
Abstracting from Robot Sensor Data using

Hidden Markov Models

Laura Firoiu, Paul Cohen

Computer Science Department, LGRC

University of Massachusetts at Amherst, Box 34610

Amherst, MA 01003-4610

February 1, 1999

Abstract

This work is the �rst step of a larger e�ort aimed at

learning logical descriptions from robot sensory data. These

representations are more compact than sensory traces and

will support logical reasoning. We view the robot's ex-

periences as trajectories through an unknown state space.

The robot receives information about the state of the world

through its sensors. We present a technique to automati-

cally extract atomic propositions from these sensors. Our

assumption is that a state means that something is invari-

ant in the world, and that this invariance is reected in

some constant sensor values, or constant functions of sen-

sor values. Our task is then to �nd the states and their

invariant characterization. We employ a hidden Markov

model to �nd the states and their distributional character-

ization. From the probability distributions of the sensor

values in states we then create atomic propositions that

describe the states. The transformation of atomic proposi-

tions into predicates should be straightforward given sensor

models that specify the arguments of these predicates, but

this has yet to be implemented.

Keywords: Abstraction learning, Hidden Markov Model, Minimum Mes-

sage Length

Also submitted to IDA-99, the third symposium on Intelligent Data Anal-

ysis

1

1 Introduction

We are interested in learning without supervision elements of logical rep-

resentations of episodes. The episodes in question are generated by robots

interacting with their environments. Just as human infants bootstrap their

sensorimotor experiences into a conceptual structure and language [3], so we

want our robot to learn ontologies and language through interaction. Previ-

ous work has focused on learning sensory prototypes, which represent robot

interactions in terms of how the interactions appear to the sensors [5, 8].

For example, driving toward a wall and bumping into it is represented as

a decreasing series of sonar values followed by the bump sensor going high.

While sensory prototypes support some kinds of reasoning (e.g., predicting

that the bump sensor will go high) they do not contain explicit elements that

represent the robot, the wall, and the act of driving; and so do not support

reasoning about the roles of entities in episodes [1]. This work takes the �rst

step from sensory prototypes to logical representations. Logical representa-

tions have two advantages:

� Because they contain terms that denote the entities in a scene and the

relationships between them, logical representations such as

\push(robot, object)" are compact, and easily support planning and

other reasoning. The sensory prototype of pushing objects does not

support these easily [9].

� Abstraction can be over predicates and properties of entities, rather

than over patterns in sensory traces. For instance, the extensional

category of pushable objects is the set of elements i such that the robot

has experienced \push(robot,i)" in the past. Given the extensional

category, one can imagine learning the intensional concept of pushable

object, the properties that make objects pushable. Neither kind of

categorization is feasible given only sensory prototypes.

If logical representations are so advantageous, why not build them into our

robots, that is, make them part of the robots' innate endowment? The reason

is that we want to explain how sensorimotor activity produces thought|

classi�cation, abstraction, planning, language|as it does in every human

infant. So we start with sensors and actions, and in this paper we explain how

elements of a logical representation might be learned from these sensorimotor

beginnings.

2

The representations are \passive" in the sense that, currently, they are not

used by any problem solving system. These representations do not specify

what to do in a certain situation or predict what will happen if an action is

taken. In the absence of supervision and a problem solving task, we need a

criterion for good representations to guide the learning process. We chose

the principle of minimum description length. Experiences are represented as

sequences of states, where each state is characterized by atomic propositions

that denote true facts about that state. Our algorithm identi�es the states

and the atomic propositions that minimize these descriptions.

The representation of experiences as sequences of states corresponds with

our intuition that experiences unfold through several relatively static stages.

At least for simple robot activities, the robot's world tends to remain in the

same state over some periods of time, so we expect the state sequences to be

simple. For example, the experience of moving toward an object has some

well de�ned parts: accelerating, approaching, being near the object. Ideally

our learning algorithm would learn a state description for each part.

