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Abstract. This paper describes a formal representation of the discov-

ery process that e�ciently integrates of any number of data analysis

strategies, regardless of their similarities and di�erences. We have im-

plemented a system based on this formalization, called the Scientist's
Empirical Assistant (SEA). SEA employs several analysis strategies from

the discovery literature, including techniques for function �nding, causal

modeling, and Bayesian conditioning. It uses high-level knowledge about
the discovery process, the strategies, and the domain of study to coordi-

nate the selection and application of analyses. It relies on the skills and

initiatives of an expert user to guide its search for structure. Finally, it
designs and runs experiments with a simulator to verify its �ndings.

SEA is currently capable of performing a full cycle of discovery and anal-

ysis, from hypothesis formulation to experiment design, data collection,

analysis, and the generation of explanatory hypotheses. In addition, the

formalization on which it is based provides an environment for studying

the how, what, why, and when of intelligent data analysis.
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1 Motivation

Data analysis is not simply a matter of applying a formula to a set of data: it is a

complex process that involves selecting an appropriate representation, designing

an analysis strategy, gathering data into an appropriate format, applying the

formula(e), and explaining the results. Thus, if we want data analysis programs

that behave intelligently, they must be designed to accomodate each of these

tasks.

Recent research in Machine Learning and Scienti�c Discovery indicates that

systems with 
exible analysis strategies and a variety of representations are more

pro�cient at uncovering structure in data. There are several reasons to suspect

this is true. First, in having several techniques to choose from, a system can select

the one most suited to the analysis problem at hand (e.g. [2]). Second, integrated

systems have the advantage of supplementing one kind of result with others,

information which often constitutes an explanation of previous �ndings (e.g. [7]).

Finally, interesting structure is often discovered in the process of shifting from

one representation to another [10]. Thus, there is a signi�cant advantage to

integrated discovery systems.

This paper describes our approach to the integration of analysis techniques

and a system, called the Scientist's Empirical Assistant (SEA), that implements

this view. Section 2 presents an example of complex data analysis that employs a

variety of strategies and representations. We then make several high-level obser-

vations about the analysis process to motivate our design, which is described in

section 4. Finally, we describe the key contributions and identify areas of future

work.



2 Example

We begin with a detailed example of data analysis to show how di�erent strate-

gies and representations might be employed to discover structure within data.

This analysis was originally performed manually, as described in [5], and has

subsequently been replicated by SEA under the guidance of a human user.

The example focuses on a real-world problem from the domain of parallel

computing. Parallel architectures employ several processing units that work in

conjunction to solve problems more quickly than is possible on a single processor.

In theory, P processors should reduce the overall running time by a factor of P ;

for example, N unit-time tasks should be executed in time T = N=P . In practice,

connectivity among the processors and interdepencies among the tasks have a

signi�cant impact on performance, because some processors may be forced to

remain idle for long periods of time. To deal with this problem, designers are

highly concerned with policies for balancing the load among processors, to ensure

that idle periods are a brief as possible.

In this problem, data analysis is used to discover the properties of two load-

balancing policies for a particular parallel architecture on a speci�c kind of com-

puting task.1 Simulations of the architecture and stochastically-generated input

problems generate the data used in analysis. The simulation is con�gured by

three parameters: the number of processors, P , the load-balancing policy, �,

and an input parameter, �. Among the values output by the simulator are the

net running time, T , and the number of unit-sized tasks, N . Simulation of both

policies on architectures of di�erent sizes and various input settings yielded a

preliminary dataset of 360 data points containing the variables �, P , �, N , and

T .

The purpose of the analysis is to determine whether optimal performance

is achieved; that is, we want to determine if T = N=P . Given the preliminary

dataset, the �rst strategy is to try a t-test on the paired samples of T and N=P .

The test indicates that T and N=P are not signi�cantly di�erent, which lends

support to the hypothesis but cannot be considered conclusive evidence (i.e.

the test cannot accept the null hypothesis T = N=P ). Thus we must consider

additional strategies for testing the hypothesis.

