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Abstract

Conceptual structures or ontologies are usually built by hand by skilled
knowledge engineers. This paper presents a theory of how conceptual
structure may be acquired by an intelligent agent interacting with its
environment in an unsupervised way. Categories of activities are learned, then
abstractions over these categories result in concepts. The entire conceptual
structure is based on activities. The meanings of concepts and of
conceptualizations of activities are discussed. Systems that implement aspects
of the theory are presented, and their general characteristics described.
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Introduction

The subject of this paper is the foundation of conceptual
systems.  In artificial intelligence, conceptual systems are
sometimes called ontologies and they are usually built by
highly-trained knowledge engineers.  It's less clear how
humans acquire conceptual systems, or rather, the scope of
the innate endowment is unclear.  In any case, if machines
could acquire conceptual knowledge with the same facility
as humans, then AI would be much better off.  Many
people think that our conceptual system is a prerequisite
for all sorts of intelligent processes, from analogical
reasoning to natural language understanding, from
reasoning under uncertainty to computer-assisted
cooperative work.  Lenat and Feigenbaum (1987) promised
us that a sufficiently large corpus of common sense
knowledge would "go critical" and start learning, by
reading, autonomously.  That hasn't happened yet, but
there's no denying the dream of a machine that knows
roughly what we know, organized roughly as we organize
it, with roughly the same values and motives as we have.

It makes sense, then, to ask how this knowledge is acquired
by humans and how might it be acquired by machines.  In
particular and for various reasons, I want to focus on the
origins of conceptual knowledge, the earliest distinctions
and classes, the first efforts to carve the world at its joints.
One reason is just the scientist's pleasure at getting to the
bottom of, or in this case the beginning of, anything.
Another reason is that the origin of conceptual systems is
currently hotly debated: Some people think that neonates
are born with moderately sophisticated conceptual systems
(e.g., Baillargeon, 1994; Carey and Gelman, 1991; Spelke
et al. 1992), others dispute this and seek an empiricist, or
non-nativist, account of development (e.g., Mandler, 1988,
1992).  I think one has to take a minimalist stance and
avoid innate knowledge in one’s explanations of the
acquisition of later knowledge.  Partly this reluctance
comes from years of slogging in AI, where it seems we
must always provide a lot of knowledge for our systems to
do relatively little with.  So I want to focus on the first
concepts because unless I do, then I'll have to provide them
by hand, which is a bore, and also makes me very uncertain
about the explanatory power of what follows.

To elaborate this last point, it is a commonplace in AI that
everything depends on representation---get the right set of
attributes, or the right representation of a game board, or
the right set of clinical terms, and problem solving is
relatively easy, usually just search of some kind. But surely
this means that the hard problem solving was done by us.
If instead we ask how does the machine come to
conceptualize the world this way rather than that, if we ask
the machine to form its own conceptual system, then we
don't have to do the hard work and our claims to
understanding intelligence are that much stronger.

The principal claim of this paper is that concepts can be
learned without supervision by abstracting over
representations of activities.  Piaget (1952) insisted that
concepts must arise out of activities — because simple
action schemas develop before conceptual thought — but
the mechanisms he proposed to explain concept acquisition
were vague by the standards of artificial intelligence.
Some implemented mechanisms are presented later in the
paper.  Between here and there I discuss some questions
raised by the claim that all concepts — even those that
represent static objects — are acquired from
representations of activity:  What are concepts; how do
they come to have meaning; why should agents learn them
rather than get them ready-made from programmers; how
are they learned; and what do these learning mechanisms
have in common?
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Concepts, Conceptualizations and Meaning

Definitions of concept differ but I believe all have in
common that concepts are abstractions.  Often, concepts
are taken to be abstractions over features or attributes of
objects; this is certainly the dominant view in machine
learning.  I want to use the mechanisms of machine
learning but I want to focus them not on the attributes of
objects but on the dynamics of activities.  Thus I define
concepts as abstract representations of activities including
the participants in and the entailments of the activities.
Figure 1 shows sketches of two concepts.  Both begin with
one agent, A, running toward another, B.  One of these
interactions develops into an embrace, the other into a
chase.  The entailments of these concepts are different, too:
the rush-to-embrace concept implies that A and B are
happy whereas the frighten-and-chase concept implies that
B is unhappy.

