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Abstract - Relational classification in networked

data plays an important role in many problems such

as text categorization, classification of web pages,

group finding in peer networks, etc. We have pre-

viously demonstrated that for a class of label prop-

agating algorithms the underlying dynamics can be

modeled as a two-state epidemic process on hetero-

geneous networks, where infected nodes correspond

to classified data instances. We have also sug-

gested a binary classification algorithm that utilizes

non–trivial characteristics of epidemic dynamics. In

this paper we extend our previous work by consider-

ing a three–state epidemic model for label propaga-

tion. Specifically, we introduce a new, intermedi-

ate state that corresponds to “susceptible” data in-

stances. The utility of the added state is that it

allows to control the rates of epidemic spreading,

hence making the algorithm more flexible. We show

empirically that this extension improves significantly

the performance of the algorithm. In particular, we

demonstrate that the new algorithm achieves good

classification accuracy even for relatively large over-

lap across the classes.

Keywords: Relational learning, binary classification.

1 Introduction

Building career histories of scientists is a challeng-
ing task that requires fusing information from var-
ious heterogeneous sources, finding publication pat-
terns, tracking changes in these patterns through time,
etc. Another relevant problem is disentangling differ-
ent threads or topics in a publication history of a scien-
tist. This would be trivial if each publication contained
a keyword and/or category label describing the thread,
such in the Cora data–set of categorized computer sci-
ence papers [6]. However, many databases lack such
information or provide only partial categorization of
publications. Moreover, different databases might de-
scribe the same topic using slightly different keywords,
so one has to account for this ambiguity while combin-
ing records from several sources.

From the perspective of relational learning, the
thread disentanglement problem can be reduced to
classifying publications into one of several categories,

given relational data that describes papers and rela-
tionship between them. In contrast to traditional ma-
chine learning where data instances are assumed to
be independent and identically distributed, relational
learning techniques explicitly take into account inter-
dependence of various instances. This allows them to
make inferences based on not only intrinsic attributes
of data but also its relational structure, thus enhanc-
ing inference accuracy. To illustrate the potential ad-
vantages of relational learning over more traditional
approaches, consider the problem of categorizing the
publication record of a scientist into topics. One can
represent the relational database as a graph where each
paper is represented by a node, and links between
two nodes describe relationships between correspond-
ing papers. Examples of such relationships include
common authors, shared references, cross–reference,
etc. Consider now a particular paper in this relational
structure by a certain author. Even if this paper does
not have a keyword, one might still be able infer its
category by looking at the category labels of the pa-
pers that it is most strongly connected with. Indeed,
recently a number of authors[10, 5, 1] have successfully
used relational learning algorithms for classifying pa-
pers in CORA data–set [6] into topics. Other relevant
applications of relational learning techniques include
hypertext classification [4], link prediction[11], classi-
fication of web pages [9, 5], studying relational struc-
tures in scientific publications [7], etc.

Most relational learning algorithms are iterative and
work though propagating either class labels or corre-
sponding probabilities [8, 5]. One important issue with
iterative classifiers is that false inferences made at some
point in iteration might propagate further causing an
“avalanche” [8]. Hence, it is very desirable to have
some indicators showing when this happens. In our
previous work we have shown that for a class of la-
bel propagating algorithms such an indicator can be
obtained by looking at the dynamics of newly classi-
fied instances [1, 2]. We have demonstrated that these
dynamics can be modeled as an epidemic spreading
in heterogeneous population. Furthermore, if the cou-
pling between two sub–populations is sufficiently weak,
then the epidemics has a non-trivial two–tier structure.
This is due to the fact that true class labels propagate
at faster rate than false ones. We have also indicated



how to use this dynamical signature for obtaining a
robust and virtually paramete–free classifier.

