
Segmenting Time Series with a Hybrid Neural Networks - Hidden Markov Model

Laura Firoiu
lfiroiu@cs.umass.edu and Paul R. Cohen

Department of Computer Science
University of Massachusetts Amherst

Amherst, MA 01001
cohen@cs.umass.edu

Abstract

This paper describes work on a hybrid HMM/ANN
system for finding patterns in a time series, where a
pattern is a function that can be approximated by a
recurrent neural network embedded in the state of a
hidden Markov model. The most likely path of the
hidden Markov model is used both for re-training the
HMM/ANN model and for segmenting the time series
into pattern occurrences. The number of patterns is de-
termined from the data by first increasing the number
of networks as long as the likelihood of the segmen-
tation increases, then reducing this number to satisfy
an MDL criterion. In experiments with artificial data
the algorithm correctly identified the generating func-
tions. Preliminary results with robot data show that po-
tentially useful patterns that can be associated with low-
level concepts can be induced this way.

Motivation
An agent embodied in a robot receives information about its
interactions with the environment as time series of sensor
vectors. As a first step in learning to represent the world, we
want the agent to learn to identify segments of the time se-
ries that correspond to distinct parts of interactions, and cre-
ate low-level concepts associated with these segments. For
example, as illustrated in figure 1, we would like the agent to
see the experience of passing an object as having two parts:
approaching and passing it, then moving without the object
in the visual field anymore. This example illustrates two
characteristics of the concepts we wish to induce:
� A concept can be represented by a continuous function

that predicts the next sensor values – the visual sensor
variable varies smoothly until the object disappears from
the visual field, and its variation is well described by a
function vis-A-x(t+1) = f(vis-A-x(t); trans-vel(t)); we
will call such a concept a function pattern.

� There are certain regularities in the sequence of patterns
– for example, during an object passing experience, a “no
object” pattern usually follows an “approach” pattern.

Given a time series of sensor data, the learning task is then
to find an appropriate set of function patterns and to iden-
tify the times at which each pattern occurs, thus producing a
Copyright c 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

-100

0

100

t_app t_pass

function

vis-A-x

trans-vel

Figure 1: Sensor traces during a “pass-right” experience:
while approaching the object, the evolution of the vis-A-x
sensor (the x-coordinate of the object in the robot’s visual
field) is well predicted by the function vis-A-x(t + 1) =

vis-A-x(t)
�
1� 1

1�c�trans-vel(t)

�
; trans-vel is the robot’s

translational velocity. At t app, the time when the ap-
proach phase begins, the parameter c is calculated from
the observed values: vis-A-x(t app), vis-A-x(t app+1), and
trans-vel(t app). At t pass the robot moves past the object
and sensor vis-A-x takes a default value.

segmentation of the time series. Intuitively, a set of function
patterns and a segmentation are appropriate when:
� Every function pattern, at its assigned times, predicts well

the next values in the time series.

� The segmentation is the best possible for the given pattern
set, for example a data point is not assigned to a pattern
when another pattern can predict it better.

Artificial neural networks (ANN) can approximate arbitrar-
ily well any continuous function (Pinkus 1999), and we
choose them to model the function patterns. Thus, we are
not looking for the exact expressions of the functions that
generated the observed data, but rather for functions in the
class of artificial neural networks that approximate well the
data generating functions. For the regularities in the se-
quences of function patterns we choose as models first order

Markov chains. While the first order Markov assumption
may not hold in reality, it provides a simple, tractable model,
which we hope is a good enough approximation at this low
level of representation. The resulting model, illustrated in
figure 2 and presented in more detail in the next section, is a
hidden Markov model (HMM) whose states are neural net-
works. The learning task is defined as finding the model that
produces the maximum likelihood segmentation.

network
state 1

network
state 2transition

probs.

net1 net2 net1 net2
time

Figure 2: The hybrid HMM/ANN model: at each moment
the data generating process is assumed to be in one HMM
state, and the observed value is assumed to be generated by
the neural network embedded in that state.

