. It would have to be a terrorist
one – otherwise the agent would not be a terrorist! We could easily find this agent because it would only meet
with other terrorists. If, on the other hand, only covert hats were required to be in multiple organizations, it
would be easy to distinguish them because they would belong to more organizations on average than the benign
ones. Thus, the organization-overlap parameter determines how many hats will be in more organizations
than the minimum of two.

3. INCREMENTAL ALGORITHM

Our first population generation approach did not take the reasoning at the end of previous section into account:
we required only that all hats be in at least one organization. The organization-overlap parameter specified
the percentage of organization members that are also joined to other organizations. Each organization therefore
consisted of two sets: hats that were only in the organization (non-overlapping) and those that were also members
of other organizations (overlapping). We used a greedy algorithm to incrementally assign multiple organization
membership to overlapping hats until adding more overlaps would violate the parameters of section 2.

The iterative overlapping assignments were made as follows. Given a population size N , a set of relative
organization sizes {ρ1, ρ2, ...ρM} and no overlap, we can calculate the number of hats ni that are members of
organization i as ni = N · ρi. We then calculate the number of hats in the organization’s overlapping set oi by
multiplying ni by the organization-overlap parameter. The resulting oi for each organization is the number of
members that should also be in other organizations. We refer to this as the organization’s overlap quota. Note
that assigning a hat to multiple organizations does not just fill a slot in one organization’s overlap quota; it
simultaneously fills a slot for each of the other organizations of which the hat is a member. However, we have
only assigned organizations for a single hat. To adjust for this difference, we subtract 1 from the population and
recalculate each organization’s overlap quota oi. We also update oi by subtracting 1 for each assignment that
includes that organization. The process is then repeated, generating a new assignment and updating the overlap
quotas, until the difference of all overlap quotas and previous assignments are all zero or less. At this point, the
algorithm stops.

Though this algorithm produced populations with correct structure, it had two major faults:
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• Its continual recalculations made it much too slow – hours and hours of runtime for larger populations

• The distinction of hats into overlapping and non-overlapping sets does not generalize easily.

Fortunately, we had already moved towards the randomized approach described below.

4. RANDOM BIPARTITE GRAPHS

Population structures that have organizations can be described as bipartite graphs,16 where two types of vertices
correspond to organizations and hats, as shown in Figure 2. If there are M organizations and N hats in the
population, then our bipartite graph consists of M type O vertices and N type H vertices. There is a link between
an O vertex oi and an H vertex hj if the hat hj belongs to the organization oi. Clearly, all the constraints on
the population can be translated into the constraints on the bipartite graph.

Let Aij , i = 1 : M , j = 1 : N be the adjacency matrix of our bipartite graph. That is, Aij = 1 if the
hat j belongs to the organization i, and Aij = 0 otherwise. A bipartite graph is uniquely characterized by its
adjacency matrix A.

Let us define ni =
∑

j=1:N Aij and kj =
∑

i=1:M Aij . ni is the number of edges originating from the vertex
oi, or in other words, the number of members in the organization i. Similarly, kj is the number of organizations
that the j–th agent belongs to. It is easy to see that∑

i=1:M

ni =
∑

j=1:N

kj . (1)

.

While a generic A describes a population without any explicit structure, we are interested in populations
that are subject to certain structural constraints. Below we list examples of constraints, and demonstrate how
these are translated into the constraints on the adjacency matrix A.

Each hat should belong to at least m organizations: This is simply translated to

kj =
∑

i=1:M

Aij > Kmin,∀j = 1 : N. (2)

Constraints on organization sizes: One of the natural constraints on the population is to require that
each organization has a pre–specified number of members:

ni =
∑

i=1:M

Aij = n0
i ,∀i = 1 : M. (3)

Sometimes it is useful to constrain not the absolute number of hats in an organization, but to require that
the relative sizes of organizations scale as specified, {ρ1 : ρ2 : ... : ρM}

ni∑
j nj

=
ρi∑
j ρj

. (4)

We will assume from now on that the sum is normalized,
∑

k ρk = 1. The constraint Eq. 4 states that the
fraction ρi of all the edges in the graph originate from the vertex oi. We also note that this constraint itself does
not specify the total number of edges in the graph (i.e., the total number of membership assignments).

