
Intelligent Assistance for Computational Scientists:

Integrated modelling, experimentation, and analysis

Dawn E. Gregory Paul R. Cohen

Experimental Knowledge Systems Laboratory

Computer Science Department, LGRC

University of Massachusetts

Box 34610, Amherst, MA 01003-4610

fgregory,coheng@cs.umass.edu

1. Introduction

Computing technology has changed the way scientists work. Among the contributions of this

new paradigm are the computational sciences, which involve the study of computer simulations

rather than physical systems. This transition to a simulated world carries with it an important

scienti�c advantage: the opportunity to run experiments that are expensive, dangerous, or impos-

sible in the real world. Unfortunately, such experiments are often too easy, and the scientist is

overwhelmed with empirical data.

The �elds of Arti�cial Intelligence (AI) and Statistics are concerned with modelling and ana-

lyzing such large bodies of data. AI employs heuristic reasoning and knowledge to select potential

models, and statistical analysis veri�es a proposed model. The combination of knowledge-based,

heuristic, and statistical techniques is quite successful at modelling experiment data (e.g. [11]).

Our goal is to provide an intelligent, integrated environment for scienti�c modelling, experimen-

tation, and analysis, called the Scientist's Empirical Assistant (sea). Sea is an assistant to human

scientists: it automates model generation and veri�cation, experiment design and data collection,

but also relies on a human user for guidance, domain knowledge, and decision-making. Sea designs

and runs prospective experiments with a simulator, allowing it to draw stronger conclusions than

with post-hoc data analysis alone.

Sea employs a variety of techniques from both AI and Statistics. It uses heuristic- and

knowledge-based reasoning to propose models, design experiments, and select analyses. It ap-

plies statistical techniques to verify models against experiment data. It develops plans to direct its

course of action, and learns which plans are most successful based on past experience. Finally, it

models the knowledge of the user to ensure its suggestions and decisions are appropriate.

1.1 A Real-World Example

We begin by describing a real-world study of simulation behavior that illustrates the important

features of an automated scienti�c assistant. In this study, a variety of techniques and strategies

are employed in the comparison of two policies for balancing a computational load among the

processors in a network. The details of this study are documented elsewhere [7].

Simulatingnetwork performance on randomly generated loads allows us to resolve two important

questions empirically. First, it is expected that policy 1 does a better job of balancing than

does policy 2, resulting in a lower running time. This condition is stated as a comparison of



treatments, suggesting the hypothesis that the average running time is signi�cantly di�erent between

the policies.

Sea gathers empirical observations of both policies running on simulated networks of several

di�erent sizes, and uses a t-test to check the hypothesis. Due to large background variance, the t-test

shows no signi�cant di�erence between the policies. However, the net running time of the network

can be factored into two parts: the minimum possible running time if the load were perfectly

balanced, and the overhead due to insu�cient balancing. Reapplying the t-test to the overhead

component exposes a signi�cant di�erence between the two policies, allowing sea to conclude that

policy 1 is indeed a better policy.

The second part of the study examines the conditions under which the network behaves opti-

mally. Optimal performance is achieved when the load is distributed evenly among the processors;

the user wants to determine whether this limit is approached asymptotically as the load grows.

Again, sea considers the overhead component of the running time, �. If the policies behave asymp-

totically optimally, � will grow more slowly than the load N . During the analysis, sea observes

that both the mean and variance of � are a�ected by the size of the network. These results trigger

a rule (subsequently con�rmed by the user) that asymptotic behavior be examined separately for

each size. Further analysis supports this course of action, as sea discovers that smaller networks

appear to approach optimality while larger ones do not.

2. Issues in Automation

In this section we explore some of the di�cult issues regarding the design of an automated

scienti�c assistant. In addition to the problems associated with the process of scienti�c discovery

itself, we must also be concerned with questions of human/computer interaction. The questions we

need to answer include: Which parts of the process can be automated? What types of knowledge are

needed? Where does the knowledge come from? How is the process controlled? What are e�cient

control strategies? What is the role of the user? Who makes the decisions? Who interprets the

results? The answers to these questions specify the important features of sea.

