ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2477614

Growing Ontologies

ARTICLE - MAY 2000

Source: CiteSeer

CITATIONS READS
2 7
1 AUTHOR:

Gr Paul R. Cohen
oM ' The University of Arizona

373 PUBLICATIONS 5,110 CITATIONS

SEE PROFILE

Available from: Paul R. Cohen
Retrieved on: 23 January 2016


https://www.researchgate.net/publication/2477614_Growing_Ontologies?enrichId=rgreq-4f3a3592-4a6b-4956-b67d-b5ad326aa699&enrichSource=Y292ZXJQYWdlOzI0Nzc2MTQ7QVM6OTcxNDgyMTc1OTM4NzFAMTQwMDE3MzM0OTA0Ng%3D%3D&el=1_x_2
https://www.researchgate.net/publication/2477614_Growing_Ontologies?enrichId=rgreq-4f3a3592-4a6b-4956-b67d-b5ad326aa699&enrichSource=Y292ZXJQYWdlOzI0Nzc2MTQ7QVM6OTcxNDgyMTc1OTM4NzFAMTQwMDE3MzM0OTA0Ng%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-4f3a3592-4a6b-4956-b67d-b5ad326aa699&enrichSource=Y292ZXJQYWdlOzI0Nzc2MTQ7QVM6OTcxNDgyMTc1OTM4NzFAMTQwMDE3MzM0OTA0Ng%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Paul_Cohen3?enrichId=rgreq-4f3a3592-4a6b-4956-b67d-b5ad326aa699&enrichSource=Y292ZXJQYWdlOzI0Nzc2MTQ7QVM6OTcxNDgyMTc1OTM4NzFAMTQwMDE3MzM0OTA0Ng%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Paul_Cohen3?enrichId=rgreq-4f3a3592-4a6b-4956-b67d-b5ad326aa699&enrichSource=Y292ZXJQYWdlOzI0Nzc2MTQ7QVM6OTcxNDgyMTc1OTM4NzFAMTQwMDE3MzM0OTA0Ng%3D%3D&el=1_x_5
https://www.researchgate.net/institution/The_University_of_Arizona?enrichId=rgreq-4f3a3592-4a6b-4956-b67d-b5ad326aa699&enrichSource=Y292ZXJQYWdlOzI0Nzc2MTQ7QVM6OTcxNDgyMTc1OTM4NzFAMTQwMDE3MzM0OTA0Ng%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Paul_Cohen3?enrichId=rgreq-4f3a3592-4a6b-4956-b67d-b5ad326aa699&enrichSource=Y292ZXJQYWdlOzI0Nzc2MTQ7QVM6OTcxNDgyMTc1OTM4NzFAMTQwMDE3MzM0OTA0Ng%3D%3D&el=1_x_7




Growing Ontologies

Paul R. Cohen
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Experimental Knowledge Systems Laboratory
Computer Science Department, Box 34610
Lederle Graduate Research Center
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Amherst, MA 01003-4610

Abstract

Conceptual structures or ontologies are usually built by hand by skilled
knowledge engineers. This paper presents a theory of how conceptual
structure may be acquired by an intelligent agent interacting with its
environment in an unsupervised way. Categories of activities are learned, then
abstractions over these categories result in concepts. The entire conceptual
structure is based on activities. The meanings of concepts and of
conceptualizations of activities are discussed. Systems that implement aspects
of the theory are presented, and their general characteristics described.



The principal claim of this paper is that concepts can be

. learned without supervision by abstracting over
Introduction representations of activities. Piaget (1952) insisted that
| concepts must arise out of activities — because simple
action schemas develop before conceptual thought — bul

sometimes called ontologies and they are usually built by the mechanisms he proposed to explain concept acquisitior

highly-trained knowledge engineers. It's less clear how were vague by the standa_rds of artificial intelligence.
humans acquire conceptual systems, or rather, the scope O?grr;er Imeektevr\:]eeenr:er?e:gegrr:gTr?en;(se ?Esirfsssegtgg]elatiregiy
the innate endowment is unclear. In any case, if machines?aiged' by the claim that all concents aven thgse that
could acquire conceptual knowledge with the same facility y pts —

