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Abstract

In this paper we consider dynamical properties of
simple iterative relational classifiers. We conjec-
ture that for a class of algorithms that use label–
propagation the iterative procedure can lead to non-
trivial dynamics in the number of newly classified
instances. The underlaying reason for this non–
triviality is that true class labels are likely to propa-
gate faster in networks than false ones. We suggest
that this phenomenon, which we call two-tiered dy-
namics for binary classifiers, can be used for es-
tablishing a self–consistent classification threshold
and a criterion for stopping iteration. We demon-
strate this effect for two unrelated binary classi-
fication problems using a variation of a iterative
relational neighbor classifier. We also study ana-
lytically the dynamical properties of the suggested
classifier, and compare its results to the numerical
experiments on synthetic data.

1 Introduction
Recently there has been a growing interest in relational learn-
ing and classification. While traditional learning approaches
assume different data instances are independent and identi-
cally distributed, relational classification methods explicitly
take into account the existing links and relations between the
instances, that allows to study more complex data structures.
Algorithms for relational classification developed in recent
years has been used for learning probabilistic relational mod-
els [Friedman et al., 1999], hypertext classification [Getoor
et al., 2001], web page classification [Slattery and Craven,
2000; Macskassy and Provost, 2003], link prediction [Taskar
et al., 2004], discovery of authoritative information [Klein-
berg, 1999], studying relational structures in scientific publi-
cations [McGovern et al., 2003], etc.

Most of the existing methods for relational classification
are iterative in nature [Neville and Jensen, 2000; Macskassy
and Provost, 2003]. The intuitive assumption behind itera-
tive approach is that information inferred about one entity can
be used for making inference about other entities that are re-
lated to it. This allows to propagate class labels (or associ-
ated probabilities) throughout the system as newer instances
are classified. Although iterative classifiers have been shown

to enhance prediction accuracy by propagating class labels
(or associated probabilities) through the system [Neville and
Jensen, 2000; Macskassy and Provost, 2003], there is an as-
sociated risk: a few false inferences might lead to a “snow-
ball” effect [Neville and Jensen, 2000] cascading the number
of misclassified entities as iteration proceeds. As a conse-
quence, the final results will depend strongly on the accuracy
of initially assigned class labels and on the classification cri-
teria, e.g., model parameters. More generally, it is known
that many classification algorithms are sensitive to parameter
settings. For example, [Keogh et al., 2004] found that few
popular data mining algorithms performed well on multiple
problems without parameter adjustments.

In this paper we argue that for a certain class of itera-
tive classifiers the issue of sensitivity to parameters can be
addressed in a self consistent and elegant manner by ex-
amining the dynamics of iterative procedure more closely.
We illustrate this point for a simple iterative classifier that
uses a threshold–based criterion for labelling data–instances,
and propose a meta–heuristics for setting the right threshold
value. Our heuristics is based on an assumption that in rela-
tional networks true class labels are likely to propagate faster
than false ones. We demonstrate that this phenomenon, which
we call two-tiered dynamics, can serve as a natural criterion
for both setting a threshold value and stoping the iteration.
Hence, our method reduces the dependency of iterative clas-
sification on model parameters.

To illustrate our approach, we introduce a simple algo-
rithm for relational binary classification. We consider the
case when the relation between two data–instances is char-
acterized by the weight of the link connecting them, so that
the relational structure is fully determined by an adjacency
matrix M. Given a initial set of known instances of a class
A, our algorithm then defines an iterative scheme with a sim-
ple threshold based rule: an instance will be classified as type
A if it is connected to super–threshold number of classified
(or initially known) instances of type A. The novelty of our
approach is that we suggest a self–consistent way of setting
the parameter of our model, the threshold: Namely, we set it
automatically to the value that produces the most pronounced
two-tiered dynamics. We present empirical results that illus-
trates the use of this approach. We also develop an analytical
framework for describing the dynamics of iterative classifica-
tion of our algorithm, and compare its predictions with results



obtained for synthetic, randomly generated networks.
The rest of the paper is organized as follows. In the next

section we provide a more detailed description of our algo-
rithm. In Section 3 we present results for two case studies that
demonstrate the two–tier dynamics. In Section 4 we present
an analytical framework for studying the dynamical proper-
ties for a binary iterative classifier. Finally, we conclude the
paper with a discussion on our results and future develop-
ments (Section 5).