A simple manipulation of data suggests a new strategy: if T = N=P , the

di�erence � = T � N=P should be approximately 0. At �rst glance it appears

we are simply replicating the �rst analysis, but the variance of � is much smaller

than that of T , making signi�cant results more likely. Indeed, a one-sample t-

test whether � has mean 0 yields a signi�cant result, rejecting the hypothesis that

� = 0 and concluding that � > 0. This �nding contradicts the initial hypothesis,

so we look for factors that predict the value of �.

To decide which factors in
uence �, it is necessary to bring in a new repre-

sentation for the relationship between � and other variables. In this case, we are

interested in dependencies among variables; for example, whether the value of

1 Detailed descriptions of the architecture, the task, and the policies are irrelevant to

the ensuing discussion, so we refer the interested reader to [5] for more information.



� depends on P . Heuristic rules generate hypotheses about potential dependen-

cies: � might depend on any of P , �, �, or N .2

The new representation indicates a di�erent set of analysis strategies which

are applied in turn. P , �, and � are independent variables and can thus be con-

sidered discrete-valued for analysis, so one-factor analysis of variance (ANOVA)

is employed. N is strictly numeric so its in
uence is tested with linear regression.

From these analyses, we �nd that P , �, and N all have signi�cant e�ects on �,

but � does not.

At this point, there are several possibilities for further analysis. We can use

two-factor ANOVA to determine whether there is an interaction between P and

�. We can explore the separate e�ects of P or � on the relationship between

N and �. Or, we might skip both of these tasks and immediately start exploring

the combined e�ects of P and � on the relationship between N and �.

Regardless of the approach initially chosen, we eventually arrive at several

interesting results: the slope of the regression of � on N increases as P increases;

the slope is consistently larger for one of the policies given each value of P ; the

slope is non-zero for some combinations of P and �, but not all. These results

can be explained by external knowledge about the load-balancing problem. As

P increases, it is more likely that some processors will become idle during the

computation, regardless of the load-balancing policy employed. One policy does

a better job at balancing the load, and this policy apparently behaves optimally

(i.e. the slope is approximately 0) for some values of P . These results are quite

useful to the designer, who now has empirical evidence that a certain con�gura-

tion will utilize its resources e�ectively.

3 Observations

The example described above has several important features that are common

to data analysis. First, it shows that analysis is not simply a matter of applying

a formula to obtain a result | it is an iterative process that relies heavily on

context and previous results to identify which formula is appropriate and how

the results should be interpreted. Second, the goal of data analysis is to develop

a model that accurately predicts the values of variables, and this goal is attained

through variance reduction techniques. Finally, the model should correspond to

the true structure of the world, so its predictions must be reconciled with higher-

level knowledge of the domain. Often, one or more of these features is overlooked

by the designers of data analysis systems.

3.1 A Complex, Knowledge-Intensive Process

Data analysis is an iterative process consisting of several stages. First, the ques-

tion to be addressed by analysis is formalized as a hypothesis; for example, the

question of whether an architecture performs optimally is initially represented

2 By de�nition � depends on T , so this hypothesis is not generated.



by the hypothesis T = N=P . The form of the hypothesis produces strategies for

analysis: the \=" in T = N=P indicates that we might try a t-test. Next, obser-

vations of real behavior are collected and arranged in the required format. The

analysis strategy supplies a formula that is applied to the observations, yield-

ing a result. Finally, the result must be explained by considering the reasons it

may occur; for example, T = N=P can be explained by � = 0.3 The task of

explanation often generates new hypotheses, and the whole process repeats.

Every data analysis system must consider each of these stages, but none has

automated all of them. Statistical packages provide facilities for hypothesis test-

ing, but must rely on the user to formulate hypotheses, select the appropriate

analysis, prepare the data, and explain the results. Intelligent discovery systems,

such as Bacon [6], Tetrad [4], and C4.5 [8], formulate hypotheses of a speci�c

form and then perform analysis in this context, but rarely have facilities for

gathering and preparing data or explaining the results of analysis. Other dis-

covery systems have addressed these latter concerns in the context of certain

domains; for example, Fahrenheit [11] deals with issues of experiment design

within the domain of chemistry. Unfortunately, none of these systems supports

all the stages in a 
exible, domain-independent manner.