as humans, then Al would be much better oft. Many [ZEECER SAIE BUEOE Lo 818 SATed
people think that our conceptual system is a prerequisite P y: P,

for all sorts of intelligent processes, from analogical :zaef%naento;ﬁﬁ%mﬁggggjmvgis}?gﬂd ?c?ergtrirlﬁgrrg' tﬁga
reasoning to natural language understanding, from are the Iea?ned' and Whgt do these Iegrnign mecha{nism
reasoning under uncertainty to computer-assisted y ’ 9

cooperative work. Lenat and Feigenbaum (1987) promised have in common?
us that a sufficiently large corpus of common sense

knowledge would "go critical" and start learning, by

reading, autonomously. That hasn't happened yet, but

there's no denying the dream of a machine that knows

roughly what we know, organized roughly as we organize

it, with roughly the same values and motives as we have.

The subject of this paper is the foundation of conceptua
systems. In artificial intelligence, conceptual systems are

It makes sense, then, to ask how this knowledge is acquired
by humans and how might it be acquired by machines. In
particular and for various reasons, | want to focus on the
origins of conceptual knowledge, the earliest distinctions
and classes, the first efforts to carve the world at its joints.
One reason is just the scientist's pleasure at getting to the
bottom of, or in this case the beginning of, anything.
Another reason is that the origin of conceptual systems is
currently hotly debated: Some people think that neonates
are born with moderately sophisticated conceptual systems
(e.g., Baillargeon, 1994; Carey and Gelman, 1991; Spelke
et al. 1992), others dispute this and seek an empiricist, or
non-nativist, account of development (e.g., Mandler, 1988,
1992). | think one has to take a minimalist stance and
avoid innate knowledge in one’s explanations of the
acquisition of later knowledge. Partly this reluctance
comes from years of slogging in Al, where it seems we
must always provide a lot of knowledge for our systems to
do relatively little with. So | want to focus on the first
concepts because unless | do, then I'll have to provide them
by hand, which is a bore, and also makes me very uncertain
about the explanatory power of what follows.

To elaborate this last point, it is a commonplace in Al that
everything depends on representation---get the right set of
attributes, or the right representation of a game board, or
the right set of clinical terms, and problem solving is
relatively easy, usually just search of some kind. But surely
this means that the hard problem solving was done by us.
If instead we ask how does the machine come to
conceptualize the world this way rather than that, if we ask
the machine to form its own conceptual system, then we
don't have to do the hard work and our claims to
understanding intelligence are that much stronger.



This is just one of several possible accounts of meaning.
ConceptS, Conceptualizationsand Mean|ng Other popular accounts inCIU_de: Meaning is a formal
relationship between an assertion about the world and the
state of the world; the meaning of a concept is given by its

Efrgmg?]nfh;'[f ggﬂggp:sdg:graggttr;cgiuive (?fltleﬂa\é%r:(r:]e t relationships to other concepts; and meaning is given by
P : ’ P Sreducing an assertion to semantic primitives. Because |

are takgn t_o t_)e abstr_acnons over.feature_s or attnbutgs OfWant to build agents that learn concepts by interacting with
objects; this is certainly the dominant view in machine

: : .~ the world, | am most comfortable with the idea that the
learning. | want to use the mechanisms of machine

learning but | want to focus them not on the attributes of meaning of a conceptualization of an Interaction s the
objects but on the dynamics of activities. Thus | define mfergnces one can make abou_t the Interaction —the
concepts as abstract representations of a.ctivities incIudingema'Imen-ts -Of the: interaction — given the
the participants in and the entailments of the activities conceptualization. (I will d|spus_s the meaning of concepts,
Figure 1 shows sketches of two concepts. Both begin With as opposed to conc.ep.tuallzatlons, shortly.) Among the