2.1 Integrating Multiple Perspectives

Let us begin by considering that sea and a human scientist will have di�erent perspectives

on an empirical study. The user's view is knowledge-rich and domain-centered, based on one or

more research questions that have arisen from a scienti�c agenda. Research questions are those

framed in the jargon of a scienti�c domain, such as: \Does policy 1 achieve optimal performance?"

Generally, such questions cannot be answered directly | they must �rst be translated, formalized,

and quanti�ed.

Sea's view of science is more operational and process-centered, concentrating on its knowledge

of scienti�c procedures and empirical tactics. These procedures focus on empirical questions, the

questions that can be answered by running experiments and examining the resulting data. Sea's

approach to science is to generate a variety of empirical questions and select the most promising

one, design and run an experiment that gathers appropriate data, and then derive an answer to

the question through analysis of the data. Given a well-formed empirical question, each of these

operations can be achieved with simple procedures.



The di�erence in perspectives between sea and its user implies a critical research problem:

how can the skills of each be coordinated to successfully achieve scienti�c goals? This issue falls

into the realm of mixed-initiative systems. According to Allen [1], the important issue in such a

system is to identify the conditions under which control of initiative should switch from one agent

to another. In our design, sea maintains control most of the time, but relinquishes authority to the

user under two conditions. First, sea knows nothing about the domain beyond what is captured in

the simulation program, so it relies entirely on the user for high-level domain knowledge. Second,

sea often generates several potential courses of action, and the user must decide which alternative

is best. Thus, the user is treated as both a domain and strategic expert, while sea plays the roles

of bookkeeper, experiment-runner, data analyst, and number-cruncher.

2.2 Modelling and Data Analysis

We now consider sea's perspective of the scienti�c method in more detail. Sea's task is to

construct a model that predicts the behavior of some target system, as represented by a domain

simulator. A model is a collection of statements about a set of experiment variables. Variables

are measurements of interesting features of the domain, as speci�ed by the user. Statements

about the variables may describe functional equivalence, asymptotic limits, causality and temporal

dependency, e�ects of a treatment variable, and so on. Each statement must be veri�ed both

statistically and logically before it is added to the model.

The analysis techniques that verify a statement depend on its type. Many of the current

approaches to scienti�c modelling support only one type of statement and/or analysis, so the

association between statement and analysis is implicit in the design. Even in systems that integrate

several statement types (e.g. [9]), the choice of analysis is hard-wired into the control mechanism.

Sea accommodates a variety of statement types through explicit knowledge of the mapping

from conjectured statement to analysis technique. The transformation involves an intermediate

representation, the hypothesis, to bridge the conceptual gap between them. At �rst it seems odd

to say that a conjecture isn't the same thing as a hypothesis, so let's look at an example. Suppose

sea needs to test a statement of functional equivalence, such as Y = 3X + 5. Standard practice

is to analyze the residuals of this statement, � = Y � (3X + 5);1 if the statement is correct, the

residuals have a mean of 0 (�� = 0), low variance (�
�
< T

�
), and are not related to X (�?X).2 Thus,

the single functional equivalence statement infers three distinct hypotheses. These in turn suggest

statistical tests; here we might employ a t-test to decide if the mean is 0, re-sampling to obtain a

con�dence interval on the variance, and correlation to determine if � is related to X .

The explicit mapping from statements to hypotheses and from hypotheses to analyses works in

the opposite direction as well. Suppose the analysis shows that the residuals have mean 0 and low

variance, but are also positively correlated to X . This suggests that the original statement needs

to be modi�ed, increasing either the coe�cient or the exponent of X .3 Thus, explicit knowledge

also supports the formulation of new statements.

1The transformation from statement to hypothesis often involves the creation of new variables.

2In some cases, it is not necessary to verify all three conditions. For example, if the statement Y = 3X + 5 were

derived from the method of least squares, the residuals � are independent of X by de�nition.