There are good reasons why intelligent data analysis has been restricted to

certain domains or speci�c types of hypothesis. First, each stage of the process

may produce several potential courses of action, and selecting among these al-

ternatives is a nontrivial task. By focusing on a speci�c domain or hypothesis

test, it is possible to minimize the number of choices and to formalize policies

for decision-making. Second, experiment design and data collection are di�cult

to automate, because they rely heavily on domain knowledge and the ability to

interface with the physical world. Again, restricting the context makes automa-

tion possible. Finally, explaining results requires a deep semantic knowledge of

the domain, the source of the data, the underlying assumptions, and valid in-

terpretations of the analysis. In sum, it is the complexity of the analysis process

and the need for high-level knowledge that restricts the cabilities of data analysis

systems.

3.2 Reduction of Variance

The desired outcome of analysis is a formal model of behavior that yields accu-

rate predictions about the values of variables. Prediction accuracy is measured by

variance, the di�erence between predictions and actual observations. Data anal-

ysis is a mechanism for explaining variance, to identify which factors contribute

to it. When successful, analysis indicates that a model will continue making ac-

curate predictions; on failure, it means that the model should be modi�ed to

account for more of the variance. Thus, variance reduction is a major principle

behind intelligent data analysis.

3 The reader may question whether � = 0 is truly an explanation of the �nding T =
N=P . However, it is not the hypothesis � = 0 itself, but the subsequent justi�cation

of this hypothesis that constitutes an explanation.



Let us consider how this variance reduction principle takes form in some

more common analysis strategies. Analysis of variance is a parametric technique

that decides whether a categorical variable X in
uences the value of numeric

variable Y . This decision is directly based on the variance reduction principle: if

the variance of Y is signi�cantly reduced by accounting for X, then X in
uences

Y . The t-test decides whether two values can be considered equal given the

background variance; signi�cant results are more likely when variance is reduced.

Linear regression determines if a linear relationship exists between two numeric

variables; again, smaller variance makes a signi�cant result more likely. All of

these techniques are based on the generalized linear model, which decomposes

net variance into a sum of e�ects for each factor, interactions between factors,

and underlying background variance.

Other techniques that do not explicitly incorporate statistical variance still

make use of this principle. Bayesian conditioning, for example, compares the

prior probability of an event A, given only background knowledge, with its pos-

terior probability given a speci�c condition B. When the posterior probability

is large compared to the prior, we conclude that B is useful for predicting A,

thereby reducing the prediction error, or variance.

3.3 Identifying True Structure

Models that make accurate predictions are desirable because, in principle, the

most accurate model is one that captures the true structure of the world. In

practice, this is not always the case: background variance, missing or censored

data, measurement error, and faulty conclusions may lead to an accurate model

that has little to do with the mechanisms that generate behavior. Thus, it is

important to distinguish real e�ects from those that appear (or do not appear)

in the data.

Unfortunately, the problem of deciding whether an e�ect is real or not may

never be resolved. This is due to a problem we call the limit of perspective: in

order to perform analysis, a speci�c perspective on the problem must be estab-

lished, and any such perspective is necessarily limited in its ability to ascertain

the truth.

With respect to data analysis, there are three such limiting factors. First,

analysis is limited to the observations that are gathered and evaluated. Since it

is not feasible to record all possible observations, the range of behaviors captured

in data is restricted. Of course, through random sampling we can assume that

all interesting behaviors will be re
ected in the data, but we cannot guarantee

this is so.

Second is the notorious latent variable problem: analysis focuses on a speci�c

set of variables, and we cannot be sure that all relevant variables have been

included in the set. Thus, it is desirable to be able to incorporate new variables as

analysis proceeds, an event that often leads to deeper understanding of behavior.

For example, consider the advances following the discovery of the \atom" in

chemistry or the \tectonic plates" in geology.