Although the two–tier based classifier works well for
relatively weak coupling between the classes, its per-
formance deteriorates drastically with increasing the
overlap between them. This is because for large overlap
there is a high probability that the infection will spread
outside the class at the early stages of iterative process.
In this paper we address this shortcoming by adding a
new, intermediate state and extending the analogy of
label propagation scheme to an epidemic system with
three states: “healthy”, “susceptible”, and “ infected”.
Initially all the nodes (e.g., data instances) are in the
“healthy” state, except the A nodes with known class
labels that are in the “infected” state. At each itera-
tion, a node will become susceptible if it is connected to
super–threshold number of infected nodes. In contrast
to the previous algorithm, however, not all suscepti-
ble nodes will make a transition to “infected” state at
once. Instead, at each time step only a certain fraction
of susceptible nodes will actually become infected. The
main utility of the added state is that it slows down
the rate of epidemic spreading, hence allowing to con-
trol the spread of infection from one sub–population to
the other. We demonstrate that this added flexibility
provides significant improvement over the original al-
gorithm. In particular, we present empirical evidence
that the new algorithm consistently outperforms the
previous one, and achieves a good classification accu-
racy even when the overlap across two classes is rela-
tively large.

2 Problem Settings

Generally speaking, relational learning algorithms use
both intrinsic and relational characteristics of the data
for inference. In this paper, however, we will neglect
any intrinsic attributes and concentrate on solely rela-
tional aspect of classification. In this context, the re-
lational data–set can be represented as a graph, where
nodes represent data instances, and edges (possibly
weighted) describe relationship between them. For in-
stance, in CORA data–set of categorized computer sci-
ence papers [6], each node represents a paper, while a
link between two papers describes their relationship
(e.g., common authors, cross–references, etc.). The
main assumption of relational classification on such
data is homophily, i.e., the notion that the data in-
stances that are similar tend to be better connected
(e.g., for the CORA data–set the homophily assump-
tion means that papers that share authors and/or com-
mon references are likely to be similar).

Throughout this paper we will evaluate our algo-
rithms on synthetic data–sets as one schematically
depicted in Fig. 1. Namely, each data instance be-
longs to one of two possible classes, A and B, with
Na and Nb nodes in each class, respectively. These
two classes are characterized by two loosely coupled
subgraphs in Fig. 1. Initially we are given the class
labels of small fraction of data instances of type A
(red nodes). The problem is then to find other mem-

bers of A based on the pattern of links in the graph.
The graph itself is constructed as follows. Within
each group, we randomly establish a link between two
nodes with probability pa,b

in . Probability of a link be-
tween two nodes across the groups is pout. We also
define average connectivities between respective types
of nodes, zaa = pa

inNa, zbb = pb
inNb, zab = poutNb and

zba = poutNa. Note that generally speaking zab �= zba if
the sizes of two groups are not equal, Na �= Nb. In this
paper, we will characterize the intra– and inter–group
connectivities through zaa = zbb ≡ zin, and zab ≡ zout.
Clearly, the ratio zout/zin characterizes the difficulty
of the classification task. For small values of this ra-
tio, the coupling between two sub–graphs is weak so
most classification algorithms should do a good job of
assigning correct class labels. If one increases this ra-
tio, however, then the difference between in– and out–
group link patterns decreases, hence making it difficult
to classify nodes correctly.

Pin

Pin

Pout

A B

Known Unknown

Figure 1: Schematic representation of relational data–
set

3 Binary Classification Through

Two–Tier Dynamics

The idea behind iterative classification is that infer-
ences made at some point might be used for drawing
further inferences. Although iterative classifiers are
superior to one–shot classification techniques, there is
a certain risk involved. Indeed, if one makes incor-
rect inferences at some point then there is a possibility
that it will “snowball” and cause an avalanche of fur-
ther incorrect inferences [8]. Moreover, since most of
the algorithm rely on parameters, then the issue of pa-
rameter sensitivity becomes very important. Indeed, if
small adjustment in parameters result in even a small
number of incorrect inferences, then there is a chance
that the iterative procedure will propagate these erro-
neous inferences further, causing instabilities. Hence,
it is very important to be able to detect such instabil-
ities, and prevent them from happening.