2 Dynamics of for Iterative Classification
To understand main idea behind our approach, we find it illus-
trative to frame the classification problem as an epidemic pro-
cess. Specifically, let us consider a binary classification prob-
lem defined on a network where data–instances (from classes
A and B) correspond to nodes and the relations between them
are represented by (weighted) links. We are given the correct
classification of a small subset of nodes from class A and
want to classify other members of this class. Assume that we
are using a simple, threshold based iterative relational clas-
sifier (such as one described below, see Fig 1, for assigning
class labels and propagating them through the system. Now,
if we treat the initially labelled data–instances as “infected”,
then the iterative scheme defines an epidemic model where at
each time step new instances will be infected if the super–
threshold classification criterion is met. Clearly, the fixed
point of this epidemic process will depend both on the value
of the threshold and both inter– and intra–class link struc-
ture of the network. In the case where two classes are totally
decoupled (i.e., no cross–links between two sub–classes) the
epidemics will be contained on the set A only, and one can re-
lax the classifier threshold to guarantee that all the instances
of A will be correctly classified. If there are links between
data–instances in different sub–classes, then there is a chance
that the nodes from class B will be infected too (e.g., mis-
classified). However, if the link patterns between two sub-
classes are sufficiently different, we can hope that the process
of epidemic spreading in two systems will be separated in
time. Moreover, by tuning the classification threshold, we
can control the rate of epidemic spreading in sub–population
A, hence affecting the epidemic spread in sub–population B.
The main idea of our approach is then to tune the threshold
parameter to achieve maximum temporal separation of epi-
demic peaks in two classes.

We characterize the dynamics of an iterative classifier by
number of newly classified instances at each time step., e.g.,
if N(t) is the total number of classified A–instances at time
t, then the relevant variable is ∆N(t) = N(t) − N(t − 1).
As it will be clear later, two–tiered dynamics arises whenever
∆N(t) has two temporally separated peaks.

To proceed further, we now formally define our binary clas-
sification algorithm. Let S be the set of data–instances to be
classified, and let assume that S is composed of two subsets
SA ⊂ S and S−A = S/SA. Initially, we know the correct
class labels of a (small) subset of the instances of type A,
S0

A, and the problem is to identify other members of class SA

given the characterizing relations between the entities across
both types types. We define Mij as the weight of the link

between the i-th and j–th entities.
We associate a state variable with each entity, si = 0, 1

so that the state value si = 1 corresponds to type A. Ini-
tially, only the entities with known class labels have si = 1.
At each iteration step, for each non–classified instance we
calculate the cumulative weight of the links of that instance
with known instances of type A. If this cumulative weight
is greater or equal than a preestablished threshold H , that
instance will be classified as a type A itself. This is shown
schematically in Fig. 1. Note that our algorithm differs
slightly from other simple relational classifiers (such as Re-
lational Neighbor classifier [Macskassy and Provost, 2003])
in two aspects: First, it directly assigns class labels and not
probabilities, and second, it is asymmetric in the sense that
if an instance was classified as type A it will remain in that
class till the end of iteration. This later property implies that
the total number of classified A–instance is a monotonically
non–decreasing function of time.

input adjacency matrix M
initialize si = 1, for initially known instances, si = 0 for the rest
initialize a threshold H
iterate t = 0 : Tmax

for i–th node with si(t) = 0
calculate the weight wi of adversary nodes connected to it:
wi =

∑
Mijsj(t)

if wi ≥ H ⇒ si(t + 1) = 1
end for loop

end

Figure 1: Pseudo–code of the iterative procedure

If the number of iteration Tmax is chosen large enough,
a steady state is achieved, e.g., no instance changes its state
upon further iterations. As we mentioned above, the final
state of the system will depend on the threshold value and the
adjacency matrix. If the threshold value is set sufficiently low
then the system will evolve to a state where every instance has
been classified as type A. On the other hand, if it is set too
high, then no additional instance will be classified at all. As
we will show below, for the intermediary values of the thresh-
old H the system will demonstrate the two–tier dynamics.

