
Learning Regular Languages from Positive Evidence

Laura Firoiuy 1 (lfiroiu@cs.umass.edu)
Tim Oatesy 2 (oates@cs.umass.edu)

Paul R. Coheny (cohen@cs.umass.edu)
y Computer Science Department, LGRC, University of Massachusetts, Box 34610

Amherst, MA 01003-4610

Abstract

Children face an enormously difficult task in learning their na-
tive language. It is widely believed that they do not receive or
make little use of negative evidence (Marcus, 1993), and yet
it has been proven that many classes of languages less pow-
erful than natural languages cannot be learned in the absence
of negative evidence (Gold, 1964). In this paper we present
an approach to learning good approximations to members of
one such class of languages, the regular languages, based on
positive evidence alone.

1. Introduction
The ability to communicate through spoken language is
widely regarded as the hallmark of human intelligence. Chil-
dren acquire their native tongue with remarkable ease, mas-
tering the vast majority of that language before they enter
school. However, the facility with which children acquire
language belies the complexity of the task. For example, chil-
dren clearly receive positive evidence (examples of sentences
in the language), but it is widely believed that children do not
receive negative evidence (examples of sentences that are not
in the language and that are somehow marked as such) (Mar-
cus, 1993). The difficulty with respect to learnability arises
with a now famous theorem due to Gold(1967). He proved
that several classes of languages, including regular, context
free and context sensitive, can be identified in the limit when
the learner has access to both positive and negative evidence.
However, those same classes of languages cannot be learned
from positive evidence alone. How do children overcome
Gold’s theoretical hurdle?

Difficulties such as the one above led Chomsky(1975) to
suggest that language is innate, that it is not learned per se
but that facility with language grows and matures much in the
same way that one’s organs are genetically predetermined to
grow and mature. In this paper we explore the possibility that
language is not innate by developing algorithms for learning

1This research is supported by DARPA/AFOSRF and DARPA
under contracts No. F49620-97-1-0485 and No. N66001-96-
C-8504. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any
copyright notation hereon.The views and conclusions contained
herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements either ex-
pressed or implied, of the or the U.S. Government.

2This research is supported by a National Defense Science and
Engineering Graduate Fellowship.

good approximations of regular languages from positive evi-
dence alone. Although no natural language is strictly regular,
large subsets of natural languages are regular, and this class
of languages is the simplest one covered by Gold’s theorem.
As such, it seemed like a good place to start our investigations
into learnability.

Our approach to learning regular languages begins with a
class of languages, called Szilard (Makinen, 1997), that can
be learned from positive evidence alone. Given examples of
sentences generated by an arbitrary regular language, we as-
sume that the language is Szilard, yielding a representation of
the language that simply “memorizes” the input and does no
generalization. We then apply heuristic techniques to create
increasingly more compact representations that maintain the
Szilard property and that become better approximations to the
target language.

The remainder of the paper is organized as follows. Section
2 briefly reviews deterministic finite automata, their relation-
ship to regular grammars, and how a Szilard language can be
learned from positive evidence alone. Section 3 explains our
algorithm for learning a good approximation of an arbitrary
regular language from positive evidence. Section 4 describes
the implementation of the algorithm and Section 5 presents
experiments and results. Finally, Section 6 concludes and
points to future research directions.

2. Finite automata, trivial DFAs and Szilard
regular grammars

Deterministic finite automata(DFA) are well known, sim-
ple computing devices that are described by the tuple:
hSet of States, Alphabet, Transition Function

Start State, Set of Final States i
The finite automata are equivalent to regular grammars and

thus recognize precisely the class of regular languages. Their
functioning is described by a transition function:
�(current state; current input symbol) = next state

which is equivalent to a set of productions:
fcurrent state ! current input symbol next stateg.
The input symbols are elements of the alphabet and are usu-
ally called terminals. A DFA can be visualized by its asso-
ciated graph, as in figure 1: the nodes are the states and the
arcs represent the transitions. The labels on the arcs are the
input symbols. A sentence is said to be accepted by the au-



s0

FS

s1 s2

a

b

c

d

e

Figure 1: A small deterministic finite automaton.

tomaton if there is a path from the start state to a final state,
labeled with the words of the sentence. DFA induction is the
problem of finding the automaton that describes a given lan-
guage from a set of examples: sentences whose membership
to the language is known. Gold’s famous theorem on lan-
guage learnability states that any class of regular languages
(and other languages) can be learned from positive and nega-
tive examples, but not from positive examples only, if at least
one infinite language exists in the class.