Dividing an experience into states is the �rst step in the process of learning

logical representations of episodes. We want to identify these states and

ground them in patterns of sensor values. A technique that �ts our task very

well is hidden Markov model (HMM) induction. The assumption behind the

HMM is that the data sequence is produced by a source that evolves in a state

space and at each time step outputs a symbol according to the probability

distribution of the current state.

We identify the episode stages with the states of an HMM induced from all

the data collected during a batch of episodes. These states are characterized

by, or grounded in, stable probability distributions over sensor values. They

form a single vocabulary for all episodes, so similar stages can be identi�ed

across experiences.

The second step in the process of learning logical representations is to

�nd atomic propositions that denote facts in the current state. Since the

states found by the HMM are characterized by probability distributions,

the atomic propositions must be derived from them. We de�ne the atomic

propositions simply as disjunctions of the most likely sensor values according

to these distributions. For example, the characterization of \accelerate" is

given by some positive values of the acceleration sensor and by the velocity

sensor varying within a range of values. A representation of an episode is a

sequence of states described by these atomic propositions.

3

Each representation has a cost that reects both the size of all its atomic

propositions and states, and how well they describe the raw data. The latter

criterion has two components, precision (a _ b is less precise than a) and

accuracy. We minimize this cost heuristically by applying a state splitting

technique during the HMM induction process. States are split and the result-

ing model re-trained as long as the description cost decreases. This technique

is somewhat similar with McCallum's \utile distinction memory" [4]. The

main di�erence is that in McCallum's work, state splitting is driven by an

\active" criterion, that of predicting utility, unlike our \passive" minimum

description cost criterion.

2 The Sensor Vector

The robot receives data in the format of time-series of sensor values. From

the forty or so sensors of the Pioneer 1 robot, we selected six that we con-

sider relevant for describing the twelve experiences in our experiment. The

experiences were all similar: the robot went towards two cups, one blue and

one red, and then either hit or passed the cups. The sensors we selected

are: translational velocity, contact, and for each color, visual area and visual

distance. An example of an episode sensor time series can be seen in �gure

1.

While we can easily see in �gure 1 the di�erent stages of the episode,

the \jittery" sensor values can bias the state induction algorithm towards

frequent state changes. We correct this bias with one of our own: in a stable

world, sensor values remain constant or change in a regular, not jittery, way.

One way to introduce this bias is to smooth the sensor time series. We go one

step further, �tting lines piecewise to the time series. These lines fragment

the episode into stages in which the derivatives of sensor values are constant.

The �tting algorithm works as follows:

1. A graph is constructed such that:

� there is a node for each known point on the curve (time stamp);

� there is one arc between any two distinct nodes; the arc points to

the node with higher time stamp; the weight of the arc is the mean

square error of the regression line �tted to the curve fragment

de�ned by the two nodes (time stamps);

4

"tvel"
"vAa"
"vAd"

Figure 1: Sequence of sensor values for pushing an object, where the sensors

are: translational velocity (tvel), blue visual area (vAa) and blue visual

distance (vAd). We can identify �ve stages of the experience: accelerate

towards blue object, approach object with approximately constant velocity,

pass object, constant move with no object in view, decelerate.

2. Dijkstra's shortest path algorithm is applied to the graph thus con-

structed; the resulting path de�nes a piecewise linear �t with the prop-

erty that the sum over the individual fragments of the mean square

error is minimized.

An example of such a �t is shown in �gure 2.

A more re�ned and realistic de�nition of state is that arbitrary functions

of sensors|not just linear �ts|are constant in states. We plan to learn such

functions in the future.