Constraints on Overlap: While the constraints specified above were concerned with the organization
sizes, they did not contain any information about the population mixing. On the other hand, in simulations,
it is important to control the degree to which various organizations are mixed. For instance, we would like to
constrain the number of hats that belong to more than Kmin organizations.
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This can be done by specifying a distribution P (k) for the number of links originating from each hat. Indeed,
if P (k) = δk,1 then each hat belongs to only one organization so the organizational overlap is zero.§ On the other
hand, if we start to shift the distribution function P (k) towards higher values of k, then more hats will belong
to more than one organization, hence creating an overlap across the organizations. Note that the distribution
P (k) also determines the absolute sizes of the organizations. The expected number of total edges is N

∑
k kP (k)

and the expected number of hats in each organization i is ni = Nρi

∑
k kP (k).

To summarize, we want to have an algorithm that generates random bipartite graphs with the following
properties:

• Number of O–vertices (organizations): M

• Number of H–vertices (hats): N

• Satisfies the size–ratio constraints Eq. 4

• H–vertices have a specified degree distribution P (k)

An algorithm for accomplishing this is listed below. Note that in the actual implementation in Hats, we must
deal with collisions that occur when an organization is sampled that the hat already belongs to. Also, we must
deal with multiple types of hat and organization vertexes; this is covered in section 5.

Generate-Random-Bipartite-Graph(N ,M , ρ1, ρ2, ..., ρM , P (k))
1 for i = 1 : N
2 do choose k from distribution P (k)
3 for count = 1 : k
4 do o ← sample from ρ1..M

5 add edge between Hi and o

5. RANDOMIZED ALGORITHM

The randomized algorithm, while independently developed, is conceptually the same as the bipartite graph
algorithm. The organization size ratios are used to build a lookup table that is then uniformly sampled in
order to add edges between agents and organizations. Figure 3 demonstrates how the desired degrees of the
organization vertices are used to generate a probability distribution. This lookup table provides a fast method
of sampling organizations. Figure 4 shows how a sample from the uniform distribution [0, 1) is used to select an
organization.

In Hats, we have two sets of organizations, benign and terrorist, with 3 different probability distributions
for the three types of hats (benign, known terrorist and covert terrorist). As described earlier, initially all
benign hats must belong to two benign organizations, and all terrorists must belong to one benign and one
terrorist organization. When any hat belongs to more than two organizations, it is considered an overlapping
hat. Unlike Generate-Random-Bipartite-Graph, we treat the process of adding the initial organizations
and the overlaps as two separate steps. We do a first pass through the entire population to ensure that all hats
belong to the minimum number of required organizations. We then select a subset of the population (as specified
by the scenario’s organization-overlap parameter) and make a second pass to add additional edges between
these hats and organizations.

In the heterogeneous scenario of hats, the relationship between hat vertices and organization vertices is
equivalent to multiple independent bipartite graph problems. That is, the population of hats is mapped to
the different organizations, which have independent probability distributions (see figure 5). The hats will then
sample from each set of organizations separately, if applicable (e.g., benign hats will never sample from the set

§The δ function is zero everywhere except at k where it is 1.
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Figure 3. A table of intervals representing the distribution is used to select organizations. Here, the radii of the circles
represents the proportion of the population that should belong to each organization (O2 is twice as big as both O1 and
O3). The table generated represents the probability distribution for a single set of organizations (a simulation may use
multiple organization sets to build complex structures).
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Uniform
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Figure 4. An organization being selected. The uniform random generator produces a value between 0.0 and 1.0, which
is then used to look up an organization in the table.

of terrorist organizations), thereby treating each set as an independent bipartite graph solution. This creates the
need for an additional probability distribution that is specific to each type of hat, which allows it to select which
set of organizations it will sample from when adding a new edge. In Hats, the probability of sampling from the
set of terrorist organizations is

P (terrorist) =

∑
j n(terrorist)j∑

j n(terrorist)j +
∑

j n(benign)j
, (5)

and P (benign) = 1.0− P (terrorist). Covert terrorists will use a similar function to compute P (covert).