The model
While motivated by the goal of having a robot agent learn
representations, the learning paradigm described here ap-
plies to time series generated by other processes as well, so
it will be presented in general terms. Given a time series
of observed vectors x(1) : : : x(t) : : : x(T) of n variables,
x(t) = (x1(t); : : : xn(t)) 2 Rn, we assume that it was
generated by a set of K processes – or function patterns,
each process k being described by a continuous function
fk = Rn ! Rd:

y(t) = fk(x(t); x(t � 1); : : :)

xij (t+ 1) = yj(t) + ek(t) 1 � j � d

with ek(t) a random normal variable representing noise.
Variables xij , whose probability densities are controlled by
functions fk, are said to be the output variables; we want
to identify the K processes by learning to predict the next
values of these variables. The remaining variables are con-
sidered input variables provided by the environment; their
probability distribution will be ignored here. The partition-
ing into input and output variables is considered given –
for example the robot’s velocity is the input variable and a
visual sensor may be an output variable. A data point at
time t is the pair hx(t); y(t)i, with y 2 Rd the vector of
output variables. The pair hx(t); y(t)i will be denoted by
o(t) 2 Rn+d, and the resulting time series by the sequence
O = o(1) : : : o(t) : : : o(T). The likelihood of observing o(t)
within O, given function fk, is the value of the multivariate
normal density N(ek(t); 0;�

k):

�k(o(t)) =
1

(2�j�kj)
d=2

e
�

ek(t)
t��1k ek(t)

2 (1)

ek(t) = y(t)� fk(x(t); x(t � 1); : : :) (2)

where ek(t)t is the transpose of vector ek(t). The parameter
�k is a diagonal covariance matrix (i.e. the noise variables
are assumed uncorrelated) associated with process k. The
process of switching from one function pattern to another is
assumed to be described by a stationary first-order Markov
chain – every function pattern is a state of this process. This
is a strong assumption, but for now it provides a computa-
tionally tractable model. Each function pattern k has a set
fak;l; 1 � l � Kg of transition probabilities – ak;l is the
probability that the chain will be in state l at time t+ 1 if it
is in state k at t. An additional parameter a0;k is the prob-
ability that k is the initial state of the Markov process. The
initial and transition probabilities will be denoted by vector
ak. The resulting structure

� = fsk = hfk;�k; aki; 1 � k � Kg

is a hidden Markov model (see Rabiner’s tutorial (Rabiner
1989) for a comprehensive description of the model and its
estimation algorithms) with K states fskg. Given a model
�, a state path S = s(1) : : : s(T) specifying the state of the
process at each time, and an observed time series O, the
likelihood of O being generated by � along path S is:

L�(O;S j �) =
TY
t=1

as(t�1);s(t) � �s(t)(o(t))

For time series O and model �, the best segmentation of O
is considered to be the one given by the most likely path:

V = argmax
S

L�(O;S j �)

This path is called the Viterbi path and can be computed by
the Viterbi algorithm (Rabiner 1989).
We assume that the functions fk can be computed by recur-
rent neural networks. Because neural networks can approx-
imate arbitrarily well any continuous function (see Pinkus’s
survey (Pinkus 1999)), and even some discontinuous func-
tions ((Barron 1993)), this is a weak (non-restrictive) as-
sumption.
The learning task can now be described as finding a model
� = fhnetk;�k; aki; 1 � k � Kg that maximizes the like-
lihood L�(O; V�) for a given time series O; netk is the neu-
ral network of state k. The subscript in V� indicates that the
segmentation depends on the model �.

Induction algorithms
The goal is to find the model that maximizes the likelihood
of the observed time series along its Viterbi path. Algorithm
1 searches heuristically for a local maximum by adding new
network states as long as the likelihood keeps increasing,
then reducing the number of states until a minimum descrip-
tion length criterion (Rissanen 1984) is satisfied.