3 Hidden Markov Models

A discrete hidden Markov model [7] is de�ned by a set of states and an al-

phabet of output symbols. Each state is characterized by two probability

distributions: the transition distribution over states and the emission dis-

tribution over the output symbols. A random source described by such a

model generates a sequence of output symbols as follows: at each time step

the source is in one state; after emitting an output symbol according to the

emission distribution of the current state, the source \jumps" to a next state

5

0

200

400

600

800

1000

0 10 20 30 40 50 60 70

"vAa"
"vAa.fit"

"vAd"
"vAd.fit"

Figure 2: Piecewise �t of the sensors visual A area (vAa) and visual A

distance (vAd) for one of the experiences.

according to the transition distribution of its current state. Since the activity

of the source is observed indirectly, through the sequence of output symbols,

and the sequence of states is not directly observable, the states are said to

be \hidden". A continuous HMM emits symbols from a continuous space,

according to probability densities instead of probability distributions. For

either discrete or continuous HMMs, e�cient dynamic programming algo-

rithms exist that:

� induce the HMM that maximizes (locally) the probability of emitting

the given sequence (the Baum-Welch algorithm)

� �nd the state sequence that maximizes the probability of the given

sequence, when the model is known (the Viterbi algorithm).

While a continuous HMM appears more appropriate for our domain (the

robot's sensors return continuous values) we chose discrete HMMs because

our simple method of inducing atomic propositions works readily for prob-

ability distributions but not for probability densities. Since the sensors re-

turn continuous values, we must discretize them. Each sensor variable is

discretized individually with a unidimensional Kohonen map [2]. Each con-

tinuous input value is mapped to one unit and the resulting symbols are the

map units.

The HMM model de�nition can be readily extended to the multidimen-

sional case, where a vector of symbols is emitted at each step, instead of a

6

single symbol. The assumption that allows this immediate extension is con-

ditional independence of variables given the state. Thus we can learn state

descriptions based on vectors of sensor values.

4 State characterization with atomic propo-

sitions

A single HMM is learned for a batch of robot episodes, and each episode

is represented by its most likely state sequence (Viterbi path) through the

HMM. By representing its experiences with an HMM, the robot adds to its

knowledge about the world. Speci�cally, the states in the model support

recognition of stages of episodes and of similar episodes.

But these states do not explicitly represent the scene elements|physical

objects, activities, spatial relations and so on|that correspond to what the

robot is doing at the times the states occur. States are just stable probability

distributions over sensory inputs, thus they contain only implicit information

about scene elements. To represent scene elements explicitly, the robot must

create representation elements that denote them. The �rst step toward such

representations is to create atomic propositions, which are logical represen-

tation elements denoting simple facts about the scenes experienced by the

robot.

To characterize an HMM state by a set of logical propositions, we replace

for each sensor the probability distributions over its values with logical de-

scriptions of the distributions. These descriptions are disjunctions of possible

sensor values. As such, propositions are simple facts of the form \sensor S

takes values x or y". These propositions enable the construction of more

complex representations as we describe later.

When inducing a proposition from a probability distribution over a sen-

sor's values, we assume that if the distribution has a low entropy, then some

constant process a�ects the sensor. In this case the atomic proposition is de-

�ned only for the most likely sensor values. While we would like to ignore as

noisy the high-entropy distributions and do not create propositions for them,

this is not a clear-cut decision for two reasons. First, a steady state can be

characterized by a high-entropy but stable distribution. Second, our goal

is to minimize the length of descriptions of experiences. If we ignore high-

entropy distributions, then the shortest description of any experience might

7

be just an uninformative sequence of the one \noise" state. So we chose not

to ignore the high-entropy distributions and de�ned atomic propositions for

them, as well.

An example of a proposition based on the distribution of the translational

velocity (t vel) sensor is:

distribution: :0 :0 :0 :0 :0 0:14 0:33 0:44 0:08 0:01

atomic proposition: t vel 5 6 7 8

We consider that all the values in the proposition de�nition are equally likely

to occur in a state in which the proposition holds. Thus, the proposition is

de�ned as a generalization of the distribution from which it was derived to

the uniform distribution over the covered values. This crude generalization

reduces the proliferation of propositions and allows identi�cation of common

propositions across states. In the example above, the covered values are 5

through 8. Because the velocity varies over a contiguous range of values 1,

we interpret this proposition to mean that the robot either accelerates or

decelerates. The interpretation is clari�ed when the acceleration sensor 2 is

considered as well. To the robot, this proposition \means" only a pattern of

its sensor values.