When adding overlaps, we iterate over a subset of the entire Hats population; This subset is of size N ′ =
N ∗ organization − overlap. We select the subset uniformly from all possible subsets of size N ′ so that every
hat has an equal chance of being selected.

Given the probability of selecting an organization set to sample from, we can now generate an entire popula-
tion. The revised algorithm for Hats is therefore broken into two – one for seeding the population, and one for
adding overlap:

Seed-Population(N ,M , ρterrorist, ρbenign)
1 for i = 1 : N
2 do if terrorist(Hi)
3 then o ← sample from ρterrorist

4 add edge between Hi and o
5 else o ← sample from ρbenign

6 add edge between Hi and o
7 o ← sample from ρbenign

8 add edge between Hi and o
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Figure 5. An example of a population of hats (H1..H4) that can join different sets of organizations. Hat H1 can have
edges to the vertices in organization sets 1 & 2. Each selection is treated as an independent bipartite graph problem.
However, if H1 adds additional edges, then for each additional edge it adds, it needs to select which organization set (of
1 & 2) to sample from.

The procedure Seed-Population connects the initial two organization edges to the hat. If the hat is
a terrorist (the process for adding coverts is the same and has been suppressed for clarity), it adds an edge
between the hat and a randomly sampled terrorist organization; otherwise, it adds a benign organization. The
last two lines add one benign organization so that all hats have two organizations, and at least one is a benign
organization.

Add-Organization-Overlap(N ′,M , ρterrorist, ρbenign, P (k))
1 for i = 1 : N ′

2 do choose k from distribution P (k)
3 for count = 1 : k
4 do if terrorist(Hi) and sample(P (terrorist)) = true
5 then o ← sample from distribution ρterrorist

6 else o ← sample from distribution ρbenign

7 add edge between Hi and o

In Add-Organization-Overlap, we iterate over the random subset of the population, adding new orga-
nization edges¶. Each type of population is handled separately, so that overlap is distributed evenly across
the entire population (i.e., the benign population is processed separately from the terrorist population). Line 2
randomly samples the number of organizations to link the hat to‖. Line 4 checks to see if the hat is a terrorist,
and, if so, it samples a weighted boolean distribution to determine whether or not to add a terrorist or benign
organization. Lines 5-7 sample and add the appropriate edge.

5.1. Summary

The approach of the randomized algorithm is to build a population using a simple sampling mechanism that will
cause large populations to converge on the parameters of the scenario. Generating a distribution table in the
form of a lookup table provides a fast mechanism for returning sampled data. It is similar to the bipartite graph
solution since the hats and the organizations can be seen as the appropriate vertices in a bipartite graph.

¶While the algorithms are written for only two types of organizations, this can easily be extended to any number of
organization types, as each set of organizations form an independent bipartite relationship with the population.

‖In Hats, a poisson distribution is used.
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Some details were left out: the actual algorithm needs to handle collisions, and build the distribution table.
They were excluded since the algorithms for dealing with them are trivial and they don’t add anything to
algorithm’s description. A poor implementation of the distribution table can greatly reduce the speed of the
algorithm, since it is performing a search across M organizations. For this reason, we used a red-black tree to
represent the table, as it provides sub-linear search.