In our previous work we have suggested heuristics
for detecting such undesired avalanches [1, 2]. This
is done by looking at the dynamics of newly classified
instances. The key for detection the instability is a
phenomenon that we call two–tier dynamics. Namely,
we characterize the dynamics of an iterative classifier
by fraction of newly classified instances at each time
step., e.g., if ρ(t) is the fraction of classified instances at



time t, then the relevant variable is ∆ρ(t) = ρ(t)−ρ(t−
1). As it will be clear later, two–tiered dynamics arises
whenever ∆ρ(t) has two temporally separated peaks,
that characterize epidemic spreading in separate sub–
populations of nodes.

To be concrete, let us consider a relational data–set
where each data instance belongs to one of two classes
A and B, as one depicted in Fig. 1 . We assume that
the relational structure is fully characterized by the
adjacency matrix M so that the entry Mij describes
the strength of the relationship between the i–th and
j–th instances. Our algorithm relies on a threshold
to decide when to propagate labels. Namely, a node
will be classified as type A if it is connected to super–
threshold number of type A nodes. Let us associate
a state variable with each node, si = 0, 1 so that the
state value si = 1 corresponds to type A. Initially, only
the nodes with known class labels have si = 1 while the
rest are in state s = 0. At each iteration step, for each
non–classified node we calculate the cumulative weight
of the links of that instance with known instances of
type A. If this cumulative weight is greater or equal
than a certain threshold H , that node will be classified
as a type A itself. The pseudo–code for this iterative
scheme is shown in Fig. 2. Note that this mechanism
asymmetric in the sense that if a node was classified as
type A it will remain in that class until the end of iter-
ation. This implies that the total number of classified
A node is a monotonically non–decreasing function of
time. If the duration of iteration, Tmax, is sufficiently

input adjacency matrix M
initialize si = 1, for initially known instances,
initialize si = 0 for unknown instances
initialize a threshold H
iterate t = 0 : Tmax

for i–th node with si(t) = 0
calculate wi =

∑
Mijsj(t)

if wi ≥ H ⇒ si(t + 1) = 1
end for loop

end

Figure 2: Pseudo–code of the iterative procedure

long, then a steady state will be achieved, e.g., none
of the nodes changes its state upon further iterations.
Obviously, the final state of the system will depend on
the threshold value and the graph properties as charac-
terized by adjacency matrix. Specifically, if the thresh-
old H is set sufficiently low then the system will evolve
to a state where every node is in state s = 1, i.e., every
instance has been classified as type A. On the other
hand, if threshold is too high, then no additional node
will change its state to s = 1 at all.

Before proceeding further, we note that our itera-
tive procedure can be viewed as an epidemic process
on a network. Indeed, let us treat the initially known
data instances of type A as “infected”. Then the dy-
namical scheme above describes an epidemic spreading
throughout the network. If there were no links between
data instances of different type, then clearly the epi-
demics would be contained in the A sub–population.

Hence, one could relax the classification criterion by re-
ducing the threshold H so that all the data instances of
type A will be infected, i.e., correctly classified. If there
is a non–zero coupling between two classes, however,
then there is a chance that the epidemic will “leak”
to the second sub–population too, hence causing an
avalanche of wrong inferences. Our main observation
is that if the coupling is not very strong, then one can
choose a threshold value so that the epidemic spreading
in separate sub–populations is well–separated in time.
In other words, the epidemic infects most of the nodes
in population A before spreading through the second
population. Then, one can look at the dynamics of
newly classified instances and detect the onset of the
avalanche.
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Figure 3: Simulation results for (a)ρ(t) and (b)
∆ρ(t) = ρ(t) − ρ(t − 1) for a random network.