Given a sensor model that describes the kind of information a sensor

returns, we can transform these propositions into predicates. For example, if

the translational velocity sensor returns the translational velocity property of

the constant robot, then the proposition t vel 5 6 7 8 becomes the predicate

t vel 5 6 7 8(robot). The implicit assumption in our sensor model is that

during an experience, a sensor returns information about the same object.

This means that the constant object in the predicate vis A 2 3(object) that

holds at one time step (state) during the experience, is the same as the

constant object in the predicate vis A 1 2(object) that holds at the next

time step of the same experience, although vis A 2 3(�) and vis A 1 2(�) are

di�erent predicates.

This is the current extent of our work on transforming propositions into

predicates, although it is the focus of our future work. The remainder of this

section describes a criterion for inducing atomic propositions.

1By discretizing with a unidimensional Kohonen map, the topology of the original

real-valued space is preserved.
2Positive values of acceleration (corresponding in this experiment to discrete values

greater than 2) indicate acceleration.

8

4.1 HMM state splitting

A limitation of HMM induction algorithms is that the number of states must

be known in advance. Often, there are either too few states and the resulting

propositions are too vague (for example a sensor can take any value) or

there are too many states and propositions, such that the representation

of experiences becomes long and not intelligible. Since we consider good

representations to be \short" representations, our algorithm splits states as

required to minimize the size of these representations, as measured3 by a cost

function. We designed the cost function according to the minimum message

length (MML) principle [6], as a measure of the information needed to re-

generate the original data (the time series of the experienced episodes). As

in the MML paradigm, there are two pieces of information the robot must

store:

1. its model; in our case the model is the collection of states, atomic

propositions and state4 characterizations with atomic propositions;

2. the encoding of each episode within the model;

The cost function is a sum of two components, one for each item above. The

�rst is the cost of the model, which is a measure of the length of the model

description. The second is the data cost, which is a measure of the size of

all the episode encodings. The two cost components are presented in section

4.2.

The state induction algorithm proceeds by recursively splitting states and

re-training the resulting HMM until the cost cannot be improved:

1. initialization: the HMM has only one state

2. iterate while cost is decreasing:

� for each state, compute the cost resulting from splitting the state

� select the state that yields the largest cost reduction and split it

3The cost function is not the exact length of the encoded information, but a measure

of it. For example we ignore string delimiters or the exact number of bits when de�ning

the cost of encoding a number n as log(n).
4The information contained in the state transition probabilities is not considered here

because it is implicit in the encoding of an episode as a state sequence.

9

By choosing to split the state that yields the largest cost reduction at

the current iteration, the cost is minimized heuristically. We cannot attempt

to minimize cost globally, because an exhaustive search of all the splitting

possibilities is exponential in the �nal number of states, and the HMM �tting

algorithm is guaranteed to �nd only a local maximum, anyway.

State splitting stops because the two components of the cost functions

are inversely proportional and the cost reaches a minimum.

4.2 The cost function

The model component of the cost function measures the size of the descrip-

tion of atomic propositions and states. An atomic proposition is described

by enumerating the values it covers. We de�ne its cost as:

covered values � log(# all sensor values).

The description of a state and its characterization is simply an enumeration

of the propositions that are true in the state. Its cost is de�ned as:

propositions in state � log(# all propositions).

The cost of the model is the sum of the costs of propositions and states.

The data component of the cost function is the sum of the costs of the

individual episodes. Recall that an episode is encoded as the most likely

state sequence in the HMM induced from a batch of episodes, and further

that the probability distributions over sensor values within each state are re-

placed by sets of logical propositions. These propositions generalize over the

distributions from which they were derived and lose information that was

present in the distributions. Consequently, the propositions may be inac-

curate, meaning they specify incorrect sensor values, or imprecise, meaning

they specify a range of sensor values. Suppose, for example, a propositional

characterization of an HMM state says \translational velocity is 2, 3, or 4."