3Increasing the exponent under these conditions is essentially the heuristic introduced by bacon.3 [8].



2.3 Automated Experimentation

One of sea's important features is its ability to design and run experiments with a simulator.

For our purposes, the simulator can be any LISP-based computer program. Sea generates an

experiment plan for use by the instrumentation package clip [2], which in turn gathers experiment

data. Because the apparatus for the experiment resides alongside sea in the computer, there is

no immediate need to interface with the real world. However, the experiment planning capabilities

based on clip should extend easily to a real-world interface through commercially available devices

(e.g. [5]); unfortunately, there is no current standard for managing such devices.

In restricting our experiment-design capabilities to the manipulation of LISP-based simulators,

it may be possible to address one of the most di�cult questions in scienti�c discovery: how are

new experiment variables created? Our working hypothesis is that new variables are derived from

knowledge about the structure of the world; for example, in the world of LISP, any global variable

is potentially an interesting experiment variable. Thus, knowledge about LISP helps to resolve a

critical issue in experiment design. We hope to identify a variety of variable creation techniques

for simulators with known structure, such as those written for the simulation substrate mess [3].

3. System Design

Figure 1 provides an overview of sea's operation. The shaded area contains the various types

of data managed by the system, while the outer region shows the goals associated with each type

of data. We also see the roles of other agents, including the user, the simulator, and the instru-

mentation package clip, as providers of information.

Extend-hypothesis

Clip

Simulator

Collect-data

Dataset*

Experiment-plan*
Do-analysis

Test-hypothesis

Hypothesis*

Test-statement
Add-statement

Variable* Statement*

Data-request*

View*

Model

Analysis-plan*

Make-statement

User PlannerDescribe-variable

Explain-result

Figure 1: Overview of sea's model-building strategy.



Starting at the user region, sea's implementation of the scienti�c method follows the arrows

down the right side of the diagram and up the left side. First, the user provides a set of exper-

iment variables and one or more statements about the expected behavior of the variables. Then,

sea turns the statements into hypotheses, and the hypotheses into analysis plans. Each analysis

plan generates a request for experiment data, which is eventually gathered by clip. Once the data

is collected, new knowledge is created moving up the right side of the diagram | new hypotheses

are generated by explaining the results of analysis, and new statements are generated by combining

veri�ed hypotheses.

3.1 Intelligent, User-Oriented Control

Each of the operations employed in constructing the model is stored as a plan fragment for a

partial-hierarchical planner (PHP) [6]. PHPs construct a plan incrementally from plan fragments,

interleaving planning steps with execution of the plan. While this policy can result in a course of

action that is less than optimal, it is necessary in dynamic domains such as model-building, because

each action may have a signi�cant impact on subsequent planning decisions.

Each plan fragment describes an action that satis�es a speci�c goal given a set of preconditions.

The functional part of the plan is composed of elementary programming constructs, such as con-

ditionals, loops, and variable bindings. In addition, it may post new goals, imposing a hierarchical

structure on the evolving plan. Thus, while classical planning is essentially bottom-up, composing

elementary actions into a high-level plan, PHP is top-down, gradually instantiating an abstract

plan until an executable action is encountered.

Sea uses a planner originally developed for a similar system, the Assistant for Intelligent Data

Exploration (aide) [10]. This planner employs a mechanism called focusing to manage decision

points in the evolving plan. Whenever a new goal is posted, the planner selects a set of plan

fragments that unify with the goal. If the set is empty, the goal cannot be satis�ed. If there is only

one plan in the set, it is executed incrementally. If many plans are available, the planner creates

a focus point for the associated goal. Before execution can proceed, one of the plans in the focus

point must be selected. If the plan fails or makes poor progress, the planner can be \refocused" to

another plan in the focus point.