Any finite language can be represented by a trivial DFA,
that has a distinct state for each word occurrence in each sen-
tence, meaning that the learner memorizes all the sentences.

A Szilard regular grammar has the property that its pro-
ductions have the form Ai ! aijAj , meaning that each ter-
minal appears on one arc only. It follows that the number of
terminals equals the number of productions. The number of
states (without the start state) is at most equal to the number
of productions. The inference algorithm that finds a Szilard
grammar from a set of positive examples, is:
� assume that the number of states is equal to the number

of productions; associate each state with a terminal a and
name it accordingly, A: A ! aX , where “X” stands for
the unknown next state; if a terminal is the first one in a
sentence, then its associated state is the start state; if it is
the last one in the sentence, it is followed by the final state.

� starting from the start state, follow the derivations for the
given examples and merge the states which follow the same
terminal; continue the process until a Szilard grammar is
obtained.

The algorithm finds the target DFA, provided that it sees all
the possible consecutive transitions hai; aji. For example, the
DFA in figure 1 can be learned from three examples faceb,
adeb, abg, even if its language is infinite. The first step yields
the state sequences: hS0 C E B FSi , hS0 D E B FS i and hS0
B FSi. Because the states B, C and D all follow the terminal
“a”, they are merged into state hBCDi and the desired DFA
is obtained. An even simpler grammar which can be inferred
from positive examples only has the property that each termi-
nal uniquely identifies the next state. The inference algorithm
is immediate:
� assign one variable A to each terminal a to obtain produc-

tions of the type X ! aA, where “X” is the unknown
current state;

� from the start state, for a sequence h a b : : : i, recover the
productions: S0 !a A, A !b B, : : :
Through an abuse of notation, we will denote this second

grammar Szilard� and it and the first one collectively Szilard.

It can be noticed though, that the Szilard regular languages
are included in the Szilard� regular languages, because the
property that a terminal uniquely identifies a transition be-
tween a pair of states implies that it also identifies the next
state.

We do not know if a natural language or at least a part of
it can be described by a Szilard grammar, but it can be re-
garded as such for the purpose of learning a grammar from
positive examples. The trivial DFA for a set of examples has
the Szilard property if each terminal occurrence is considered
distinct. For example, in the sentences f“the1 boys see the2
cat”, “the3 girls walk”g the three occurrences of “the” are
considered different. Unfortunately this does not solve the
problem yet, because we got the desired Szilard property, but
the trivial DFA is not the language representation we want
to learn. The two sentences above suggest that actually not
all occurrences of “the” should be deemed different. While
“the1” and “the2” are different, one determining the noun
in the subject and the other in the direct object, “the1” and
“the3” both determine the subject noun and so should belong
to the same terminal. It follows that we need an algorithm
that partitions word occurrences into classes that can be asso-
ciated with grammar terminals.

s1 s2 s3 s4

s5 s6 s7 s8

the_1

the_3

=>

a

b

c

d

s1

s5

s4

s8

s26 s37

a

b

the_1_3
c

s2 s3

s6 s7

the_1

the_3

Terminal Merging in a Szilard DFA preserves the property : one
terminal appears on one arc only.

Terminal Merging in a Szilard* DFA preserves the property : the same terminal
always leads to the same state.

s1 s2

s37

s4

s5 s6 s8

the_1_3

the_1_3

a

b

c

d

d

s1

s5

a

b

s4

s8

c

d

=>

Figure 2: Terminal merging

An interesting property of the Szilard regular grammars is
that if we conflate two terminals and then merge their asso-
ciated states, the grammar remains Szilard. As can be seen
in figure 2, if we merge the terminals “the1” and “the3”
into one terminal “the1;3” and the states fs2; s6g ! s2;6 ,
fs3; s7g ! s3;7 for the Szilard DFA, the resulted automa-
ton retains its defining property, namely that each terminal
appears on just one arc. The Szilard� property is also pre-
served if the two terminals “the1” and “the3” and the states
fs2; s6g are merged. This leads to the following strategy for
addressing the problem of grammar induction, by breaking it
into two subproblems:

� “Szilard-ify” the language by immediately constructing the
trivial DFA.