; : entailments are predictions about how an interaction will
one agent, A, running toward another, B. One of these

interactions develops into an embrace, the other into aunfold. If you conceptualize reading an article (not this

chase. The entailments of these concepts are different, too S | hope) as a chore, then you can anticipate discomfort

the rush-to-embrace concent imolies that A and B are tedium, and a growing desire for milk and cookies or
u . pt 1mpli and something stronger. This is what it means for reading an
ga_ppy \r/1vhereas the frighten-and-chase concept implies thatarticle to be a chore. Another conceptualization — say
is unhappy.

reading-as-intellectual-exploration — makes different
predictions.
A B AandBare
A B rush to - happy If activities are meaningless until they are conceptualized,
O embrace. G4 are concepts meaningless until their roles are bound to
/\E/ e entities in activities? That is, are concepts meaningless
/l until they are grounded in actual experience? Apparently
/\/> B is unh not, for | am trusting that you and | understand the meaning
B | 'S unhappy of rushing-to-embrace without actually observing or
B frighten 8 Co) participating in the activity. | am trusting that your concept
— .
and chase B rushing-to-embrace has more or less the same roles an

/ entailments as mine. Perhaps | am counting on you to
imagine (i.e., conceptualize) an interaction, but | think we
can both contemplate the concept without instantiating it

Figure 1. lllustrations of concepts for two activities, rush-to- - . S
ephysmally or even mentally through imagination.

embrace and frighten-and-chase. The participants or roles ar
identified (A and B) as are some entailments (e.g., A and B are

happy) Doubtless some conceptualizatiofisel more meaningful

than others — contrast embracing someone, observing ai
embrace, imagining yourself embracing, watching an
embrace on television, reading about it in a novel with
good character development, and reading about it here
u o |
These conceptualizations feel different partly because some
are richer than others in terms of the roles they specify and
epartly because of the different affective responses to doing
something, reading about it, watching it, or imagining it.

Conceptualizations are instantiated concepts, formed by
binding the entities in an activity to the roles in a concept.
Suppose you are in an arrival lounge at the airport and yo
see a child running at an adult getting off the airplane. By
binding the child to A and the adult to B in the rush-to-

embrace concept, one conceptualizes the activity. Were th

same child to run at another, younger child, the Should the meanings of concepts and conceptualizations
conceptualization and its entailments would be different: eaning P P Hons
include affective responses? In my current formulation,

Interactions that are conceptualized as frighten-and-chase N . )
often end in tears. concepts and conceptualizations ndggcribe affect in

their entailments (e.g., A and B are happy), but aftself
is not part of their meanings. This seems forced: The

- - s ; meaning of embracing my wife resides in the statement
conceptualized, the meanings of activities are given by thethalt we are happy, not the happiness itselfl Eventually |

entailments of the concept. We may infer that the child is h to off | di bodied ti hich th
happy to see the adult getting off the airplane because we°P€ 0 Ofer a less disembodied account, in which the
have conceptualized his activity as a rush-to-embrace. (IM€aning of conceptualizations (if not concepts) includes
would rather give these concepts gensyms for names, 1ot only inferences but also affective responses.
emphasize that their meanings are entirely in their
entailments, but | will keep the descriptive names for
simplicity of exposition.)

Activities mean nothing in and of themselves. Once

Concepts may refer to other concepts in their roles. For
example, the frighten-and-chase concept may specify that



entity A is a male-toddler-with-a-discipline-problem. business end of an entirely hidden but sophisticated
Suppose you see a male toddler thrashing and screaming atonceptual system.

the supermarket. You conceptualize this activity as a

tantrum and you conceptualize the boy as a male-toddler-

with-a-discipline-problem. What is the meaning of this Categories and Concepts

concept? As before, meaning comes from entailments,
which in this case come from the activities in which the

concept participates. Thus, the meaning of male-toddler-
with-a-discipline-problem is that he can have tantrums and
he can chase and frighten other kids.