Finally, the models themselves impose a speci�c, limited perspective from

which to view the data. For example, the model T = N=P depicts equivalence

between the values of T and N=P , but it does not consider any underlying causal

relationships or the precedence among variables. On the other hand, a causal

model describes direct, causal in
uences, but does not expose the mechanism

responsible for these e�ects. Thus, any type of model is restricted in the reality

it can represent.

These problems lead to the observation that no level of data analysis can

identify the true structure in data. That being the case, how is it that data anal-

ysis has become a widely accepted approach to scienti�c modeling? It is because

analysis is only part of the process: the real power lies in the correspondence

between analysis and theory, the mapping between the semantics of the model

and the mechanisms underlying behavior. In establishing and justifying such

relationships, data analysis leads to a sound theory grounded in the real world.

4 The Scientist's Empirical Assistant

We have incorporated these principles into an intelligent discovery agent, the

Scientist's Empirical Assistant (SEA). The design takes a meta-perspective on

the problem of automated data analysis, isolating the domain- and task- speci�c

issues from the high-level concerns discussed above.

To circumvent some of the trickier problems with the discovery process, we

make two simplifying assumptions. First, SEA works in conjunction with a hu-

man user who is an expert in the domain of study and can supply external

domain knowledge, make strategic decisions, and establish exploration goals.

Because human scientists rarely work in complete isolation, it is reasonable that

our 
edgling scientist should rely on the experience and knowledge of an expert.

Second, SEA assumes that empirical observations are generated by a simulator,

so it can design and run its own experiments on-line during analysis. Again,

this is a reasonable assumption because simulations are intended to re
ect the

underlying processes and relevant properties of their real-world counterparts.

SEA is a working system that has been used to replicate the study described

in section 2. Given an initial hypothesis input by the user, it de�nes an analysis

strategy, collects experiment data, performs statistical tests, and explains the

results of analysis, often by generating new hypotheses.

4.1 Control Architecture

SEA accomodates the iterative, multi-stage process of data analysis through

partial-hierarchical planning (PHP) [3]. Planning is the problem of selecting a

sequence of actions that move the system from its current state to some desired,

or goal, state. SEA has the high-level goal of deriving a predictive model, and

this goal takes di�erent forms depending on the stage of analysis and the con-

tents of the model. For example, when the model is empty, the goal is to de�ne

some variables and generate predictive statements about their behavior; when



a hypothesis is generated, the goal is to test it against empirical data. Because

the goals can change so frequently, the planner is reactive, which means that it

executes actions while it is planning.

Actions in PHP are structured control constructs called partial plans, or

simply plans. Each plan satis�es a speci�c goal that moves the system closer to

its desired state. In addition, plans may post new goals, which in turn trigger

some set of matching plans. This results in a hierarchy of goals which induces a

hierarchy of potential actions.

A plan contains a procedural representation of the steps in an action, at either

an abstract or explicit level. For example, the plan for a t-test is to compute

means and variances from data, apply the formula for the t statistic, lookup

the probability of obtaining that value, and reach a conclusion based on the

probability. Plans may contain iteration, conditionals, executable statements,

variable bindings, and subgoals; thus, the planning language is essentially a high-

level programming language.

The planner used by SEA was developed by St. Amant [9] and applied to

the problem of exploratory data analysis. In addition to the basic PHP mech-

anisms mentioned above, the planner includes two important features. First, it

can be easily extended to accomodate new control constructs in the planning

language. More importantly, the planner provides a facility for managing the

decision points in planning through a meta-planner. Whenever a goal can be

satis�ed by multiple plans, the planner creates a focus point to keep track of the

alternatives. At any time, SEA can abandon its current course of action in favor

of another alternative from any existing focus point. The meta-planner manages

such decisions, using its own set of plans to decide which focus point to select

and which alternative should be pursued.

The user's strategic expertise is also incorporated through the focusing mech-

anism. Whenever a focus point is encountered, the absence of relevant meta-plans

indicates that the user should decide which option to pursue. As with the meta-

planner, the user can interrupt processing at any time to select an alternative

strategy. Thus, the user is sometimes treated as the \default meta-planner".