In our initial version of sea, the selection of a plan from a focus point is entirely the user's

responsibility, as are decisions to refocus the planner. However, as the plan library grows with new

statements, hypotheses, and analysis techniques, these decisions will become more frequent and

may overburden the user. Thus, we are interested in developing policies for automatic focusing and

refocusing. Many such policies can be hand-coded from successful scienti�c strategies, such as the

\scienti�c discovery" heuristics of programs like Bacon [8] and IDS [9].

3.2 Structured Domain Knowledge

Knowledge about the scienti�c domain in question is acquired from the user on an as-needed

basis. This knowledge is stored as collections of statements called views. A view is a set of

statements with a consistent interpretation of simulation behavior. When a new statement is

added, it is incorporated into all views that it agrees with; if the statement would introduce an

inconsistency, a new view is created that contains a consistent subset of the original statements. For

example, the statement that optimal performance depends on the size of the network is inconsistent



with the statement that a policy is optimal; thus both statements should not reside in the same

view. In this way, sea maintains multiple perspectives on behavior at varying levels of detail.

Sea's connection to the \real world" revolves around its experiment variables. These variables

are hooks into the simulation itself, and as such represent either parameters of the simulation that

are speci�ed in an experiment protocol, or measurements of simulation behavior taken during or

at the end of an experiment trial.

Each statement describes some expected relationship among the experiment variables, and thus

induces structure on sea's knowlege of the domain. Some statements may be provided as \givens"

by the user, such as the fact that optimal running time for a network is the total number of unit-

sized tasks divided by the size of the network. Other statements represent empirical questions, and

these are veri�ed against experiment data. When sea reaches an impasse in its scienti�c process, it

may request that the user identify new experiment variables or supply additional statements about

the variables.

4. Conclusions, Status, and Future Work

Sea is an assistant for human scientists who study the behavior of computer simulations.

Although this is only a subset of all possible scienti�c domains, it is an important subset, because

any real-world system can theoretically be simulated in a computer. This restriction to studies of

simulation behavior allows sea to quickly come up to speed at the task of experiment design.

Sea has a exible design that is not based on any speci�c analysis technique or type of hy-

pothesis; rather, it focuses on the tasks involved in any type of analysis, such as formulating a

hypothesis, gathering appropriate data, and explaining the results. In this way, sea creates a lan-

guage for de�ning analysis techniques, grounded in the notion of a statement type. Users should

be able to easily incorporate new analysis techniques into sea's plan library by encoding a set of

plans appropriate to the technique.

The sea architecture provides a framework for studying a variety of issues in automated sci-

enti�c discovery. These include techniques for designing experiments and creating new experiment

variables, the creation of new, computer-intensive analysis techniques, and the formalization of

e�ective scienti�c strategy. It is our goal to provide a system that is exible and e�cient, in order

that a variety of research in the area of scienti�c discovery can be integrated on a single platform.

4.1 Status

The current version of sea implements many techniques employed in the aforementioned study

of load-balancing policies, as well as a variety of other strategies based on statistical analysis. These

techniques focus on two types of statements: functional equivalence and the e�ects of a treatment

variable. They consist of �ve di�erent plans for generating hypotheses from these statements, and

statistical hypothesis tests including the t-test, analysis of variance, linear regression, and resampled

con�dence intervals. Each test generates a request for data, which is ful�lled by a simple experiment

design in which each independent parameter is varied over at most three values. Once analysis is

complete, sea can generate new hypotheses to explain the results; for example, it suggests that

overhead may di�er between the two policies even though their net running time is not signi�cantly

di�erent.



In addition to the plans associated with hypothesis testing and experiment design, sea also has

facilities for acquiring an initial domain model based on simulation variables. It also maintains a

chronological record of all actions taken and the results derived, in the form of a scienti�c notebook.

We are currently in the process of implementing a graphical user interface on the MacintoshTM.

A formal evaluation of sea is planned for the near future. The evaluation addresses several

key issues, such as the applicability and e�ciency of the system, its exibility in supporting new

modelling techniques, its ability to scale e�ciently and coherently, and its suitability as an assistant

to human scientists. The evaluation focuses on sea's performance in studying several disparate

domains, including the load-balancing problem, a comparison of sorting algorithms, the discovery

of predictive rules in a relational database, and a simulation of a real-world planning problem, such

as transportation planning or air-campaign planning.