To this point | have argued that repertoires of even very
simple activities are based on conceptual systems. Now |
will argue that conceptual systems can arise from activities.
This is not circular: Concepts and activities bootstrap each
other. So how do we get concepts out of activity? An
agent does things, like wave its arms, or traverse interne!
Why Should Agents L earn Concepts? links, or manipulate blocks, or chew on a frog, and
somehow concepts emerge. How does this happen?
What are concepts and ontologies for and why should they
be learned rather than constructed by knowlege engineersAn intermediate step in the acquisition of concepts may be
Imagine yourself to be a mobile robot wandering around the collation ofcategories. A category is a collection of
the lab. What concepts do you need, and what will you do experiences that have something in common. For instance
with them? Presumably you have some reactive routines tothe child in Figure 2 spends a lot of time reaching, grasping
keep you out of trouble. These recognize aspects of yourand mouthing objects, so she may form a category of
internal state and the world state, and generate actions inreach-grasp-mouth activities and also a category of objects
response; for example, when you detect an obstacle in yourthat are reached for, grasped, and mouthed. Following
path, you change direction or stop. Suppose you have aRosch (1975) concepts are “typical” category members,
function obst acl e-i n- pat h that takes as input some although a concept may match no category member
sensory information such as sonar readings. As describedexactly. Moreover, a concept has entailments, whereas
the concept "obstacle" simply doesn't exist for you, the category members do not (reference removed for blind
robot. It exists for the person who wrote the function review).
obst acl e- i n- pat h, but not for you. You do not know
that obstacles may sometimes be pushed aside, althoug
you may have a function to push obstacles aside; you da
not know that obstacles impede paths, although obstacled
impede your paths; you do not even know what a path is,
although you trace one whenever you move. You have no
conceptual structure whatsoever, just a bunch of routines to
keep out of trouble. And whshould you know anything,
if these routines work? Why do you need concepts like
"obstacle" and "impede" and "path" at all?

The functionobst acl e-i n- pat h was written by a

person who thought about all the situations you might i A

encounter and realized that some of them involve an™ "~

“obstacle” in your “path.” Because this person Figure2. Aninfant grasps and mouths a frog
conceptualized your experiences, you have an appropriate

response to a common situation. Your behavior is We have to be careful about how concepts are abstracte:
organized around your programmer's conceptual structure.from categories. One account goes something like this:
This structure — of which you are innocent — serves you Concepts are lists of necessary and sufficient, objective
well. This is what concepts are for: They give you conditions for something to be an instance of a concept,
interpretations of your sensors, a basis for judgments thatcategories are just the extensions of concepts —the things
situations are similar, and the distinctions on which you that satisfy the concept definition —and the meanings of a
decide what to do. Concepts are necessary even when thegoncept is just a list of other concepts to which this one is
are not explicit. We must stop deluding ourselves that a related by relationships such as ISA and PART-OF.
robot or any other agent is capable of intelligent behavior Indeed, this view of how to get concepts from categories is
without a conceptual structure. dbst acl e-i n-path still dominant in supervised machine learning, where
produces intelligent behavior, the intelligence must be training instances are categorized —given a class label — ¢
attributed to the programmer who dreamed up the conceptspriori, and the task is to find necessary and sufficient
"obstacle" and "path." It's delusional to say, "Our robot conditions for instances to be members of classes.
achieved so much with nothing more than a handful of

reactive routines"; the reactive routines are just the



| nter actionism job, perhaps, because she is often a participant in activities
and they aren’t as complex. Even so, she must find
recurrent patterns in complex streams of actions without
supervision. Formulated this way, however, one can see
how she might succeed with any number of simple
techniques for finding patterns in time series. The
following section will describe some implemented

mechanisms.