A B

A B

A B

rush to
embrace

frighten
and chase

A and B are 
happy

B is unhappy

Figure 1.  Illustrations of concepts for two activities, rush-to-
embrace and frighten-and-chase.  The participants or roles are
identified (A and B) as are some entailments (e.g., A and B are
happy).

Conceptualizations are instantiated concepts, formed by
binding the entities in an activity to the roles in a concept.
Suppose you are in an arrival lounge at the airport and you
see a child running at an adult getting off the airplane. By
binding the child to A and the adult to B in the rush-to-
embrace concept, one conceptualizes the activity. Were the
same child to run at another, younger child, the
conceptualization and its entailments would be different:
Interactions that are conceptualized as frighten-and-chase
often end in tears.

Activities mean nothing in and of themselves. Once
conceptualized, the meanings of activities are given by the
entailments of the concept.  We may infer that the child is
happy to see the adult getting off the airplane because we
have conceptualized his activity as a rush-to-embrace. (I
would rather give these concepts gensyms for names, to
emphasize that their meanings are entirely in their
entailments, but I will keep the descriptive names for
simplicity of exposition.)

This is just one of several possible accounts of meaning.
Other popular accounts include: Meaning is a formal
relationship between an assertion about the world and the
state of the world; the meaning of a concept is given by its
relationships to other concepts; and meaning is given by
reducing an assertion to semantic primitives.  Because I
want to build agents that learn concepts by interacting with
the world, I am most comfortable with the idea that the
meaning of a conceptualization of an interaction is the
inferences one can make about the interaction —the
entailments of the interaction — given the
conceptualization.  (I will discuss the meaning of concepts,
as opposed to conceptualizations, shortly.) Among the
entailments are predictions about how an interaction will
unfold. If you conceptualize reading an article (not this
one, I hope) as a chore, then you can anticipate discomfort,
tedium, and a growing desire for milk and cookies or
something stronger.  This is what it means for reading an
article to be a chore.  Another conceptualization — say
reading-as-intellectual-exploration — makes different
predictions.

If activities are meaningless until they are conceptualized,
are concepts meaningless until their roles are bound to
entities in activities?  That is, are concepts meaningless
until they are grounded in actual experience? Apparently
not, for I am trusting that you and I understand the meaning
of rushing-to-embrace without actually observing or
participating in the activity. I am trusting that your concept
rushing-to-embrace has more or less the same roles and
entailments as mine.  Perhaps I am counting on you to
imagine (i.e., conceptualize) an interaction, but I think we
can both contemplate the concept without instantiating it
physically or even mentally through imagination.

Doubtless some conceptualizations  feel more meaningful
than others — contrast embracing someone, observing an
embrace, imagining yourself embracing, watching an
embrace on television, reading about it in a novel with
good character development, and reading about it here.
These conceptualizations feel different partly because some
are richer than others in terms of the roles they specify and
partly because of the different affective responses to doing
something, reading about it, watching it, or imagining it.
Should the meanings of concepts and conceptualizations
include affective responses? In my current formulation,
concepts and conceptualizations may describe affect in
their entailments (e.g., A and B are happy), but affect itself
is not part of their meanings.  This seems forced:  The
meaning of embracing my wife resides in the statement
that we are happy, not the happiness itself! Eventually I
hope to offer a less disembodied account, in which the
meaning of conceptualizations (if not concepts) includes
not only inferences but also affective responses.

Concepts may refer to other concepts in their roles.  For
example, the frighten-and-chase concept may specify that
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entity A is a male-toddler-with-a-discipline-problem.
Suppose you see a male toddler thrashing and screaming at
the supermarket.  You conceptualize this activity as a
tantrum and you conceptualize the boy as a male-toddler-
with-a-discipline-problem.  What is the meaning of this
concept?  As before, meaning comes from entailments,
which in this case come from the activities in which the
concept participates.  Thus, the meaning of male-toddler-
with-a-discipline-problem is that he can have tantrums and
he can chase and frighten other kids.