� “compact” the trivial DFA, by merging word instances, and
the associated states.



3. Approach and Algorithms
It follows that a device is needed that can distinguish word oc-
currences up to classes associated with the grammar’s termi-
nals. From these classes, a Szilard regular grammar can then
be inferred, in the form of a deterministic finite automaton
(DFA). It was reported in (Elman, 1990), that an Elman-type
recurrent neural network(rnn) can classify the word instances
in a partition that reflects grammatical categories. We will use
this device to extract representations of word instances which
are suitable for the task of identifying terminal classes. These
representations will then serve as input to a DFA extraction
algorithm. The generic Elman-type rnn is presented in fig-
ure 3: the hidden layer encodes the current network state and
the context (recurrent) units maintain a copy of the previous
state. The output layer encodes the probability distribution of
the next word for the current input symbol. The network as a
dynamical system is described by the state function F and its
output is given by the function O:

next state = F (current input symbol; current state)

P(next wordjcurrent word) = O(current state)

one input unit per 
vocabulary word

symbol(t)
context(t) = 
state(t-1)

output(t)

state(t)

one state unit per
grammar variable

weights

weights
exact 
 copy

one input unit per 
vocabulary word

Figure 3: Elman recurrent network.

The rnn state functionF is similar with the transition func-
tion of a finite automaton, and so it appears to be convenient
to draw a one-to-one correspondence between rnn and DFA
states, thus solving the problem of grammar induction. Un-
fortunately this is not immediately possible, the main reason
being that the network states belong to a continuous space,
while the DFA states are discrete. One method used so far for
DFA inference from rnn(Giles et al. 1992) is to assume that
the network states which are close in the continuous space
form clusters that represent the automaton states. This pro-
cedure is immediately equivalent to extracting the Szilard�

DFA, where the terminal classes uniquely identify the states.
Both positive and negative examples were used in the men-
tioned work. Kolen(1994) argued that the network states can-
not be mapped directly onto the DFA states because of an in-
stability of the dynamic system represented by the recurrent
network, that makes the DFA state encoding in the hidden
layer shift in time. We can address this problem by resetting
the network before the beginning of each sentence. Another
problem is that of local minima: due to its huge parameter

space, the network can use similar state vectors for either the
same or different DFA states and still encode the desired out-
put.

Since our goal is to extract grammatical categories from
the network, we will look at ways of distinguishing word in-
stances, based on the rnn states, rather than trying directly to
extract DFA states. The DFA can be extracted afterwards, due
to the assumed Szilard property. If we consider each word oc-
currence to be represented by the hidden layer as in (Elman,
1990), we might lose the information encoded in the previous
state. The example in figure 4 illustrates how two different
words can get similar representations, because of the con-
straints imposed on the hidden layer by the output function:
(h = F (see; Ai)) � (h0 = F (sees; Aj)) becauseO(h) must
equal O(h0), so “see” and “sees” can be clustered together.

Ai

Aj

Ak

sees

see

the
AlS0

boy

boys

similar representations if
based only on the next word
probability distribution

see state_Ai sees state_Aj

h ≅ h’

F F

O O
h’= Ak

the

h = Ak

the

cat

Figure 4: How “see” and “sees” can get the same repre-
sentation. The weights can encode a function F such that
F (see; Ai) � F (sees; Aj)

This problem can be viewed as a miss-representation of
the DFA states in the hidden layer. It turns out that states, and
thus word occurrences, can be better distinguished by the dif-
ferent paths that lead to them. A simple way of achieving this
is by considering the concatenation of the context layer (pre-
vious network state) with the hidden layer (current state) as
the representation of word instances. Even so, the problems
of non-discrete and eventually falsely similar vectors of word
occurrences remain. It follows that two other processing steps
are needed:
� network state clustering, using the Euclidian distance, for

detecting the potentially similar word occurrence represen-
tations

� merging the word instances considered similar by the pre-
vious step, but only if they also conform to a criterion other
than their vector distance
A distributional criterion, albeit weak, that allows discrim-

ination of word instances, is the probability distribution of the
previous and next word occurrences. While the representa-
tions of words reflect local information (consecutive states
in a dynamical system), the probability distributions carry
global information that spans sentences.