To demonstrate this, in Fig. 3 we present the re-
sults of the iterative procedure on randomly gener-
ated graphs for the same network parameters but two
different values of the threshold parameter. The pa-
rameters of the network are Na = 1000, Nb = 4000,
zaa = zbb = 20, zab = 8. Initially, only 10% of A
nodes are classified. For H = 4 all of the nodes are
classified as type A after a short period of time. For
H = 6, however, the dynamics is drastically different
as it has a distinctly bimodal shape. Indeed, after a
sharp initial spread the dynamics seems to be saturat-
ing around t = 13. However, upon further iteration the
number of classified nodes increases rapidly and after
short transient all the nodes are infected. Clearly, this
corresponds to the onset of the “avalanche” where cer-
tain wrong inferences propagate and infect rest of the
system. This is especially clear in Fig. 3 (b) where we
plot the the fraction of newly classified instances vs.
time, and observe two well separated maxima, which
characterize the peak infection rates in respective pop-
ulation.

Note that this bimodal shape suggest a natural cri-
terion for stopping the iteration. Namely, the iteration
should be stopped when the second peaks starts to de-
velop, e.g., before infection starts to spread into the
second population. Indeed, in Fig. 3 (c) we plot the
F measure of classification accuracy vs. iteration step.
One can see that at the point where the second peak
starts to develop F−Measure ≈ 0.95, which is slightly
less than the maximum value 0.97.

We now consider the effect of the overlap between
two populations by increasing the inter–group connec-
tivity zab. As we mentioned before, increasing the over-
lap should make the classification task more difficult.
In particular, we expect that for large zab the two–
tier dynamics should be less pronounced. Indeed, in
Fig. 4 a) we plot the fraction of newly infected nodes
for zab = 12 and zab = 16. One can see that for
zab = 12, although there are still two peaks, the sep-
aration between them has decreased drastically. In-
creasing zab further leads to gradual disappearance of
two–tier structure, as it shown for zab = 16. In the
terminology of epidemic dynamics, this is due the fact
that for large inter–group connectivity the epidemic
starts to spread into the B nodes before infecting ma-
jority of A nodes.

To explain this phenomenon, we now provide a qual-
itative assessment of two–tier dynamics (a more de-
tailed study will be presented elsewhere [3]). Let us
first consider epidemic spreading in a single population,
e.g., among A nodes, and neglect inter–group links. It
can be demonstrated that for a fixed fraction of ini-
tially infected nodes, there is a critical intra–group con-
nectivity zc

in so that for zin < zc
in the epidemic will be

contained within a small fraction of nodes, while for
zin > zc

in it will spread throughout a system. Put con-
versely, we can say that for any fixed connectivity zin,
there is a critical fraction of initially infected nodes ρc

0

so that for ρ0 > ρc
0 the epidemic will spread globally.

We also note that at the critical point, the transient
time (i.e., time to reach the steady state) of the epi-

demic process diverges.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration step

∆
 ρ

(t
)

z
ab

=12

z
ab

=16
a)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration step

F
−

M
ea

su
re

z
ab

=12

z
ab

=16
b)

Figure 4: (a)The fraction of newly classified nodes and
(b) F measure vs. iteration step for zab = 12 and
zab = 16.

Now let us consider the full system with two popu-
lations. Let us again assume that all initially infected
nodes are contained in the A population. For suffi-
ciently weak coupling between the groups, the the epi-
demic dynamics among A nodes will be virtually un-
affected by the B nodes. In particular, whether the
epidemic will infect all of the A nodes will depend on
the fraction of initially infected nodes and the connec-
tivity zin. Assume that these parameters are chosen
such that the epidemic process indeed infects all of the
A nodes. Let us now ask under what conditions the in-
fection will spread through B population. It is easy to
see that the infected A nodes play the role of infection
“seeds” for B nodes. Moreover, the effective fraction of
these seed nodes depend on the inter–group connectiv-
ity zout. Hence, by extending the reasoning about criti-
cal phenomenon to B nodes, one can demonstrate that
for a given fraction of infected A nodes ρa and an intra–
group connectivity zin, there is a critical inter–group
connectivity zc

out(ρa, zin) so that for zout > zc
out the in-

fection will spread globally to B nodes. Assuming that
zin is fixed, this relation is characterized by a critical
line in zout − ρa plane. Now we can assess when the
two tier–dynamics will be most pronounced. Indeed, if
we take ρa = 1 (meaning that all A nodes have been
affected) then the maximum separation between two
activity peaks will be infinite for zout = zc

out(1, zin),



since the transient time of epidemic among B nodes
diverges at the critical point. Moreover, for values of
zout slightly above the critical value, one should still
expect a significant separation between two peaks.