3 Case Studies
In this section we test our hypothesis empirically on two dis-
tinct and unrelated data–sets: The first is a synthetic data gen-
erated by the Hats Simulator [Cohen and Morrison, 2004],
and the second is the Cora [McCallum et al., 2000], a large
collection of research papers in computer science.

3.1 Results for the Hats Simulator Data
The Hats simulator is a framework designed for developing
and testing various intelligence analysis tools. It simulates a
virtual world where a large number of agents are engaged in
individual and collective activities. Each agent has a set of
elementary capabilities which he can trade with other agents
if desired. Most of the agents are benign while the others
are covert adversaries that intend to inflict harm by destroy-
ing certain landmarks called beacons. There also are agents



known to be adversaries. Agents travel for meetings that are
planned by an activities generator. Each agents belongs to
one or more organizations that can be of two types, benign or
adversary. Each adversary agent belongs to at least one ad-
versary organization, while each benign agent belongs to at
least one benign organization and does not belong to any ad-
versary organization. When a meeting is planned, the list of
participants is drawn from the set of agents that belong to the
same organization. Hence, a meeting planned by an adversary
organization will consist of only adversary (either known or
covert) agents, whereas a meeting planned by a benign orga-
nization might contain all types.

The data from the Hats simulator is a sequence of lists con-
taining unique hat ID-s that have met with each other. Given
this sequence, one can unequivocally construct a graph (adja-
cency matrix) M of hats’ meeting activities, where each entry
Mij describes the number of meetings between the i–th and
j–th agents (note that the graph is not directed so the matrix is
symmetric). In the simulations presented here we used Hats
data for N = 1200 agents, (Nk = 50 known adversaries,
Nb = 1000 benign, and Nc = 150 covert) which was col-
lected for the first 2500 ticks of simulations.

We tested our algorithm for small, large, and intermediate
values of the threshold H . For small H most of the nodes
in the network are infected after a short time, as expected
(see Fig 3.1). Similarly, for large values of H (not shown
here) the epidemic spreads through only a very small subset
of nodes. In both cases the epidemics are characterized by a
one–tier dynamics. The situation is drastically different for
intermediate values of the threshold, as the behavior of epi-
demic spreading demonstrates two-tiered structure. Namely,
after a sharp initial spread the epidemic seems to be satu-
rated. However, upon further iterations, the number of in-
fected nodes increases sharply, and in a short number of steps
thereafter all the nodes in the network are infected. Clearly,
this corresponds to some kind of threshold–phenomenon in
the whole network, where infection of certain nodes causes an
epidemic in the whole system. This is illustrated in Fig. 3.1
(a) where we plot the number of “infected” actors vs time for
H = 4 and H = 6. As we mentioned in the introduction,
this behavior suggests a natural criterion for stopping the it-
eration. More precisely, in Fig. 3.1 (b) we plot the number
of newly infected nodes at each times step versus time, i.e.,
∆N(t) = N(t) − N(t − 1). For the threshold value H = 4
(not plotted) there is only a single peak in ∆N(t). However,
for H = 6 one can distinguish two well–separated peaks, de-
noted Pa and Pb which are indicative of two–tier dynamics in
epidemic spreading. If we assume that Pa corresponds to the
epidemic spreading in the first (covert) sub–population, and
Pb corresponds to the rest of the network, then the iteration
should be stopped right before the infection starts to spread
in the rest of the system (e.g., at t = 5 ). In this particular
example, we established that if the above mentioned crite-
rion is used, then the algorithm correctly identifies 118 out of
150 covert adversaries, while at the same time misidentifying
only 8 of the 1000 benign nodes as adversaries. This is sur-
prising result especially taking into account the simplicity of
the algorithm.

More generally, our experiments with the Hats data indi-
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Figure 2: (a)Total number of infected nodes vs time, N(t)
for H = 4 and H = 6, (b) the number of newly infected
instances vs time, ∆N(t) for H = 6: two separated peaks
are a clear indication of two–tier dynamics.

cate that although the detection error rate of the algorithm
varies depending on the particular structure of the network,
the amount of the available data, as well as the presence of
noise, its performance is rather robust as long as the two–tier
dynamics is observed.