The overall processing is:



1. obtain vector representations of word occurrences, using
an Elman-type rnn

2. hierarchically cluster the word instances, using the Euclid-
ian distance, obtaining a binary tree

3. create initial classes of words from the leaves of the tree
belonging to the same subtree, at a certain low level in the
tree

4. “climb” the tree only if the two children of the current in-
ternal node represent two classes that can be merged ac-
cording to the distributional criterion

5. extract the DFA from the classes of terminals obtained at
the previous step, by considering that the target grammar
is Szilard

4. Implementation
4.1. The language
We wrote a small context free grammar (CFG), similar to the
one used in (Elman, 1992). From this CFG we obtained a
regular grammar by expanding the start symbol with all pos-
sible productions, up to an arbitrary depth in the derivation
trees. This regular grammar can generate only a subset of the
original language. Furthermore, the regular grammar is used
to generate sentences no longer than a chosen length. The
target of our learning system is this finite regular language,
which is exhaustively presented to the learner. The fact that
the language is finite has no influence on the learning algo-
rithm, which neither builds the trivial DFA, nor does it as-
sume that it has seen the entire language or that the language
is finite.

The initial grammar we used is given in figure 5. The gram-
mar encodes no context constraints, so it can generate sen-
tences like “John hears John”, which are unlikely from the
semantic point of view. We are not concerned here with the
semantic content of words, but want to test that the two oc-
currences of John, which are syntactically diferrent, are con-
sidered so by the learning system.

4.2. The recurrent network

For the experiments we used the package “tlearn” (Plunkett &
Elman, 1997). We used one input and one output unit, respec-
tively, for each word in the language, as in (Elman, 1990). An
extra output unit encoded the hEnd of Sentencei marker. The
number of hidden units was equal to the number of states in
the target DFA. The network was trained on the classification
problem: predict the next word or hEnd of Sentencei. We
used the cross-entropy function as the error function. The
cross-entropy function, when applied to classification tasks,
was shown by Rumelhart et al.(1993) to make a network learn
the probability distribution over the output vectors. The net-
work state was reset before the start of each sentence, in or-
der to avoid the instability phenomenon mentioned in (Kolen,
1994). In our experiments this training regime gave the best
results in terms of word clustering.

For small languages we inspected the output units and as
expected, they encoded a close approximation of the proba-

S ! NP hs VP hs . j NP hp VP hp .
S ! NP as VP as . j NP ap VP ap .

NP hs ! the fboy, girlg j fJohn, Maryg
NP hs ! the fboy, girlg RC hs j the fboy, girlg RC hs
NP hp ! fJohn, Maryg and fJohn, Maryg
NP hp ! the fboys, girlsg RC hp
VP hs ! chases OBJ j feeds OBJ
VP hs ! fwalks, livesg j fsees, hearsg
VP hp ! fsee, hearg OBJ
VP hp ! chase OBJ j feed OBJ
VP hp ! fwalk, liveg j fsee, hearg
OBJ ! NP hs j NP hp j NP as j NP ap

NP as ! the fcat, dogg j the fcat, dogg RC as
NP ap ! the fcats, dogsg j the fcats, dogsg RC ap
VP as ! fwalks, livesg j fsees, hearsg
VP as ! chases OBJ j fsees, hearsg OBJ
VP ap ! fwalk, liveg j fsee, hearg
VP ap ! chase OBJ j fsee, hearg OBJ
RC hs ! who VP hs RC hp ! who VP hp
RC as ! who VP as RC ap ! who VP ap

Figure 5: hs stands for human singular, as stands for ani-
mal singular, hp stands for human plural and ap stands for
animal plural

Figure 6: Fragment of initial tree

bility distribution over the next words. For larger languages,
the approximation became less accurate.