Why Should Agents Learn Concepts?

What are concepts and ontologies for and why should they
be learned rather than constructed by knowlege engineers?
Imagine yourself to be a mobile robot wandering around
the lab.  What concepts do you need, and what will you do
with them?  Presumably you have some reactive routines to
keep you out of trouble.  These recognize aspects of your
internal state and the world state, and generate actions in
response; for example, when you detect an obstacle in your
path, you change direction or stop.  Suppose you have a
function obstacle-in-path that takes as input some
sensory information such as sonar readings.  As described,
the concept "obstacle" simply doesn't exist for you, the
robot.  It exists for the person who wrote the function
obstacle-in-path, but not for you.  You do not know
that obstacles may sometimes be pushed aside, although
you may have a function to push obstacles aside;  you do
not know that obstacles impede paths, although obstacles
impede your paths;  you do not even know what a path is,
although you trace one whenever you move.  You have no
conceptual structure whatsoever, just a bunch of routines to
keep out of trouble.   And why should you know anything,
if these routines work?  Why do you need concepts like
"obstacle" and "impede" and "path" at all?

The function obstacle-in-path was written by a
person who thought about all the situations you might
encounter and realized that some of them involve an
“obstacle” in your “path.”  Because this person
conceptualized your experiences, you have an appropriate
response to a common situation.  Your behavior is
organized around your programmer's conceptual structure.
This structure — of which you are innocent — serves you
well.  This is what concepts are for:  They give you
interpretations of your sensors, a basis for judgments that
situations are similar, and the distinctions on which you
decide what to do.  Concepts are necessary even when they
are not explicit.  We must stop deluding ourselves that a
robot or any other agent is capable of intelligent behavior
without a conceptual structure.   If obstacle-in-path
produces intelligent behavior, the intelligence must be
attributed to the programmer who dreamed up the concepts
"obstacle" and "path."  It's delusional to say, "Our robot
achieved so much with nothing more than a handful of
reactive routines";  the reactive routines are just the

business end of an entirely hidden but sophisticated
conceptual system.

Categories and Concepts

To this point I have argued that repertoires of even very
simple activities are based on conceptual systems.  Now I
will argue that conceptual systems can arise from activities.
This is not circular:  Concepts and activities bootstrap each
other. So how do we get concepts out of activity?  An
agent does things, like wave its arms, or traverse internet
links, or manipulate blocks, or chew on a frog, and
somehow concepts emerge.  How does this happen?

An intermediate step in the acquisition of concepts may be
the collation of categories. A category is a collection of
experiences that have something in common.  For instance,
the child in Figure 2 spends a lot of time reaching, grasping
and mouthing objects, so she may form a category of
reach-grasp-mouth activities and also a category of objects
that are reached for, grasped, and mouthed.  Following
Rosch (1975) concepts are “typical” category members,
although a concept may match no category member
exactly.  Moreover, a concept has entailments, whereas
category members do not (reference removed for blind
review).

Figure 2.  An infant grasps and mouths a frog

We have to be careful about how concepts are abstracted
from categories.  One account goes something like this:
Concepts are lists of necessary and sufficient, objective
conditions for something to be an instance of a concept,
categories are just the extensions of concepts —the things
that satisfy the concept definition —and the meanings of a
concept is just a list of other concepts to which this one is
related by relationships such as ISA and PART-OF.
Indeed, this view of how to get concepts from categories is
still dominant in supervised machine learning, where
training instances are categorized —given a class label — a
priori, and the task is to find necessary and sufficient
conditions for instances to be members of classes.
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Interactionism

There are many problems with this view.  As Lakoff
(1984) points out, human categories are not well described
by lists of necessary and sufficient conditions. Perhaps a
simple example will illustrate the problem:  There are three
toys in Figure 2 but one would be hard pressed to define
“toy” based on their attributes.  The frog is shiny, the
others are furry.  All are quadrapeds, and all have eyes, but
these aren’t  necessary or sufficient conditions for being a
toy.  Most cogently, the fact that we characterize these
things as toys doesn’t mean the infant does.  In fact, she
interacts with these objects quite differently.  She always
chews on the frog and very rarely chews on the others.  If
the infant formed categories based on how she interacted
with objects, then the frog would belong to a different
category than the other objects.