3.2 Results for Cora Data

The Cora data [McCallum et al., 2000] contains a set of com-
puter science research papers that are hierarchically catego-
rized into topics and subtopics. Each paper includes a la-
bel for a topic/subtopic/sub–subtopic, and a list of cited arti-
cles. Following the previous studies [Macskassy and Provost,
2003], we focused on the papers on Machine Learning cat-
egory, that contained seven different subtopics: Case-Based,
Theory, Genetic Algorithms, Probabilistic Methods, Neural
Networks, Rule Learning and Reinforcement Learning. Two
papers are linked together by using common author (or au-
thors) and citation.

Since our algorithm is for binary classification, we con-
structed separate classification problem for each topic. We
varied the fraction of known instances from as high as 50%
to as low as 2%. For each classification task, we did up to 10
different runs using random subsets of classified hats. Note,
that initially labelled set contained papers that belong to a
class other than one we wanted to identify (the class label of
all the papers in the initially labelled sets were fixed through-
out iteration.

After pruning out the isolated papers from the data–set, we



were left with 4025 unique titles. Since we observed a large
dispersion in the node connectivity ranging from 1 to more
than 100, we revised our threshold–based rule a little so that
the threshold condition was established not only for the total
weight, but also on the fraction of that weight.

We observed that the structure of dynamics (e.g., two–tier
vs single–tier) varied from topic to topic. From the seven
sub–topics, the data that demonstrated the best manifesta-
tion of two–tiered dynamics was Reinforcement Learning
subtopic. Indeed, it robustly demonstrated two separate peaks
from run to run for various fraction of initially known data
(see Fig 3(a)). What is more striking, however, is that the
accuracy of classification was remarkable even if the fraction
of initially known instances were as low as 2% of the total
number. Indeed, as illustrated in Fig 3(b), for 2% of initially
known class–labels, and from which only 6 in the Reinforce-
ment Learning Topic, the F–Measure at the iteration–stoping
point t = 8 is FM ≈ 0.68. Moreover, our experiments also
suggest that increasing the number of initially labelled data
do not greatly improve the performance. Although this seems
counterintuitive, it makes sense from the perspective of our
algorithm: Indeed, the more labelled instances we have at the
start, the better the chances that the epidemics will leave the
sub–network and start to infect nodes from other classes. One
could think of increasing the threshold would help, but it did
not, probably because of large dispersion in the node con-
ductivities. Of course, one can always sample from available
known instances and choose to include only an appropriate
number of them

We observed two–tier structures in most of the other topics
too. Although some of them were not as pronounce as for
the previous case, they were robust in the sense that uprise of
the second peak almost surely corresponded with the spread
of label–propagation outside of that class. However, in some
instances, notably for the Neural Networks subtopic, we did
not observe any clear sign of this dynamics at all. Our expla-
nation is that this subcategory was vastly larger than the RL–
one (1269 compared to 344) so it was easier for the initial
infection to propagate outside. One could think of increas-
ing the threshold would help, but it did not, probably because
of large dispersion in the node conductivities. This suggests
that perhaps our method is best when one wants to identify
a sub-class that is considerably smaller compared to the total
number of instances.

4 Analysis
In this section we present an analysis of our classification al-
gorithm. Specifically, we study the epidemics spreading as
described by our algorithm. For the sake of simplicity, we
consider a case of an unweighed graph when the entries in
the adjacency matrix are either 0 or 1. Generalization to the
case of the weighed networks is straightforward. Also, for
clarity purposes we will retain the language of section 3.1 so
that we will refer to instances as actors.

Let us start by considering only one of the subnetworks in
the system. Namely, we neglect benign actors for now and
consider a network consisting of covert and known adver-
saries only. We want to examine how the epidemic spreads
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Figure 3: (a)∆N(t) for H = 4, with 2% of initally classified
instances. (b) F–Measure of predictive accuracy vs iteration
step. At t = 8 (the iteration stoping point), FM ≈ 0.68.

through the covert population.
We now consider the iterative procedure more closely. Ini-

tially, all of the nodes except known adversaries are classified
as not–infected, si(t = 0) = 0, i = 1, 2, ..N . We define a
local field hi for the i–th node as the number of its connec-
tions with known adversaries. We assume that hi-s are un-
correlated random variables drawn from a probability density
function P(h). Let f(h) =

∑
h′≥h P(h′) be the the fraction

of nodes who are connected with at least h initially known
adversary nodes. Also, let ki be the number of connections
the i-th node has with newly classified adversaries (note that
ki excludes the links to the initially known adversaries) and
assume that ki–s are described by a probability density func-
tion P (k; t). In other words, P (k; t) is the probability that a
randomly chosen, “uninfected” covert actor at time t is con-
nected to exactly k “infected” covert actors. Since the num-
ber of infected actors changes in time, so does the distribution
P (k; t). Initially, one has P (k; t = 0) = δk,0, where δij is
the Kroenecker’s symbol.1.