If the robot's translational velocity in the state is actually 5, then the propo-

sition is inaccurate, and translational velocity is 3, then the proposition is

imprecise.

To re-generate a time series of sensor values from logical state descrip-

tions, one would have to store additional information, either for specifying

one of the covered values when the proposition is not precise, or for correcting

errors when the proposition does not hold at that time step.

The cost of an individual experience is de�ned to include both the size

of its encoding as a state sequence within the model and the additional

information required for correcting the description, if necessary. Speci�cally,

10

the cost is a sum over all time steps of:

1. the length of encoding with the optimal code the current state s(t),

given the previous state s(t � 1); if we consider s(t � 1) the sym-

bol emitted by the source s(t) according to its transition probabil-

ity distribution, then the optimal code, as de�ned by Shannon [10],

is �log(prob(s(t)js(t � 1))); this code has the property that the ex-

pected length of the encoding of one symbol equals the entropy of

the source,
X

si

�probi � log(pi), where pi is the transition probability

prob(sijs(t� 1)); a theorem of Shannon states that no code can achieve

a lower expected symbol encoding length then the entropy;

2. the length of encoding the sensor values at the current time step, given

the current state; for each sensor this component of the cost is one of

the following:

� the precision cost: if the proposition that characterizes the state

for this sensor covers the current value, then the cost is the entropy

of the proposition; for example, for t vel 5 6 7 8 the cost is log(4)

because the exact value must be speci�ed out of four equally likely

possibilities; this cost reects the precision of the proposition def-

inition: a proposition over only one value is extremely precise and

has zero cost

� the error cost: if the current value is not covered, for example the

value is 9 and the proposition is t vel 5 6 7 8, then the cost is that

of specifying the exact sensor value, namely log(# all sensor values)

5 Experiment

In twelve similar episodes, the robot was oriented toward a group of two cups,

then it received the command to go for roughly 80 time steps (approximately

8 seconds). From each episode, sequences of sensor values were collected for

six sensors. The contact sensor takes value 1 when either the robot gripper

bumpers or beams sense an object. The translational velocity sensor takes

values between 0 and 250. The visual area and visual distance sensors for

channels A and C detect blue and red objects, respectively. The visual sensors

return information only about the largest object (of the corresponding color)

11

in the visual �eld. These are six of roughly forty sensors on board the Pioneer

1 robot. We selected these by hand because we do not know yet how select

them algorithmically.

The result of the state splitting process for one experience is shown in

�gure 3. The �nal number of HMM states for this experiment is 6. Di�erent

experiments were run by varying the duration of HMM training or the regime.

The training regime refers to the way the HMM is re-trained after a state is

split: either the emission probabilities of all states are re-adjusted, or training

is restricted to only the two states that resulted from the split. The results

shown in �gure 3 are from an \all states" training experiment. This training

regime seems to give better results, because the search for a model is not

constrained to the space of probability distributions of two states only, and

thus a better HMM may be found.

The sequence of states and the de�ned propositions that describe the

experience in �gure 3 are:

� state 3 can be interpreted as \accelerate with object A and object C

in view":

contact:0 t vel:0:1:2:3:4:6:7:8:9 t acc:2 4

vis A area:0 2 di� vis A area:2

vis A dist:3 5 di� vis A dist:2

vis C area:1 di� vis C area:2

vis C dist:4 di� vis C dist:2

The \accelerate" predicate can be mapped to the two propositions

\t vel:0:1:2:3:4:6:7:8:9" and \t acc:2 4"; the two objects are inferred

from the visual sensor propositions.