This of course is the liberating insight of Lakoff (1984) and
Johnson (1987).  In their interactionist view, category
distinctions are based on activity, so the frog belongs to a
category of things to grasp and chew, whereas the furry
toys belong to a category of things to wave about and rub
on one’s face.  The fact that we consider the frog a toy, and
a spoon a utensil doesn’t matter to this baby, who for the
longest time considered the spoon to be just another thing
to grasp and mouth. On the interactionist account, only
when she uses the spoon to eat food (Fig. 3) will she
differentiate it from the frog, and only then will she form
the category that we adults call “utensil.”

Figure 3.  An infant tries to feed herself

In the interactionist view, concept acquisition is
unsupervised:  Categories are not defined exogenously —
as so often happens with machine learning — but by
activities.  Concepts are abstractions of activities, their
participants and their entailments.

Left unexplained, however, is exactly how categories of
activities are extracted from ongoing streams of actions.
The problem for the infant child or intelligent agent has an
adult analog in basketball.  I watched the game for months
before I was able to recognize the pick-and-roll, the give-
and-go, the box-out, and so on.  And my learning was
supervised in no small part by the accompanying
commentary.  Imagine trying to learn these categories of
activities without the commentary.  The infant has an easier

job, perhaps, because she is often a participant in activities,
and they aren’t as complex.  Even so, she must find
recurrent patterns in complex streams of actions without
supervision.  Formulated this way, however, one can see
how she might succeed with any number of simple
techniques for finding patterns in time series.  The
following section will describe some implemented
mechanisms.

From Activities to Concepts

Here is the problem to be solved:  An agent such as a robot
is “born” with a small set of physical activities but no
conceptual system.  As it interacts with its environment, it
forms categories, and by induction over category instances,
concepts.  How does this work?  What innate structures are
required? This section presents some implemented methods
that solve parts of the problem and collectively might solve
the whole problem once they are  integrated into a single
system.  Following the synopses of these methods, I will
describe in general terms what they have in common.

Categories of Activities: Baby and the Roles
Problem

The first challenge for the infant child or agent is to form
categories of activities.  Keep in mind that these categories
are being learned while the activities themselves are being
learned. One formulation of the problem characterizes
experience as a trajectory through a state space of very
high dimension, where each dimension is a sensor such as
a sonar or a strain gauge.  Given this formulation, I
thought, naively, that the problem of finding categories of
activities becomes the problem of finding recurring time
series of sensations.  This idea is easily illustrated in the
Baby system (reference removed for blind review).

Baby is an agent that experiences a simulated world
through 26 sensor streams, including those encoding the
color and shape of what it is looking at, the position of its
hand, the angle of regard, hunger, boredom, and so on.
Baby learns fluents, which are regions in the streams that
don't change, or that change in regular ways.  Fluents can
be of any length.  Baby attends to the beginnings and ends
of fluents, and not to the interval in between, so it can find
long patterns in the streams without exponential search.

Baby learns fluents incrementally, further reducing its
computational burden.  First it finds all pairs of streams for
which a change in one predicted a change in the other.
Then it searches in these pairs of streams for specific token
values that predict each other (e.g., turning its head to its
limiting angle predicts white in the sight-color stream
because white is the color of the crib bars, which are seen
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when Baby turns its head to its full extent.)  Then Baby
learns longer chains of these predictive rules.  Here are
two:

(CHAIN
 ((tactile-mouth none) (voice cry))
 ((tactile-hand wood) (hand close))
 ((tactile-mouth wood)(do-mouth mouth)))

(CHAIN
 ((tactile-mouth none) (voice cry))
 ((tactile-hand plastic) (hand close))
 ((tactile-mouth plastic)(do-mouth mouth)))

The chains are obviously very similar:  Each represents an
activity in which Baby has nothing in its mouth and is
crying, then it has something in its hand (wooden or
plastic) and its hand is closed, then it has something
(wooden or plastic) in its mouth and it is mouthing.  These
fluents would appear to be the sort of thing I called
members of a category of activity — representations of
activity that are very similar.  Following the presciptions of
earlier sections, the next step would be to form a category
prototype,