4.2 Opportunities for Learning

One interesting question we hope to explore regards the automation of procedures for selecting

an appropriate action at a focus point. A possible approach applies reinforcement learning [4]

to acquire a policy that selects the plan most likely to succeed at achieving its goal, given the

current context. For example, the user may prefer certain types of analysis, and di�erent users

may have di�erent criteria for deciding whether an analysis was successful. Other context variables

may include the domain being studied, v the plan that posted the current goal, and the goal that

triggered that plan. In addition, success may depend on the bindings of plan variables, such as the

hypothesis being tested, the signi�cance of a test, summary statistics, and so on. Although policies

learned in this way are guaranteed to improve system performance in the limit, it is at issue whether

sea will be able to gain enough experience with di�erent users, domains, and analysis techniques

to acquire a truly e�ective policy.

Acknowledgments

This work is supported by DARPA/Rome Laboratory under contract number F30602-93-C-

0076, and by a National Science Foundation Graduate Research Fellowship. The U.S. Government

is authorized to reproduce and distribute reprints for governmental purposes not withstanding any

copyright notation hereon. The views and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the o�cial policies or endorsements, either

expressed or implied, of the Defense Advanced Research Projects Agency, Rome Laboratory, the

National Science Foundation, or the U.S. Government.

References

[1] James F. Allen. Mixed initiative planning: Position paper. Presented at the ARPA/Rome Labs

Planning Initiative Workshop. See URL http://www.cs.rochester.edu/research/trains/mip/,

1994.

[2] Scott D. Anderson, Adam Carlson, David L. Westbrook, David M. Hart, and Paul R. Cohen.

Clasp/Clip: Common Lisp Analytical Statistics Package/Common Lisp Instrumentation



Package. Technical Report 93-55, University of Massachusetts at Amherst, Computer Science

Department, University of Massachusetts, Amherst, MA, 1993. This document is available

under http://eksl-www.cs.umass.edu/publications.html.

[3] Scott D. Anderson and Paul R. Cohen. On-line planning simulation. In Proceedings of the

Third International Conference on Arti�cial Intelligence Planning Systems, pages 3{10, 1996.

[4] A. Barto, S. Bradtke, and S.T. Singh. Learning to act using real-time dynamic programming.

Arti�cial Intelligence, 72(1):81{138, 1995.

[5] National Instruments Corporation. Labview is a visual programming environment for control

of data acquisition products. See http://www.natinst.com/labview for more information.

[6] Michael P. George� and Amy L. Lansky. Procedural knowledge. Proceedings of the IEEE

Special Issue on Knowledge Representation, 74(10):1383{1398, 1986.

[7] Dawn E. Gregory, Li-Xin Gao, Arnold L. Rosenberg, and Paul R. Cohen. An empirical study

of dynamic scheduling on rings of processors. In Proceedings of the 8th IEEE Symposium on

Parallel and Distributed Processing, 1996.

[8] Pat Langley, Herbert A. Simon, Gary L. Bradshaw, and Jan M. Zytkow. Scienti�c Discovery:

Computational Explorations of the Creative Processes. MIT Press, Cambridge, MA, 1987.

[9] Bernd Nordhausen and Pat Langley. An integrated approach to empirical discovery. In Je�

Shrager and Pat Langley, editors, Computational Models of Scienti�c Discovery and Theory

Formation. Morgan Kaufmann, 1990.

[10] Robert St. Amant and Paul R. Cohen. A planner for exploratory data analysis. In Proceedings

of the Third International Conference on Arti�cial Intelligence Planning Systems, pages 205{

212. AAAI Press, 1996.

[11] Jan M. Zytkow, Jieming Zhu, and Abul Hussam. Automated discovery in a chemistry labora-

tory. In Proceedings of the 8th National Conference on Arti�cial Intelligence (AAAI-90), pages

889{894, 1990.