Algorithm 1 Main algorithm – Model induction

1. initialization:
� available-points all points

� create a non-content state from available-points
2. initial HMM/ANN induction

repeat while available-points 6= ; and L�(O; V�) in-
creases

(a) create a new network state and train the network with
the “reduced support” algorithm (alg. 3) on available-
points; add the network state to the model

(b) find the best model � with the current number of states
with algorithm 2, and its segmentation V�

(c) available-points non-content state’s points [points
poorly predicted by the networks

3. final HMM/ANN – model reduction with algorithm 4

The model is initialized with one non-content state. This
state does not model the observed data with a neural net-
work, but only with a multivariate normal density. Its goal
is to collect the noisy or difficult to predict data points. Each
network added to the model in step 2a has a minimal ar-
chitecture and is initially trained with the “reduced support”
training algorithm described later. We call the support of
a network the set of points used to estimate its parameters.
The algorithm 2 for finding the best model with given num-
ber of states also creates a segmentation of the observed time
series, by allocating each data point to one state. The set of
available points computed at step 2c contains all the points
allocated to the non-content state in the previous step, and
the points allocated to the content states that are poorly pre-
dicted by them. A point is poorly predicted by its network
owner if the network error in that point is larger than a dy-
namically computed threshold.

Finding the best model with given number of states
Algorithm 2, which finds the best model with a fixed num-
ber of states, is related to the expectation maximization
(EM) algorithm. It differs in that instead of trying to max-
imize the model’s expected likelihood, it tries to maximize
the model’s maximum likelihood – the likelihood along the
model’s Viterbi path. Because it does not look at all possi-
ble paths, algorithm 2 is computationally less expensive than
the Baum-Welch(Rabiner 1989) algorithm, which sums the
likelihoods along all paths.
Algorithm 2 Best model with fixed number of states:
� start with � and V�

� repeat:
1. estimate a new model �� from V�: train the networks,

calculate the variances and the transition probabilities

2. calculate V�� ; � ��, V� V��

until the segmentation no longer changes

At step 1 each network is trained with all the points assigned
to it by segmentation V . After the networks are trained to
minimize the error along V , the rest of the model parame-
ters f�k; akg can be estimated from the data by maximizing
the likelihood L�(O; V). The maximum can be found in
this case simply by setting the partial derivatives of the like-
lihood to 0, and solving the resulting system of equations.
The covariance matrix �k is assumed diagonal, so we need
to estimate only the variances �k

j of the yj variables in state
k. The unique solutions are the average network errors:

�kj =
1

size(Tk)

X
t2Tk

(y(t)� fk(x(t); t))
2 (3)

where Tk is the set of (indices of) points allocated to network
k in segmentation V . The solutions for the probability tran-
sitions of each state are obtained by imposing the constraint
that they must sum up to 1. These solutions are:

ak;l =
#sk ! sl

#s�k
(4)

where #sk ! sl is the number of observed transitions from
state sk to state sl in path V , and #s�k is the number of
occurrences of state sk in V (not counting the last element
of sequence V). These solutions are unique, too.
At step 2 a new segmentation is computed for the new model
�� by a dynamic programming algorithm: first the likeli-
hood of every possible state run (contiguous repetition of the
same state) (s; ti; tf); 1 � ti � tf � T is computed, then
Dijkstra’s shortest path algorithm finds the best sequence of
state runs. We need to consider state runs instead of one
state at a time as in the Viterbi algorithm, because the net-
works embedded in the HMM states are recurrent and their
internal states change along state runs – the state runs, and
not the state occurrences have the Markov property.
It can be easily noticed that the likelihood L�(O; V�) in-
creases at every iteration of algorithm 2:
� at step 1, L�(O; V�) � L��(O; V�) because training the

networks reduces their errors along V�; also, the maxi-
mum likelihood estimators of the network variances and
transition probabilities are easily calculated for V� with
formulas 3 and 4;

� at step 2, L��(O; V�) � L��(O; V��) because V�� is the
most likely path for model �

We have L�(O; V�) � L��(O; V�) � L��(O; V��), mean-
ing that the likelihood either increases or stays the same with
every iteration of alg 2.