(CHAIN
 ((tactile-mouth none) (voice cry))
 ((tactile-hand *) (hand close))
 ((tactile-mouth *)(do-mouth mouth))),

and then a concept, which might look something like this:

(concept: self comfort
activity:

 ((tactile-mouth none) (voice cry))
 ((tactile-hand *) (hand close))
 ((tactile-mouth *)(do-mouth mouth)))
entailments:
((tactile-mouth none) (voice cry)) -->
((tactile-hand *) (hand close))

((tactile-hand *) (hand close)) -->
((tactile-mouth *)(do-mouth mouth)) ... )

Unfortunately, chains do not have enough structure to
solve what I call the roles problem.  Roughly speaking, the
roles problem is to extract from a representation of activity
"who did what to whom." The people who built Baby
(reference removed for blind review) report that the
sensation of an object in the hand (wood or plastic) is
caused by the same object that causes a sensation in the
mouth, and this object is the same one Baby is mouthing.
But the chain above doesn't say these things.  It describes a
common sequence of sensations, not a causal story
involving Baby, crying, and grasping and mouthing an
object.  The chain representation contains too little
information to recover the roles played by agents, objects
and sensations in activities.  For instance, it cannot assert
preconditions, such as "one must be holding something in

order to mouth it."

One manifestation of this problem is that Baby learned a
lot of "junk" fluents in addition to those above.  These are
statistically significant associations of sensations that
correspond to no coherent causal story.  For example, one
component of a chain would describe a tactile sensation,
another would note that the lights are off, and a third would
report the angle of the head.  While these sensations are
indubitably associated in a significant proportion of Baby's
activities, the chain doesn't describe those activities.

The roles problem is typically finessed by providing innate
roles or an activity template that biases what agents learn
(e.g., Drescher, 1991).  As a minimalist I am reluctant to do
this.   I don't know of any work in AI on the roles problem,
yet it gets in the way of all our attempts to make an agent
learn concepts through interaction, and I suspect it will
prove a stumbling block to anyone who tries.

In sum, Baby could find recurrent patterns of sensations
without supervision, but one cannot claim that it found
activities in streams, because the patterns it found had none
of the causal structure — the participants, what they did,
and what happened as a result — that we expect of
representations of activities.  This is unfortunate, because
Baby is an extremely simple, robust, incremental algorithm
that produces easily generalized fluents (as shown earlier).
If these fluents specified roles, then Baby would be a good
candidate to learn categories of activities, and then
concepts.

From Categories to Concepts

Here I will describe several examples of learning concepts
given categories of activities, and two examples of learning
both categories and concepts, albeit finessing the roles
problem.

One study (reference removed for blind review) describes a
simulation of two agents, each of which adopts one of nine
behaviors, including crash, avoid, kiss, and so on. For
instance, A might try to avoid B while B tries to crash  A.
An interaction map  was learned for each of the 81 pairs of
behaviors.  Interaction maps have two axes, one
representing the distance between A and B, the other
representing the derivative of distance.  An interaction
between A and B thus traces a trajectory through an
interaction map.  Each point in an interaction map indexes
a probability distribution.  In particular, from each point in
a map, the agents have different probabilities of making
contact, escaping, and engaging in a perpetual chase.  One
map was learned for each of the 81 pairs of behaviors.
These maps are concepts according to my earlier
definition: They are abstractions of activities, they have
entailments (i.e., they make predictions about outcomes of
interactions) and they identify roles. The roles information
is provided a priori in the dimensions of the map, which
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implicitly identify two participants in the metric "distance
from A to B."  Interaction maps are learned in a supervised
manner:  For each map, thousands of interactions of that
type were simulated, and the probabilities of outcomes at
each point in the map were learned.  Thus, the learning
algorithm already knew the category of a behavior; it just
had to learn the corresponding concept, which it did
handily.