There are many problems with this view. As Lakoff
(1984) points out, human categories are not well described
by lists of necessary and sufficient conditions. Perhaps a
simple example will illustrate the problem: There are three
toys in Figure 2 but one would be hard pressed to define
“toy” based on their attributes. The frog is shiny, the
others are furry. All are quadrapeds, and all have eyes, but
these aren’t necessary or sufficient conditions for being a
toy. Most cogently, the fact that we characterize these
things as toys doesn’'t mean the infant does. In fact, she i
interacts with these objects quite differently. She always From Activitiesto Concepts
chews on the frog and very rarely chews on the others. If Here is the problem to be solved: An agent such as a robo
the infant formed categories based on how she interactedis “born” with a small set of physical activities but no
with objects, then the frog would belong to a different conceptual system. As it interacts with its environment, it
category than the other objects. forms categories, and by induction over category instances
concepts. How does this work? What innate structures are
This of course is the liberating insight of Lakoff (1984) and required? This section presents some implemented method
Johnson (1987). In theinteractionist view, category  that solve parts of the problem and collectively might solve
distinctions are based on activity, so the frog belongs to athe whole problem once they are integrated into a single
category of things to grasp and chew, whereas the furry system. Following the synopses of these methods, | will
toys belong to a category of things to wave about and rub describe in general terms what they have in common.
on one’s face. The fact that we consider the frog a toy, and
a spoon a utensil doesn’t matterttos baby, who for the
longest time considered the spoon to be just another thi”QCategoriesof Activities: Baby and the Roles
to grasp and mouth. On the interactionist account, only Problem
when sheuses the spoon to eat food (Fig. 3) will she

differentiate it from the frog, and only then will she form . ) ) ]
the category that we adults call “utensil.” The first challenge for the infant child or agent is to form

categories of activities. Keep in mind that these categories
are being learned while the activities themselves are beinc
learned. One formulation of the problem characterizes
experience as a trajectory through a state space of ven
high dimension, where each dimension is a sensor such a
a sonar or a strain gauge. Given this formulation, |

thought, naively, that the problem of finding categories of

activities becomes the problem of finding recurring time

series of sensations. This idea is easily illustrated in the
Baby system (reference removed for blind review).

Baby is an agent that experiences a simulated world
through 26 sensastreams, including those encoding the
In the interactionist view, concept acquisition is color and Shape of what it is Iooking at, the pOSitiOﬂ of its
unsupervised: Categories are not defined exogenously —hand, the angle of regard, hunger, boredom, and so on
as so often happens with machine learning — but by Baby learndluents, which are regions in the streams that
activities. Concepts are abstractions of activities, their don't change, or that change in regular ways. Fluents car
participants and their entailments. be of any length. Baby attends to the beginnings and end:
of fluents, and not to the interval in between, so it can find
Left unexp|ained, however, is exacmw Categories of Iong patterns in the streams without exponential search.
activities are extracted from ongoing streams of actions. . o
The problem for the infant child or intelligent agent has an Baby learns fluents incrementally, further reducing its
adult analog in basketball. | watched the game for months computational burden. First it finds all pairs of streams for
before | was able to recognize the pick-and-roll, the give- Which a change in one predicted a change in the other
and-go, the box-out, and so on. And my learning was Then it searches in these pairs of streams for specific toker
Supervised in no small part by the accompanying values that predict gach other _(e.g., turning its head to its
commentary. Imagine trying to learn these categories of limiting angle predicts white in the sight-color stream
activitieswithout the commentary. The infant has an easier because white is the color of the crib bars, which are seer



when Baby turns its head to its full extent.) Then Baby order to mouth it."
learns longer chains of these predictive rules. Here are

two: One manifestation of this problem is that Baby learned a
lot of "junk” fluents in addition to those above. These are
(GAN statistically significant associations of sensations that
((tactile-nouth none) (voice cry)) correspond to no coherent causal story. For example, ont
((tactil e-hand wood) (hand cl ose)) component of a chain would describe a tactile sensation,
((tactil e-nout h wood) (do- nout h nout h) )) another would note that the lights are off, and a third would
report the angle of the head. While these sensations an
(GAN indubitably associated in a significant proportion of Baby's
((tactile-nouth none) (voice cry)) activities, the chain doesn't describe those activities.
((tactile-hand plastic) (hand cl ose))
((tactile-nouth plastic)(do-nouth nouth))) The roles problem is typically finessed by providing innate