Neural networks: architecture and training
Expression 2 shows that in the general case the output value
of network netk (which computes function fk) depends on
the entire past sequence of observed variables. In order
to implement this variable length memory, recurrent neu-
ral networks with the architecture depicted in figure 3 were
chosen. The input and output units have identity transfer

output layer

hidden layer

input layer

state(t)

state(t+1)

Figure 3: Recurrent network architecture: s(t + 1) =
func(s(t); x(t)) is the network’s internal state, encoded in
the recurrent units.

functions, the hidden and state units have cosine activation
functions. The cosine units can readily construct an approxi-
mating function – since they form the function’s Fourier rep-
resentation (see Barron (Barron 1993)), and unlike the more

popular logistic units, they do not saturate during gradient
descent. State units can also have identity transfer functions,
in which case they are used as memory rather than computa-
tional units. For now, the network architecture (size, topol-
ogy and transfer functions) is predetermined, not adapted
during training.
Assuming an initial segmentation of the time series, each
network is trained to estimate the y values within its as-
signed segments. The networks are trained with gradient
descent on the error surface, the learning rate being adjusted
automatically to follow the error surface faithfully until a lo-
cal minimum is found. The error function is the normalized
mean square error:

E =
1

2l

lX
t=1

dX
j=1

(yj(t)� z(t))2

�j

where z(t) = f(x(t); t) is the network output, l is the num-
ber of points allocated to the network, and the first sum is
taken over these points. The argument t in the function
f(x(t); t) computed by the recurrent network indicates that
the output depends on the past inputs. The individual error
of each output variable j must be normalized by the variance
�j associated with the network’s state so that one variable is
not overfitted at the expense of the others. This particular
error function is the one that must be minimized when max-
imizing the likelihood L�(O; V) due to the et��1e form in
the multivariate normal density function.

Reduced support training When a new network is
trained on the set “available-points” in algorithm 1, most
often these points were generated by more than one func-
tion pattern. This means that a network trained to minimize
the average error for the entire set is not likely to identify
(approximate well on the entire domain) any of the generat-
ing functions. We try to solve this problem by allowing the
network to choose its support (the set of points used to esti-
mate its parameters) from the given training set. Algorithm
3 finds the support by iteratively excluding from the train-
ing set the points p whose errors are larger than the average
network error but not smaller than a given threshold.

Algorithm 3 Reduced support

� support available-points
� repeat while the support changes

– train the network on the current support with gradient
descent until a local minimum is reached

– exclude from support the point p with:
error(p) > average-error, error(p) > acceptable-error

Because we do not know how many computational units are
needed to approximate well any of the generating functions,
and because large networks are prone to overfitting, all net-
works are created with a predefined minimal architecture.
The price we pay for this is that several small networks may
be needed to approximate well any of the generating func-
tions, with each network covering a subdomain of the func-
tion. This means that we may have a one-to-many rather
than a one-to-one correspondence between the function pat-
terns and the network states.

Model reduction – the second HMM, the final
HMM/ANN
Since a function pattern may be represented by several net-
work states, a better – cleaner, simpler – segmentation can
be obtained by partitioning the set of network states into sub-
sets associated with function patterns. It must be noticed that
these subsets are not necessarily disjoint: two distinct func-
tions can be very close on some common subdomain, so one
network can approximate both of them on that subdomain.
We model the correspondence between a function pattern
and the network states with a probability distribution over
the set of networks, and find these distributions by inducing
a discrete hidden Markov model (Rabiner 1989) from V �,
the sequence of network states. The network state identi-
fiers in V� are the symbols observed by the discrete HMM.
We will denote this discrete hidden Markov model with ��,
and call its states ��-states, to distinguish them from the net-
work states.
We would like to have a one-to-one correspondence between
the function patterns and the states of the discrete HMM.
Because we do not know the number of function patterns,
we must estimate from V� the number of states in ��. We
can do this by finding the model �� with m parameters that
satisfies Rissanen’s (Rissanen 1984) minimum description
length(MDL) criterion:

�� = argmin
�;m
f� logP�(V�) +

1

2
m logTg (5)

P�(V�) is the probability of the network state sequence V�

under model � and T is the length of V�, the observed se-
quence for �. Model �� is found by inducing for every k
from 1 to n, the number of network states, an HMM � with
k states, and then selecting the model that minimizes the
right side of expression 5. The number of parameters in a
model � with k states is m = k � (1 + k + n), and P�(V�)
is computed with the Baum-Welch algorithm. Let K be the
number of states in ��. The segmentation of the time series
is obtained by computing the Viterbi path, V�� , of model ��

for the sequence of network states V� induced by the ini-
tial HMM/ANN model . The final HMM/ANN model, with
K states, is obtained by assuming that each ��-state corre-
sponds to a function pattern – although we cannot expect a
perfect correspondence –, and then applying algorithm 2 to
the segmentation V�� . The final networks are chosen larger
than the initial networks, with their architecture again pre-
selected. The pseudo-code of the model reduction algorithm
is very simple:

Algorithm 4 Model reduction

� induce �� from V� – determine its number of statesK with
the MDL criterion

� compute segmentation V��
� � arbitrary model with K states and given architec-

ture; V� V��

� estimate �’s parameters with algorithm 2

It must be noticed that we can now address the problem of
estimating the network size: assuming that each ��-state cor-
responds to a function pattern, a network can be trained with

all the points allocated to a ��-state in V�� , including a reg-
ularization term in the cost to be minimized. This was not
possible until now (step 3 in the main algorithm), because
the network’s support was not considered known, and the
regularization term depends on the size of the training set.
In future work we will want to automatically adjust the size
and architecture for the final networks.
It must also be noticed that the likelihood of the observed
data O under the final HMM/ANN may be smaller than the
likelihood under the initial HMM/ANN. This is because the
number of network states was determined with a minimum
description length, not a maximum likelihood criterion, and
also because there is no guarantee that the final networks
have smaller approximation errors than the initial networks
– although we might correct this in the future. For now, we
prefer to eventually give up in the final step a higher likeli-
hood model, for a simpler one that produces a less complex
segmentation.

Experimental results
To understand what our induction algorithm can do, we first
applied it to artificial data. We present here one such exper-
iment that we consider relevant. A time series with 257 data
points was generated by a process switching between two
function patterns, f and g:

x(t+ 1) = f(�) = �1:05x(t) + :05
x(t+ 1) = g(�) = �2x+5

:5x2(t)+1

It can be noticed that function f ’s expression is simpler than
g’s. For both patterns the self-transition probability is :9.
Normally distributed noise with variance :01 was added to
the output. The initial networks have two hidden and one
state cosine units. The initial HMM/ANN model – found at
the second step of algorithm 1 – has seven network states:
one network gets almost all of f ’s points and a couple from
g, five networks get most of g’s points plus a few from f ,
and one non-content state gets several points from both f
and g. Because g is a more complex function, several sim-
ple networks are needed to estimate it. The final HMM/ANN
model has exactly two network states, and the resulting seg-
mentation, as it can be seen in figure 4, identifies almost
perfectly the two generating functions. The two networks of
the final model were given different architectures: the one
that approximates f has the same simple architecture as the
initial networks; the one approximating g has nine hidden
and no state units. In several runs of the model reduction
algorithms, this configuration yielded the smallest approxi-
mation errors.
The algorithm was also applied to time series collected dur-
ing experiences involving a robot approaching or passing an
object. There were 14 non-disjoint kinds of experiences –
“pass right a red object”, “pass right a red object, then push
a blue object”, with several of each kind, totaling 1082 time
steps and 42 experiences. Two thirds of the experiences
were selected for the training set, and the remaining ones
formed the test set. A model was induced from the training
set for the task of predicting the next “vis-A-x” and “vis-A-
y” sensor values from the current “trans-vel”, “vis-A-x” and