4.3. The merging algorithm

The algorithm relies on the initial clustering of word in-
stances, based on their vector representation. This vector was
obtained by concatenating the context and hidden layers in
the network. We used a simple hierarchical clustering algo-
rithm that yields a binary tree. The word instances that have
almost identical vectors are placed by the algorithm, in sub-
trees at low levels in the tree, as illustrated in figure 6. These
subtrees form the initial classes of word instances.

After the initialization stage the tree can be viewed as in
figure 7. The merging algorithm proceeds then by trying to
merge classes of words associated with sibling nodes in the

John(4)_lvl3

Mary(4)_lvl3

cls_293

There are 4 instances of “Mary” with
identical vectors. All were placed in
a subtree at the third level from the
fringe and now form one class. The
same holds for “John”.

Figure 7: Fragment of the tree after the initialization step.



tree. For the example in figure 7, the two classes “John” and
“Mary” are proposed. The criterion for merging is the simi-
larity of their probability distributions over the next and pre-
vious word classes. That is, “John” and “Mary” are merged
into one class if they tend to be preceded and followed by the
same word classes. We use the G statistic, (Cohen, 1995) to
test if there is a statistically significant difference between the
two probability distributions.

The G statistic has a �2 distribution whose formula is:

G = 2
X

all cells

fobserved
fobserved

fexpected
.

The merging process continues until no more merges are
possible.

4.4. The DFA extraction algorithm

We do not know exactly what information is encoded in the
word representations obtained by the rnn. We can only as-
sume that these word instances uniquely identify either tran-
sitions or states in the target DFA. Both DFA extraction al-
gorithms, as presented in section 2, can be applied after the
word classes that define the grammar terminals are formed
during the previous stage. It can be immediately observed
that if there is a one-to-one correspondence between the ob-
tained rnn states and the states of the original DFA, then both
extraction algorithm will recover the target automaton.

The context free grammar in figure 5 was expanded at
depths 1, 2 and 3 in order to obtain regular grammars that
approximate the original grammar. These regular grammars,
named “elm r1”and “elm r2”, were then used to generate
sentences of up to 3, 4, 5 and 6 words. The resulting lan-
guages are “elm r1 d3”, “elm r1 d4” for sentences of 3 and 4
words, from the regular grammar “elm r1”, and “elm r2 d5”
and “elm r3 d6”, respectively.

Both Szilard and Szilard� regular grammars were induced
for all languages. The results are shown in table 1.

The original and the induced automata for the language
“elm r1 d4” can be seen in figure 8.

In all the induced automata, there could be observed
classes formed from the same words. For example “sees hears
walks lives” appear on different transitions in figure 8. From
figure 8.b. it follows that there are three such classes, associ-
ated with the states “q2”, “q9” and “q11”. These classes are
formed from non-overlapping sets of occurrences of the four
words which were not merged, and so are considered distinct
classes. They were not merged because their vector represen-
tations, as extracted from the network, are not similar.

For the slightly larger languages, “elm r2 d5” and
“elm r3 d6”, the induced grammars no longer recognize ex-
actly the target languages, but supersets of them. A sample of
correct and incorrect sentences can be seen in table 2. From
the sentences listed there it can be noticed that some distinc-
tions which were encoded in the original grammar are not
learned. Such is the distinction between verbs that require a
direct object and verbs for which it is optional. This type of
error yields incorrect sentences, like “the boys feed”. Another

language
name

Original
DFA

Szilard�

DFA
Szilard
DFA

elm r1 d3 6 states 16 states 8 states
40 sent. finite lang. finite lang.

40 corr.sent.
0 err.sent

40 corr.sent.
0 err.sent

elm r1 d4 8 states 20 states 12 states
56 sent. finite lang. finite lang.

56 corr.sent.
0 err.sent

56 corr.sent.
0 err.sent

elm r2 d5 22 states 47 states 31 states
512 sent. finite lang. finite lang.

512 corr.sent.
43 err.sent

512 corr.sent.
258 err.sent

elm r3 d6 31 states 80 states 63 states
1184 sent. infinite lang. infinite lang.

� 1184 corr.sent.
1133 err.sent

� 1184 corr.sent.
4340 err.sent

Table 1: The original and induced automata for the four in-
creasingly complex sub-languages of the grammar in figure
5. � The sentences were obtained by imposing a limit of 7
words on the sentence length.

a.

b.

c.