� State 5 can be interpreted (albeit with a slight di�erence discussed

below) as \steady-go with two objects in view":

contact:0 t vel:5 8 t acc:2

vis A area:1 4 di� vis A area:2 3

vis A dist:2 3 di� vis A dist:2

vis C area:0 3 di� vis C area:2

vis C dist:1 4 di� vis C dist:2

The \steady-go" predicate comes from \t vel:5 8" and \t acc:2". There

is a slight di�erence between what is happening during this stage of

12

9 21 25 65
-4

-2

0

2

4

6

8

10

12

s3 s5 s0 s2

"contact"
"trans_vel"
"trans_acc"

9 21 25 65
-4

-2

0

2

4

6

8

10

12

s3 s5 s0 s2

"vis_A_area"
"diff_vis_A_area"

9 21 25 65
-4

-2

0

2

4

6

8

10

12

s3 s5 s0 s2

"vis_A_dist"
"diff_vis_A_dist"

9 21 25 65
-4

-2

0

2

4

6

8

10

12

s3 s5 s0 s2

"vis_C_area"
"diff_vis_C_area"

9 21 25 65
-4

-2

0

2

4

6

8

10

12

s3 s5 s0 s2

"vis_C_dist"
"diff_vis_C_dist"

Figure 3: Partitioning of an episode into stages: a contiguous sequence of a

state de�nes a stage. The plots show the discrete values.

the experience and the propositional de�nition of s5. In the plot of

vis C area in �gure 3 we notice that the object C disappears, as

the vis C area sensor goes from 2-3 to 0 and vis C dist goes from

1 to 9 (the highest value). While the propositions vis C area:0 3

and vis C dist:1 4 capture a change in the perception of object C,

their counterparts (the slopes of their linear �ts) di� vis C area:2 and

di� vis C dist:25 imply no change of perception. Due to the discretiza-

tion process (di� vis C dist and di� vis C area have constant value

2 throughout s5), the proposition is slightly inaccurate.

5The discrete value 2 corresponds to a unit in the Kohonen map with value 0.

13

� State 0 cannot be so easily interpreted. In the context of the episode

in �gure 3 it means \pass object A", but the proposition description

makes it a transition state (it also lasts only for 3 time steps in this

episode):

contact:0 1 t vel:0:5:6:7:8 t acc:2

vis A area:0 2 di� vis A area:0 2

vis A dist:0:1:6:9 di� vis A dist:0:2:4

vis C area:0:2:3:4:5:6:7:8 di� vis C area:1 4

vis C dist:0:1:9 di� vis C dist:2

The propositions vis A area:0 2 and di� vis A area:0 2 support the

\pass object A" interpretation, but the propositions vis C area:0:2:3:4:5:6:7:8

and vis C dist:0:1:9 introduce an \uncertain object C in view". In re-

ality, object C was passed during the previous stage. While not erro-

neous, the proposition is imprecise.

� State 2 is easily interpreted as \go or decelerate with no objects in

view":

contact:0 t vel:0 8 t acc:0 2

vis A area:0 di� vis A area:2

vis A dist:5:6:9 di� vis A dist:0:2:4

vis C area:0 di� vis C area:2

vis C dist:9 di� vis C dist:2

While the fragmentations of experiences seem meaningful in most cases,

the state characterization by propositions does not always correspond to what

is happening in during the episodes. For example, as discussed above, our

interpretation of state s0 is slightly di�erent from its propositional charac-

terizations. The costs of the inaccuracies and imprecisions in the de�nition

of this state seem to be out-weighted by the reductions in the description

length and it is not split.