roles or an activity template that biases what agents learr
The chains are obviously very similar: Each represents an(e.g., Drescher, 1991). As a minimalist | am reluctant to do
activity in which Baby has nothing in its mouth and is this. | don't know of any work in Al on the roles problem,
crying, then it has something in its hand (wooden or yet it gets in the way of all our attempts to make an agent
plastic) and its hand is closed, then it has something learn concepts through interaction, and | suspect it will
(wooden or plastic) in its mouth and it is mouthing. These prove a stumbling block to anyone who tries.
fluents would appear to be the sort of thing | called
members of a category of activity — representations of In sum, Baby could find recurrent patterns of sensations
activity that are very similar. Following the presciptions of without supervision, but one cannot claim that it found
earlier sections, the next step would be to form a categoryactivities in streams, because the patterns it found had none

prototype, of the causal structure — the participants, what they did,
and what happened as a result — that we expect of

(GAN representations of activities. This is unfortunate, because
((tactile-nouth none) (voice cry)) Baby is an extremely simple, robust, incremental algorithm
((tactile-hand *) (hand cl ose)) that produces easily generalized fluents (as shown earlier)
((tactile-nouth *)(do-nouth nouth))), If these fluents specified roles, then Baby would be a good

candidate to learn categories of activities, and then
and then a concept, which might look something like this: concepts.

(concept: self confort From Categoriesto Concepts
activity:
((tactile-nmouth none) (voice cry))
((tactile-hand *) (hand cl ose))
((tactile-nouth *)(do-nouth nouth)))
entail nents:
((tactile-nouth none) (voice cry)) -->
((tactile-hand *) (hand cl ose))
((tactile-hand *) (hand cl ose)) -->
((tactile-mouth *)(do-nouth nouth)) ... )

Here | will describe several examples of learning concepts
given categories of activities, and two examples of learning
both categories and concepts, albeit finessing the roles
problem.

One study (reference removed for blind review) describes a
simulation of two agents, each of which adopts one of nine
behaviors, including crash, avoid, kiss, and so on. For
instance, A might try tavoid B while B tries tocrash A.

An interaction map was learned for each of the 81 pairs of
behaviors. Interaction maps have two axes, one
representing the distance between A and B, the other

Unfortunately, chains do not have enough structure to
solve what | call theoles problem. Roughly speaking, the
roles problem is to extract from a representation of activity

who did what to whom." The people who built Baby representing the derivative of distance. An interaction

(reference removed for blind review) report that the between A and B thus traces a traiectory throuah an
sensation of an object in the hand (wood or plastic) is . J y 9

caused by the same object that causes a sensation in th&'eraction map. Each point in an interaction map indexes
mouth, and this object is the same one Baby is mouthing.a probability distribution. In particular, from each point in

But the chain above doesn't say these things. It describes & map. the agents have different probabilities of making

common sequence of sensations, not a causal storycomaCt’ escaping, and engaging in a perpetual chase. On

involving Baby, crying, and grasping and mouthing an map was learned for each of the 81 .pairs of behavio_rs.
object. The chain representation contains too little These maps are concepts according to my earlier

information to recover the roles played by agents, objects gﬁ{g};%%nr;tgzeg ?Lee agqsatlrkaecufen;icct)it)r?gtgtl)tclyﬁ'otuh[igrrr::gii
and sensations in activities. For instance, it cannot assertmteractions) éna they identif)F/) roles. The roles information
preconditions, such as "one must be holding something in. : ' they ; o X

is provided a priori in the dimensions of the map, which



implicitly identify two participants in the metric "distance identify objects by feel as it attempts to gain a stable

from A to B." Interaction maps are learned in a supervised grasp around them. This is a very clear example of a

manner: For each map, thousands of interactions of thatconceptual activity — classifying objects —that arises out

type were simulated, and the probabilities of outcomes at of a purely sensorimotor activity.

each point in the map were learned. Thus, the learning

algorithm already knew the category of a behavior; it just Elman (1995) learned grammatical categories in a roughly

had to learn the corresponding concept, which it did similar way. He trained a recurrent neural network to

handily. predict the next word in sentences, then clustered words by
their hidden unit representations. Elman argues that