We now consider the effect of increasing the inter–
group connectivity zout. Clearly, this will decrease the
critical fraction of A nodes for which the epidemics will
spread to B nodes. Specifically, let us define ρc

a(zout)
as the minimum fraction of infected A nodes required
to cause a global epidemic among B nodes. In other
words, for a fixed zout the infection will spread to B
population only after infecting the fraction ρc

a(zout) of
A nodes. Now, if this fraction is close to 1, then the
epidemic will spread to B nodes only after infecting
the majority of A nodes, hence, giving rise to two–
tier dynamics. On the other hand, if this fraction is
considerably less than one, the the epidemic will leak
to B nodes prematurely. To be more precise, consider
again Fig. 3 (b). If at the height of the first peak
the density of infected A nodes is considerably greater
than the threshold ρc

a(zout) , then at the next iteration
there will be a large number of infected B nodes . As a
consequence, the fraction of newly infected nodes will
still increase, and there will be no two–tier dynamics.

It is worthwhile to note that even in the absence
of two–tier dynamics, our main assumption that true
class labels propagate faster than the false ones still
holds to some degree. Indeed, in Fig. 4 we plot the F
measure vs. iteration step, and note that it still attains
a maximum value that is close to 0.95. Hence, if we
somehow knew where to stop the iteration, we would
still be able to obtain good classification accuracy. The
problem is, however, that without a clear two–tier sig-
nature we do not have any criterion as when to stop
the iteration.

4 Three–State Epidemic Model
for Label Propagation

As we explained above, the two-tier dynamics is not
present for sufficiently strong coupling between two
populations. At the same time, we saw that the true
class labels still propagate faster than the false ones.
This suggests that the two–state epidemic mechanism
is somehow rigid as it does not allow one to control the
rate of epidemic spreading. Indeed, recall that there is
a threshold fraction of A nodes ρc

a so that for ρa > ρc
a

the epidemic starts to spread among B nodes. Thus, if
we could control the rate of epidemic among A nodes,
we should in principle be able to infect up to ρc

a fraction
of A nodes without worrying that the infection will leak
to B nodes . However, in the absence of such a con-
trol mechanism, there is a chance that at some point
in the iteration the fraction of infected A nodes will
“overshoot” this threshold significantly, hence causing
epidemic among B nodes.

To account for this shortcoming, we now consider
an extension of the previous algorithm by adding an-
other, intermediate state. In the terminology of rela-
tional classification this intermediate state describes a

node that has been “marked” for infection, but has not
been infected yet. We term this intermediate state as
“susceptible”. At a given iteration step, a node will be-
come susceptible if it is connected to super-threshold
number of infected nodes. However, we will now allow
only a maximum number, Nmax, of susceptible nodes
to become infected at each iteration step. By choosing
Nmax sufficiently small, we can expect that the frac-
tion of infected A nodes will approach its critical value
ρc

a smoothly, without the risk of overshooting1. Note
that in practice this can be done by keeping a queue of
susceptible nodes, and processing the queue according
to some priority mechanism. The priority mechanism
used in this paper is FIFO (first–in–first–out). How-
ever, other mechanism can be used too.

Before presenting our results, we now address the
question of what kind of criterion should be used for
stopping the iteration. Clearly, since at each time step
only a handful of nodes are classified as infected, one
should not expect any two–tier dynamics in the num-
ber of infected nodes. However, as we will see below,
the number of newly susceptible nodes does in fact have
the two–tier structure, e.g., if s(t) is the fraction of sus-
ceptible nodes at time t, then the relevant quantity is
∆s(t) = s(t)− s(t−1). As in the case of previous two-
state algorithm, the onset of the “avalanche” is then in-
dicated by a second developing peak. Once this onset is
found (e.g., by finding the iteration step for which the
curve has its minimum), then we can backtrack trough
class–label assignments, and “un–impeach” nodes that
became susceptible after the onset.