6. EXPERIMENTS

Below, we evaluate the speed of the randomized algorithm, and how well the structure matches the parameters.
We provide empirical evidence that with large populations, the generated structure very closely resembles the
parameters; however, for smaller populations, there is significant error in the final population, and a more precise
approach would be better. Also, the speed of the algorithm scales linearly with the size of the population. Thus,
large populations can be generated accurately and quickly.

6.1. Speed

To measure speed, we ran two experiments, one varying the size of the population along with the number
of organizations, and the other varying the amount of overlap. For each experiment we ran 20 trials at each
parameter setting. For the first experiment, we ran 20 trials, varying population sizes from 100 to 100,000 benign
hats and 60 to 10,000 covert and terrorist hats. The number of organizations was increased proportionally to the
number of agents (up to 5,000 benign organizations for more than 50,000 benign agents). For a given number
of organizations, we generated a set of random organization ratios, and used that ratio for each of the 20 trials
at that population size. The organization overlap was set to 0.8 throughout the first experiment. Figure 6 is a
plot of the mean run times for the 20 trials at each population size. The graph provides empirical evidence that
the run time is linearly proportional to the size of the population.

Figure 6. Run-time of the randomized algorithm. The Run-time increases linearly as the size of the population is
increased to 100,000 agents.
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The second experiment was run with a varying overlap, from 0.0 to 1.0, maintaining a fixed total population
size of 70,000 agents with 5,500 organizations. Figure 7 shows that the computation time again linearly increases.
The linear relationship suggests that large amounts of overlap will not grossly hinder the speed of the algorithm.

Figure 7. Run-time of the randomized algorithm when population is fixed at 70,000 agents and overlap is varied from
0.0 to 1.0. Run-time increases linearly.

6.2. Parameter Matching

The populations and underlying social structure generated by the Hats simulator are best measured by looking
at how well they fit the given distribution. To measure this, we compare the degrees of the organization vertices
to that of what we would expect to see. In figure 8, a mean of 1.0 indicates that the generated population met
the specified member-ratio parameters exactly. As you can see, the confidence intervals converge to a minor
amount of error as the populations get larger. What should be inferred is that the randomized algorithm is not
well suited for small-scale simulations, and realistically, should only be used on populations with more than 5000
agents, at the very least.

The population parameters in figure 9 were used to generate the organizational structure shown in figures
10 and 11. The first graph was created with a organization-overlap of 0.1 whereas the second was created
with an organization-overlap of 0.9. The increased organizational mixing is shown clearly as many more hats
belong to multiple organizations in figure 11 than do in figure 10.

7. SUMMARY AND FUTURE WORK

Many large-scale simulations require that unique populations be generated quickly. The algorithm we have
presented is based on bipartite graph generation techniques and allows large populations to be generated in
times that in practice scale linearly with the size of the population. Population generation remains an area of
open research. The more we learn about the nature of real-world networks, the more we understand how simple
random graph models have failed to capture the necessary structure. Interesting real-world networks tend to
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Figure 8. Here, you can see the confidence intervals of the generated distribution converging to the desired distribution
as the population gets larger. With smaller populations, there is a significant amount of variation in what was expected
and what occurred.

(num-benigns 50)
(num-coverts 6)
(num-terrorists 12)
(benign-org-members-ratio ’(1 2 3 2 5))
(covert-org-members-ratio ’(3 2 4))
(terrorist-org-members-ratio ’(4 2 3))
(benign-organizations (create-benign-organization-ids 5))
(terrorist-organizations (create-terrorist-organization-ids 3))

Figure 9. Scenario specification used to generate the organization graphs in figures 10 and 11.

be scale-free, have high clustering (friends of a friend are often friends) and other complex structure.7, 8, 17 The
relatively simple bipartite graphs discussed in this paper could be used to extend population generation to more
accurately reflect those richly structured real-world networks.
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Figure 10. Bipartite hat organization graph for the scenario in figure 9. The organization-overlap parameter is set to
0.1.
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Figure 11. Bipartite hat organization graph for the scenario in figure 9. The organization-overlap parameter is set to
0.9.
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