Figure 8: a. Original DFA for the language elm r1 d4. b.
Induced Szilard�DFA . c. Induced Szilard DFA .

missed distinction is between verbs that require a human sub-
ject and those for which it is optional: the same “feed”, but
in “the cats feed Mary”. Some other sentences are grammat-



ically correct generalizations, that are longer than the num-
ber of words allowed by their original grammars. Such is
“the boys who see hear John” in table 2, which is generated
by the “elm r2 d5” Szilard DFA. Although this sentence is
not present in the original language, it actually appears in the
larger language, “elm r3 d6”.

elm r2 d5
correct sentences incorrect sentences

Szilard�

“the boys feed the cats.” “the boys feed.”
“John and Mary see.” “John and Mary walk Mary.”

“the dogs chase Mary.” “the dogs chase.”
“the dogs who see live.” “the cats feed Mary.”

Szilard
“the boys who see

hear John.”
“the girl walks the dog.”
“the dog lives the boy.”

elm r3 d6
correct sentences incorrect sentences

Szilard�

“Mary and John feed.”
“the girl feeds

John and John.”
“the girl chases

the girl feeds John.”
“the girl who walks

feeds John.”
“the girl who walks

walks Mary.”
“the cats who walk

chase John.”
“the girls who live

feed the dogs.”
Szilard

“the boys who see
hear John.”

“John and John chase
John and Mary.”

“the boy who John
feeds lives.”

“John and Mary live
the girl.”

“Mary and John see
the girls.”

“the boy chases the boy
hears Mary.”

Table 2: Samples of correct and incorrect sentences for lan-
guages elm r2 d5 and elm r3 d6.

6. Conclusions
We showed that good approximations of regular grammars
can be learned from positive examples by considering each
word occurrence unique and then merging these occurrences
into classes of grammar terminals. While the results for the
languages presented were quite good, we expect the learn-
ing system to perform less well for more complex grammars.
There are at least two reasons for this to happen. The first one
is due to the behaviour of the recurrent network which due to
its huge parameter space can almost always find a function
that predicts the probability distribution over the next words,
but the hidden units do not encode the DFA states. The sec-
ond reason is that the distributional criterion is weak: the
previous and next word probability distributions do not en-
code enough information to distinguish words. For example,

because of sentences like “Mary sees” and “John and Mary
see”, the instances of “see” and “sees” can be merged, if such
a merge is proposed by the rnn.

Human language learners have access to a vital source of
information that is unavailable to our algorithms, the context
in which a sentence is uttered. We hypothesize that by adding
additional information about the states, in terms of seman-
tic content of the current word, the network search space can
be reduced such that the network is more likely to find the
desired function. Furthermore, if the word instances are dis-
tinguished by additional information, we have better grounds
to treat the original language as Szilard. It is appealing to
consider that this is actually the case with natural languages,
where it is the context that makes the distinction between
word occurrences.

References
[1] P. R. Cohen. Empirical Methods for Artificial Intelli-

gence. The MIT Press, 1995.

[2] J. L. Elman. Finding structure in time. Cognitive sci-
ence, 14:179–211, 1990.

[3] J. L. Elman. Distributed representations, simple re-
current networks, and grammatical structure. Machine
Learning, 1992.

[4] C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H.
Chen, and Y. C. Lee. Extracting and learning an un-
known grammar with recurrent neural networks. In
Advances in Neural Information Processing Systems 4.
1992.

[5] E. M. Gold. Language identification in the limit. Infor-
mation and control, 10:447–474, 1967.

[6] John F. Kolen. Fool’s gold: Extracting finite state ma-
chines from recurrent network dynamics. In Advances
in Neural Information Processing Systems 6, 1994.

[7] E. Makinen. Inferring regular languages by merging
nonterminals. Technical Report A-1997-6, Department
of Computer Science, University of Tampere, 1997.

[8] G. F. Marcus. Negative evidence in language acquisi-
tion. Cognition, 46:53–85, 1993.

[9] K. Plunkett and J. L. Elman. Exercises in Rethinking
Innateness. The MIT Press, 1997.

[10] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin.
Backpropagation: The basic theory. In Backpropaga-
tion: Theory, architectures, and applications. Erlbaum,
1993.