In the first step of the iteration, the nodes who have a “lo-
cal field” larger than or equal to the threshold value, hi ≥ H ,
will change their states to 1. Hence, the fraction of nodes
classified as “adversaries” at t = 1 is n(t = 1) = f(H).
Since these new adversary nodes are connected to other
non-classified nodes, this will alter the local fields for non-
classified nodes. Let us define a variable for each node

1Kroenecker’s symbol is defined as follows: δij = 1 if i = j
and δij = 0, i 6= j.



zi = hi + ki. Then the distribution of zi is described by

P (z; t) =
∞∑

k=0

∞∑

h=0

P (k; t)P(h)δz,k+h

=

∞∑

k=0

P (k; t)P(z − k) (1)

Clearly, the criterion for infection is zi ≥ H . Hence, the
fraction of nodes that will be classified as covert at time t +1
is

n(t + 1) =
∞∑

z=H

P (z, t) =
∞∑

k=0

P (k; t)f(H − k) (2)

Note that the probability P (k; t) of being connected to
a infected node depends on the fraction of infected nodes,
P (k; t) = P (k; n(t)) . Hence, the equation 2 is in general
a highly non–linear map. Once the functions P (k; t) and
f(h) are specified, 2 can be solved (at least numerically) to
study the dynamics of epidemic spreading in a homogenous,
single–population network. In particular, the final fraction of
infected actors is given by its steady state n(t → ∞).

The above framework is easily generalized for the case
when there are two sub–populations in the network. We de-
note two sub–populations by C (covert) and B (benign). Let
fc(h) fb(h) be the fraction of C and B actors respectively
that are connected to at least h known adversaries. Also, let
Pcc(k; t) and Pcb(k; t) be the probability that a randomly cho-
sen C actor is connected to exactly k “infected” C and “in-
fected” CB actors respectively. Similarly, we define Pbb(k; t)
and Pbc(k; t) as the probability that a randomly chosen B ac-
tor is connected to k “infected” B and “infected” C actors
respectively. Then the fraction of infected actors in each pop-
ulation nc(t) and nb(t) are given as follows:

nc(t + 1) =
∞∑

k=0

∞∑

j=0

Pcc(k; t)Pcb(j; t)fc(H − k − j)

nb(t + 1) =
∞∑

k=0

∞∑

j=0

Pbb(k; t)Pbc(j; t)fb(H − k − j)

(3)

To proceed further we need to make assumptions about
the distribution functions Pcc(k; t), Pbb(k; t), Pcb(k; t) and
Pbc(k; t) i.e., probability that a randomly chosen uninfected
node of type C (B) is connected to k infected nodes of re-
spective type. This is particularly easy to do when the graph
is obtained by randomly establishing a link between any two
vertices with a fixed probability. Specifically, let us assume
that each covert node is connected to covert and benign nodes
with corresponding probabilities pcc and pcb, while each be-
nign node has similarly defined probabilities pbb and pbc (note
that pcb = pbc). Hence, each covert actor in average is con-
nected with γcc = pccNc covert and γcb = pcbNb benign
actors, and each benign actor is connected with γbb = pbbNb

benign and γbc = pbcNb benign nodes.
Consider now a randomly chosen uninfected node of ei-

ther type, say, covert at a certain time t, and denote it as c0.
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Figure 4: Analytical and simulation results for (a)n(t) and
(b)∆n(t) for a random network. Simulations were averaged
over 100 trials

There are Ncnc(t) infected covert nodes at time t, and c0 is
connected with each of them with probability pcc. Hence,
the probability Pcc(k; t) that c0 is connected with exactly k
infected covert nodes at time t is given by a Poisson distribu-
tion with a mean γccnc(t). Similar arguments hold also for
Pbb(k; t), Pcb(k; t) and Pbc(k; t). Hence, one obtains from
Equation 3

nc(t + 1) =

∞∑

k=0

∞∑

j=0

[γccnc(t)]
k

k!