To test our new algorithm, we have performed ex-
tensive empirical studies of new classification scheme
for data-sets of varying overlap. We found that the new
algorithm consistently outperforms the old one for all
considered data–sets. Even for relatively small over-
lap across the classes, when the two–tier dynamics in
two–state model is present, the classification accuracy
of the new algorithm is significantly better. Indeed, in
Fig. 5 (a) we plot the time series of F measure for the
new classification scheme, for a inter–group connectiv-
ities zab = 8 and zab = 20. For zab = 8, the F measure
attains a maximum value very close to 1, while for
zab = 20 the maximum is close to 0.9. Note that the
behavior of both curves is relatively smooth around the
maxima. This suggests that even if one stops the itera-
tion within some interval around the optimal stopping
time, one can still obtain relatively good classification.
Indeed, in Fig. 5 (b) we plot the differential fraction
of susceptible nodes, ∆s(t). Because of large disper-
sion, we also plot the running averages of each curve
using a window of size 20, and use this average for
examining two–tier structure. Note that for zab = 8,
∆s(t) is rather flat for a time interval between t = 50
and t = 80. Remarkably, we found that even if we
choose the stopping time randomly from this interval,
the resulting F measure will be contained in the inter-
val 0.985 − 0.99, which is higher than the F measure

1Our experiments suggest that the exact value of Nmax does
not affect the results much, if it is not chosen too high. In the
results reported below, we used Nmax = 10.



0.95 achieved by the previous algorithm. Most impor-
tantly, however, the new algorithm allows to achieve
significant classification accuracy even when the previ-
ous two-state scheme fails, e.g., does not demonstrate
two–tier dynamics. Indeed, determining the onset for
zab = 20 at t ≈ 50, one is able to achieve an F measure
around 0.85.
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Figure 5: The F measure (a) and the fraction of newly
“susceptible” nodes (b) vs. iteration step for zab = 8
(blue) and zab = 20 (red). The solid line in (b) is
the moving average of respective scatter–plots using a
window of size 20

.

5 Conclusion and Future Work

In conclusion, we have presented a relational classifi-
cation algorithm based on a three state epidemic pro-
cess. This algorithm extends our previous two–state
model by by adding a new, intermediate state. The
addition of this state allows us to control the rate of
epidemic spreading across the networked data, hence
preventing premature leak of epidemic into the second
sub–population. Our experiments demonstrate that
this extension improves significantly the performance
of the algorithm. In particular, the algorithm is re-
markably accurate even when the overlap between two
classes in relational data is relatively large.

As future work, we intend to test different priority
mechanisms while processing the queue of susceptible
nodes. For instance, one could define a priority scheme

that depends on the degree of the nodes. The reason
for this is as follows: if a certain nodes has super–
threshold number of links to infected nodes, but has
less links in total as other susceptible nodes, then it
should be a better candidate for classification. We do
not think that such a priority mechanism would make
difference on the empirical studies on random graphs
presented here. Indeed, the number of links of a node
within and outside of a group are uncorrelated by our
construction. However, this mechanism might be im-
portant in other scenarios where such a correlation ex-
ists.

We also intend to validate our algorithm on real
world data–sets. We have previously demonstrated
that the two–tier dynamics based algorithm performs
well on certain subtopics from CORA archive of cate-
gorized computer science papers. However, one of the
issues with the previous algorithms was that it did not
perform well for classes with large number of members.
The reason for poor performance is that for a large
class the chances that the epidemic will leak outside
before infecting the correct class instances are greater.
Since our new algorithm allows better control over the
rate of epidemic spredading, we we expect that it will
perform well on large classes too.
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