The same authors (reference removed for blind review) because the network was recurrent, the hidden units

developed an unsupervised version, where the systemrepresent the dynamics of sentences, that is, the transition

clusters training trajectories without knowing which  between words. Remarkably, the clusters of words appeal

behaviors generated them. With very little training, the to correspond to interesting grammatical categories such a:

system comes up with six clusters. Three represent types ofdirect object, verb, and so on. Elman's approach is

interaction where A escapes B. In the first kind of escape, supervised in the sense that the network gets feedback ol

B never gets close to A. In the second, B nearly reaches Awhat it is trying to learn, but unsupervised in the more

but A slips away. In the third, B's momentum causes it to important sense of inducing categories of words without

overshoot A, which escapes. The fourth cluster representsbeing told which categories the words belong to.

cases where B catches A. The fifth and sixth clusters

represent versions of perpetual chasing. Each cluster

corresponds to a category of activities, as | defined the

term earlier. The categories yield concepts by simply

averaging the trajectories within a cluster. The six | egrning Conceptsby Abstracting Over Dynamics

resulting average trajectories have the properties ascribed

to concepts. They are abstractions of activities, they

support inferences about the activities (i.e., whether A and

B will crash, escape one another, or enter a perpetual

chase) and they specify roles, albeit in the same

unsatisfactory way | described earlier.

These approaches have something in common. Starting
with a representation of the dynamics of an activity (or in
Elman's case, the dynamics of word transitions), cluster
trajectories with similar dynamics, then average the
elements in a cluster to get a concept. Although this
rT{nethod is extremely simple, it appears sufficient to learn
concepts given unclassified instances of activities (i.e.,
without supervision). The roles problem is still lurking —
all the examples in this section finessed it — but
abstraction over representations of the dynamics of
activities appears to be a promising approach to growing a
d conceptual structure.

What is remarkable about these results is that the syste
was not instructed to cluster trajectories by their outcomes.
But time series representations of activities are so
redundant that clustering by dynamics produces clusters
that have qualitatively different outcomes.

This lesson is repeated in two similar projects. Coelho an
Grupen (1997) showed how the dynamics of grasping
objects are sufficient to identify classes of objects. Very
roughly speaking, a robot hand attempts to grasp a
prismatic object by activating controllers that run to
convergence, attempting to minimize force residuals and
wrench residuals. The net effect of running these
controllers is that the fingers of the hand migrate over the
surface of the object until they achieve a stable grasp.
These migrations describe trajectories in the two-
dimensional error space. The union of all trajectories for a
given object is called a preimage, and the shape of the
preimage depends on the object geometry. Just as
Rosenstein et al. learned dynamical map representations of
the interactions of two agents, Coelho and Grupen learned
maps of the interactions between fingers and prismatic
blocks. The learning is supervised — the algorithm knows
what kind of block it is trying to pick up — but it clearly
produces concepts. In fact, when the hand conceptualizes
an interaction with an unidentified block as, say, grasping a
hexagonal prism, it can predict instabilities in the grasp
(i.e., entailments) and modify its grasp. The robot can
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arise from_the exercisin_g _o_f mptor schemas. | have arguedg  Rosch and C. B. Mervis. Family resemblances:
for the primacy of activities: Concepts may represent  gygies in the internal structure of categories. Cognitive
activities themselves or participants in the activities. The Psychology, 7:573--605, 1975
meanings of concepts (and conceptualizations) are just the ' ' '
inferences one can draw about activities and their
participants. These entailments are often predictions about .
how activities will unfold. | showed how activities can be E-. S Spelke, K . Breinlinger, J. Macomber, anq K.
clustered by their dynamics in an unsupervised way. This Jacobson. Origins of knowledge.. Psychological
provides abstract representations of activities which may ~Reéview, 99:605--632, 1992.
be used to predict how activities will unfold, but these
representations are concepts only because they finesse the
problem of identifying the participants in the activities and
the roles they play. | believe the roles problem is the only
remaining impediment to a complete (and implementable)
theory of how concepts are acquired through interaction.
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