[γcbnb(t)]
j

j!

× fc(H − k − j)e−γccnc(t)−γcbnb(t) (4)

nb(t + 1) =
∞∑

k=0

∞∑

j=0

[γbbnb(t)]
k

k!

[γbcnc(t)]
j

j!

× fb(H − k − j)e−γbbnb(t)−γbcnc(t) (5)

Equations 4 and 5 are a system of coupled maps that gov-
erns the evolution of fraction of infected individuals in both
sub–populations. The coupling strength depends on γcb and
γbc , or in other words, average number of interconnections
between two populations. Note that if one sets γcb = γbc = 0
the the dynamics of two subpopulation are totally indepen-
dent and one recovers the system Equation2 with correspond-
ing parameters for each subpopulation. To validate the pre-
diction of our analysis, we compared Equations 4 and 5
with experiments on randomly generated graphs. The re-
sults are shown in Fig. 4 where we plot the fraction of the



infected nodes n(t) = nc(t) + nb(t) as well as the difference
∆n(t) = n(t + 1) − n(t) versus iteration number for a ran-
domly generated graph of Nc = 100 covert and Nb = 1000
benign nodes. The parameters of the graph are pcc = 0.2,
pbb = 0.04 and pcb = 0.04. Also, we chose the value of the
threshold field such that to ensure two–tier dynamics. The re-
sults of the simulations were averaged over 100 random real-
ization of graphs. Clearly, the agreement between the analyti-
cal prediction given by equations 4 and 5 and the results of the
simulations is quite good. In particular, these equations accu-
rately predicts the two–tier dynamics observed in the simula-
tions. Note also that the graphs are structurally very similar
to the results from the Hats simulator data in Fig. 3.1. This
suggests that despite the the explicit organizational structure
in the Hats data, its infection dynamics is well captured by a
simple random–graph analysis model. Note however, that this
agreement might deteriorate for more complex organizational
structure (e.g., large overlap between different organizations),
hence more sophisticated analytical models might be needed.

5 Discussion and Future Work

We have presented a simple, threshold based iterative algo-
rithm for binary classification of relational data. Our algo-
rithm can be stated in terms of epidemic spreading in net-
works with two sub–populations of nodes (data–instances)
where infected nodes correspond labelled data–instances. We
also presented a meta–heuristics that utilizes the differences
in the propagation of true and false class-labels for setting
the right threshold value in our algorithm. Specifically, we
demonstrated that if the threshold value is tuned appropri-
ately, the dynamics of the number of newly classified in-
stances will have a two–peak structure suggesting that the
infection propagation in two sub–classes is time–separated.
Consequently, we suggested that the iteration should be
stopped at the point when the second peaks starts to develop.

Our empirical tests, especially with Cora, indicate that the
two–tier dynamics is not an artifact, but is present in real
world relational data. Although we did not observe this
dynamics in all the classification tasks in Cora, our results
nevertheless indicate that whenever the two–tier dynamics
is present, it is indeed robust, and contains useful informa-
tion that can be utilized by classification algorithm. In ad-
dition, our experiments, as well as qualitative arguments on
epidemic spreading, suggest that the method presented in this
paper should work best when the sub–class one wants to iden-
tify is a small fraction of the whole data–set, as there is a
greater chance that the class-labels will propagate throughout
the proper sub–population first before infecting instances of
other classes.

We also developed an analytical framework for study-
ing the properties of iterative classification. In particular,
we obtained a coupled of set discrete–time maps the de-
scribe the evolution infected/labelled individuals in both sub–
populations. We compared our analytical results with nu-
merical experiments on synthetic data and obtained excel-
lent agreement. We would like to mention that the assump-
tion of a random graph we used in our analysis is clearly
an over–simplification. Indeed, most of the real–world re-

lational structures (e.g., social networks) demonstrate small-
world phenomenon that is not captured by our random graph
model. In our future work we intend to extend our frame-
work to account for more general type of networks. Note
that in this scenario the probability of being infected will be
strongly correlated with a degree of a node (i.e., more links
will imply more chances of being infected).
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