4.2 Data structures

SEA has plans that implement the many tasks of data analysis, such as hypoth-

esis generation, analysis planning, experiment design, statistical computations,

and explanation of results. Each of these tasks involves manipulation and trans-

formation of certain data structures; for example, analysis planning involves a

transformation from a hypothesis to an analysis strategy. Because the tasks are

distinguished at a high level by the data structures they work with, we brie
y

describe the primary data structures and their place in analysis.

Variables represent features of the world that are considered during analysis.

In some sense, variables are a bridge between the symbolic world of the model and

the value-based world of observations. As such, the variable data structure carries

information that relates its symbol to its values. For example, each variable

represents data of a certain type, such as categorical, boolean, or numeric. With



respect to experiment design, it is also important to know whether the variable

represents a parameter that can be externally controlled, or a measurement

that depends on behavior. This type of information determines the role of each

variable in modeling; for example, it is not necessary to predict the value of

controlled variables.

Variables are used to formulate statements about behavior. Statements are

contentful, structured expressions that make predictions about the values that

will be observed. Some of the statements currently supported by SEA include

dependency and causation, equality and inequality, and the e�ects of treatment

variables. Statements constitute the domain knowledge SEA manipulates during

analysis; some statements are treated as assumptions provided by the user, while

others are research questions to be addressed by data analysis.

Hypotheses are empirical questions that can be tested directly. The di�erence

between statements and hypotheses is subtle, because the tasks of prediction

and evaluation are highly interdependent. However, the distinction is useful for

reasoning about data analysis, because the implicit mapping from predictive

statement to hypothesis test is made explicit. In our formulation, statements

cannot be tested directly, only through veri�cation of supporting hypotheses.

SEA uses heuristic rules to generate hypotheses that re
ect the implications

of a statement; for example, the statement T = N=P has several implications:

both N and P a�ect the value of T (dependency); the value of T is equivalent to

N=P (equality); and the error � = T � N=P is zero (constant di�erence). Each

such hypothesis is then tested, and the conclusion is used to verify or reject the

original statement.

Each hypothesis has one or more analysis strategies that will produce a con-

clusion about its validity. Analyses often implement statistical hypothesis tests,

but they may also be based on deductive techniques, computer-intensive resam-

pling, or prospective experimentation. Each result derived through analysis must

be explained, a task which often generates new hypotheses.

Statistical analyses rely on observational data that is accessed by generating

a data request. The data request contains a set of variables and values for inde-

pendent variables, as well as sampling assumptions the data should conform to

(e.g. whether samples are independent or steps in a time series). Data requests

extract the desired data from available experiment datasets. If no applicable data

can be found, the data request will generate an experiment plan which is used

to collect a new dataset with the speci�ed parameters. Experiment plans are

protocols for data collection, specifying sample values for independent variables

and rules for taking observations. Experiment plans rely on the instrumentation

package CLIP [1] to run the experiment and collect data.

4.3 Meta-Level Strategy

The planner selects and applies plans to manipulate the primary data structures

according to a high-level plan for data analysis. This high-level plan alternately

creates new data structures and then posts a goal to gather relevant supporting

information; for example, variables are supported by predictive statements about



their values, and analyses are supported by experiment data. An outline of this

process is depicted in �gure 1.

Extend-hypothesis

Clip

Simulator

Collect-data

Dataset*

Experiment-plan*
Do-analysis

Test-hypothesis

Hypothesis*

Test-statement
Add-statement

Variable* Statement*

Data-request*

View*

Model

Analysis-plan*

Make-statement

User PlannerDescribe-variable

Explain-result

Fig. 1. An overview SEA's data analysis strategy.

Unfortunately, data analysis is not a purely algorithmic task, so this control

strategy must be modi�ed to accomodate the sometimes exploratory nature of

data analysis. If we view the control strategy as a search process, the basic

algorithm is a depth-�rst search. We can modify the search by identifying rules

for selecting the next node to expand; these rules are implemented as meta-plans.