Transforming the state sequences of the 12 experiences into regular ex-

pressions we obtain:

s+3 s
+
5 s

+
4 s

+
0 s

+
2 for two traces s+3 s

+
5 s

+
4 s

+
1 s

+
2 for one trace

s+3 s
+
5 s

+
4 s

+
0 for one trace s+3 s

+
5 s

+
0 s

+
2 for one trace

s+3 s
+
5 s

+
4 s

+
1 for two traces s+3 s

+
5 s

+
4 s

+
0 s

+
2 s

+
0 for two traces

s+3 s
+
5 s

+
4 s

+
0 s

+
1 for one trace s+3 s

+
5 s

+
4 s

+
0 s

+
1 s

+
0 for one trace

s+3 s
+
5 s

+
4 s

+
0 s

+
1 s

+
0 s

+
1 s

+
0 for one trace

14

We notice that almost all sequences start with the pattern s+3 s
+
5 s

+
4 . This

shows that an extension of the learning process toward generalizations over

state sequences will decrease the cost of the descriptions.

6 Conclusions and Future Work

During the �rst year of an infant's life, she apparently develops increasingly

rich and e�cient representations of her environment (Mandler calls this pro-

cess redescription [3]). We have shown how to re-describe multivariate time

series of sensor values as rudimentary logical descriptions, by creating new

objects that are associated with parts of the world at di�erent abstraction

levels. The objects at one level are grounded in, or mapped to, objects at

the previous level. Because both memory and time are �nite resources, the

criterion of minimum description must govern the process. In this work we

tried to apply these ideas at the lowest levels of abstractions, by creating

atomic propositions grounded in probability distributions over raw sensor

values (physical level). The results are generally good: the fragmentation of

episodes into states and their corresponding propositional characterizations

appear most times to conform with our interpretation of the episode stages.

But sometimes they do not conform, as in the case of state s0 in the example

in the previous section. The main reason for the mixed results is that the

criterion that drove the learning process is purely descriptional: only \pas-

sive" descriptions are minimized. There is no special reinforcement signal to

di�erentiate the states and there is no reasoning involved for explaining the

di�erences between experiences or for predicting the evolution of an experi-

ence. If the agent also reasons based on its internal representation then the

minimization principle will promote representation elements that simplify not

only the \passive" descriptions but the \active" descriptions (computations)

as well, that is the derivation of explanations and predictions. Our next goal

is to create, starting from the obtained propositions, elements of representa-

tions (predicates and formulas) that explain the di�erence between episodes

like \push object" and \pass object", or explicitly state that the robot will

hit the object if it continues to move on its path.

15

References

[1] Paul R. Cohen and Mary Litch. What are contentful mental states?

Dretske's theory of mental content viewed in the light of robot learning

and planning algorithms. Submitted to the Sixteenth National Confer-

ence on Arti�cial Intelligence, 1999.

[2] Teuvo Kohonen. Self-Organizing Maps. Springer, 1995.

[3] Jean M. Mandler. How to build a baby: II. Conceptual primitives.

Psychological Review, 99(4):587{604, 1992.

[4] R. A. McCallum. First results with utile distinction memory for rein-

forcement learning. Technical Report 446, Computer Science Depart-

ment, University of Rochester, NY, 1992.

[5] Tim Oates, Matthew D. Schmill, and Paul R. Cohen. Identifying qual-

itatively di�erent experiences: Experiments with a mobile robot. Sub-

mitted to the Sixteenth International Joint Conference on Arti�cial In-

telligence, 1999.

[6] J. J. Oliver and D. Hand. Introduction to minimum encoding inference.

Technical Report 4-94, Statistics Dept., Open University, September

1994. TR 95/205 Computer Science, Monash University.

[7] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and

Selected Applications in Speech Recognition. Proceedings of the IEEE,

77(2):257{285, 1989.

[8] Michael Rosenstein and Paul R. Cohen. Concepts from time series. In

Proceedings of the Fifteenth National Conference on Arti�cial Intelli-

gence, pages 739{745. AAAI Press, 1998.

[9] Matthew D. Schmill, Tim Oates, and Paul R. Cohen. Learned models

for continuous planning. In Proceedings of Uncertainty 99: The Seventh

International Workshop on Arti�cial Intelligence and Statistics, pages

278{282, 1999.

[10] Jan C. A. van der Lubbe. Information Theory. Cambridge University

Press, 1997.

16