The same authors (reference removed for blind review)
developed an unsupervised version, where the system
clusters training trajectories without knowing which
behaviors generated them.  With very little training, the
system comes up with six clusters. Three represent types of
interaction where A escapes B.  In the first kind of escape,
B never gets close to A.  In the second, B nearly reaches A,
but A slips away.  In the third, B’s momentum causes it to
overshoot A, which escapes.  The fourth cluster represents
cases where B catches A.  The fifth and sixth clusters
represent versions of perpetual chasing.  Each cluster
corresponds to a category of activities, as I defined the
term earlier.  The categories yield concepts by simply
averaging the trajectories within a cluster.  The six
resulting average trajectories have the properties ascribed
to concepts.  They are abstractions of activities, they
support inferences about the activities (i.e., whether A and
B will crash, escape one another, or enter a perpetual
chase) and they specify roles, albeit in the same
unsatisfactory way I described earlier.

What is remarkable about these results is that the system
was not instructed to cluster trajectories by their outcomes.
But time series representations of activities are so
redundant that clustering by dynamics produces clusters
that have qualitatively different outcomes.

This lesson is repeated in two similar projects. Coelho and
Grupen (1997) showed how the dynamics of grasping
objects are sufficient to identify classes of objects. Very
roughly speaking, a robot hand attempts to grasp a
prismatic object by activating controllers that run to
convergence, attempting to minimize force residuals and
wrench residuals.  The net effect of running these
controllers is that the fingers of the hand migrate over the
surface of the object until they achieve a stable grasp.
These migrations describe trajectories in the two-
dimensional error space.  The union of all trajectories for a
given object is called a preimage, and the shape of the
preimage depends on the object geometry.  Just as
Rosenstein et al. learned dynamical map representations of
the interactions of two agents, Coelho and Grupen learned
maps of the interactions between fingers and prismatic
blocks.   The learning is supervised — the algorithm knows
what kind of block it is trying to pick up — but it clearly
produces concepts.  In fact, when the hand conceptualizes
an interaction with an unidentified block as, say, grasping a
hexagonal prism, it can predict instabilities in the grasp
(i.e., entailments) and modify its grasp.  The robot can

identify objects by  feel as  it attempts to gain a stable
grasp around them.  This is a very clear example of a
conceptual activity — classifying objects —that arises out
of a purely sensorimotor activity.

Elman (1995) learned grammatical categories in a roughly
similar way.  He trained a recurrent neural network to
predict the next word in sentences, then clustered words by
their hidden unit representations. Elman argues that
because  the network was recurrent, the hidden units
represent the dynamics of sentences, that is, the transitions
between words.  Remarkably, the clusters of words appear
to correspond to interesting grammatical categories such as
direct object, verb, and so on.  Elman's approach is
supervised in the sense that the network gets feedback on
what it is trying to learn, but unsupervised in the more
important sense of inducing categories of words without
being told which categories the words belong to.

Learning Concepts by Abstracting Over Dynamics

These approaches have something in common. Starting
with a representation of the dynamics of an activity (or in
Elman's case, the dynamics of word transitions), cluster
trajectories with similar dynamics, then average the
elements in a cluster to get a concept. Although this
method is extremely simple, it appears sufficient to learn
concepts given unclassified instances of activities (i.e.,
without supervision).  The roles problem is still lurking —
all the examples in this section finessed it — but
abstraction over representations of the dynamics of
activities appears to be a promising approach to growing a
conceptual structure.
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Conclusion

The principal claim of this paper is that agents may grow
their own ontologies, unsupervised by us, by interacting
with their environments, and this is a good thing for them
to do.  Success would also address a longstanding problem
in human development, namely, how conceptual systems
arise from the exercising of motor schemas.  I have argued
for the primacy of activities:  Concepts may represent
activities themselves or participants in the activities.  The
meanings of concepts (and conceptualizations) are just the
inferences one can draw about activities and their
participants.  These entailments are often predictions about
how activities will unfold.  I showed how activities can be
clustered by their dynamics in an unsupervised way.  This
provides abstract representations of activities which may
be used to predict how activities will unfold, but these
representations are concepts only because they finesse the
problem of identifying the participants in the activities and
the roles they play.  I believe the roles problem is the only
remaining impediment to a complete (and implementable)
theory of how concepts are acquired through interaction.
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