Meta plans select a new plan (search node) based on the current state of the

system, including the current goals.

5 Conclusions and Future Work

SEA integrates a variety of analysis strategies for di�erent representations. Inte-

grating representations and their various strategies is an important problem in

intelligent data analysis.

SEA incorporates much-needed external knowledge, both in terms of domain

facts and e�cient strategies. Techniques for incorporating domain knowledge

are encoded in the plans, inducing a tradeo� between generality and expressive

power. Because the purpose of domain knowledge is primarily expressive power,

we are not terribly concerned with the loss of generality. However, we would

like to note that the procedural nature of the plans provides all the generality

that is needed: data analysis is a process, and plans are a general, well-de�ned

representation for processes.

SEA provides an opportunity for studying the high-level strategies employed

by expert scientists. These can be addressed formally, by symbolically encoding



these strategies as meta-plans, or informally, by observing the behavior of expert

scientists using the system. An important area of future work is to incorporate

unsupervised and/or supervised learning methods to automatically develop high-

level analysis strategies through experience with an expert user.

SEA needs to be formally evaluated. First we need to evaluate its generality

by trying a variety of analysis problems. Then we need to determine its pro�-

ciency as a scienti�c assistant by considering performance in three conditions:

the user alone, SEA alone, and SEA and the user together.

SEA is a testbed for the study of analysis and discovery methods. It provides

the opportunity to compare and contrast alternative strategies and/or represen-

tations. The application of these methods to real-world problems helps determine

their strengths and weaknesses. It also provides the opportunity to develop new

discovery heuristics, including the implications of external knowledge and meta-

level strategies. This is due to its formalization of the data analysis process.

References

1. Scott D. Anderson, Adam Carlson, David L. Westbrook, David M. Hart, and

Paul R. Cohen. Clasp/Clip: Common Lisp Analytical Statistics Pack-
age/Common Lisp Instrumentation Package. Technical Report 93-55, Computer

Science Department, University of Massachusetts at Amherst, 1993.

2. Carla E. Brodley. Addressing the selective superiority problem: Automatic algo-
rithm/model class selection. In Proceedings of the Tenth International Machine

Learning Conference, pages 17{24, 1993.

3. Michael P. George� and Amy L. Lansky. Procedural knowledge. Proceedings of
the IEEE Special Issue on Knowledge Representation, 74(10):1383{1398, 1986.

4. Clark Glymour, Richard Scheines, Peter Spirtes, and Kevin Kelly. Discover-

ing Causal Structure: Arti�cial Intelligence, Philosophy of Science, and Statistical
Modeling. Academic Press, Orlando, FL, 1987.

5. Dawn Gregory, Lixin Gao, Arnold L. Rosenberg, and Paul R. Cohen. An empirical

study of dynamic scheduling on rings of processors. In Eighth IEEE Symposium

on Parallel and Distributed Processing, 1996. To appear.

6. Pat Langley, Herbert A. Simon, Gary L. Bradshaw, and Jan M. Zytkow. Scien-

ti�c Discovery: Computational Explorations of the Creative Processes. MIT Press,

Cambridge, MA, 1987.

7. Bernd Nordhausen and Pat Langley. An integrated approach to empirical discov-

ery. In Je� Shrager and Pat Langley, editors, Computational Models of Scienti�c
Discovery and Theory Formation. Morgan Kaufmann, 1990.

8. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

9. Robert St. Amant and Paul R. Cohen. A planner for exploratory data analysis. In
Proceedings of the Third International Conference on Arti�cial Intelligence Plan-

ning Systems, pages 205{212. AAAI Press, 1996.

10. Raul E. Valdes-Perez. Some recent human/computer discoveries in science and

what accounts for them. AI Magazine, 16(3):37{44, 1995.

11. Jan M. Zytkow, Jieming Zhu, and Abul Hussam. Automated discovery in a chem-

istry laboratory. In Proceedings of the 8th National Conference on Arti�cial Intel-

ligence (AAAI-90), pages 889{894, 1990.

This article was processed using the LaTEX macro package with LLNCS style