-7

-6

-5

-4

-3

-2

-1

0 50 100 150 200 250

f/g

initial segm.

final segm.

time

-8

-6

-4

-2

0

2

4

6

175 180 185 190 195 200 205 210

x

xP

f
g

f

initial segm.

final segm.

f/g

time

Figure 4: Top: “f/g” is the sequence of the generating func-
tions f and g, “initial segm.” is the best bath of the first
HMM/ANN, and “final segm.” is the best path of the fi-
nal models. Bottom: part of the generated time series, its
approximation(prediction) by the final HMM/ANN, and the
segmentations produced by the two models; “x” plots the
observed data, and “xP” the predicted data. The segmenta-
tion plots show the indices of the state networks in the cor-
responding best paths.

“vis-A-y” values. Sensors “vis-A-x” and “vis-A-y” return
the coordinates of the center of an object in the robot’s vi-
sual field, and “trans-vel” is the robot’s translational veloc-
ity. Small networks with four hidden and two state cosine
units were used. Although due to time constraints, only the
initial HMM/ANN was induced (no clean-up of the result-
ing segmentation), the results are quite good. In both the
training and the test set the experiences of the same kind are
segmented in the same way, i.e. they are represented by ap-
proximatively the same sequence of network states. During
the “pass-right” experiences, one network state, network 1,
is active when the robot gets close to the object and passes it,
and another, network 4, is active immediately after the robot
passed the object. This indicates that these two patterns can
be used to describe a concept like “approaching and pass-
ing an object”, and as such are potentially useful building
blocks in higher level representations of the robot’s environ-

ment. The segmentations of four “pass right a red object”
experiences, two in the training set and two in the test set,
are shown in figure 5.

0 15 30 45time

vAx, vAxP

vAy, vAyP

network 0
1

4

3
0

1

4

0
1

4

0
1

vAx, vAy
vAxP, vAyP

Figure 5: Induced segmentation of four “pass-right” expe-
riences: top – from the training set, bottom – from the test
set. The plots are: “vAx” is “vis-A-x”, “vAy” is “vis-A-y”;
“vAxP” and “vAyP” are the network outputs (predictions);
“network” plots the Viterbi path.

Related work

Many different hybrid HMM/ANN architectures have been
developed, with the networks computing state transition
probabilities or observation probability density parameters.
These systems were successfully used in applications like
speech recognition , or time series prediction. Among the
latter, we are most interested in the work of Liehr, Kohlmor-
gen et. al. (Liehr et al. 1999) and Tani and Nolfi (Tani
& Nolfi 1999). In both cases an ensemble of networks,
called experts, is trained to predict the next observation,
and the time series is segmented by soft competition among
the experts. While their learning framework is similar with
ours, there are some differences. The most important one
is that their systems have a fixed number of experts, while
in ours the number of networks is determined from the
data. Another difference is that their systems employ a non-
stationary, more complex model of the expert switching pro-
cess. Liehr et. al. have a HMM whose transition probabili-
ties are computed dynamically by a neural network, Tani et.
al. have a neural network compute at every time step the ex-
pert activation probabilities. The prediction of their ensem-
bles is a weighted sum of the individual expert predictions,
with the weights depending on the dynamically calculated
probabilities. It can be noticed that the non-stationary mix-
ture of network outputs compensates for the fixed number
of experts. While the mixture can be considered a more par-
simonious representation, eventually identifying more com-
plex concepts like drifts between regimes, the fixed maxi-
mum number of low level concepts can be a drawback.

Conclusions and future work
A new hybrid HMM/ANN system for segmenting time
series was presented. The main difference from other
HMM/ANN approaches is that the number of networks is
not fixed, but induced from the data. In experiments with
artificial data the algorithm identified almost perfectly the
generating functions. Preliminary results with robot data
suggest that the induced patterns can be associated with low-
level concepts, and are thus potentially useful representation
elements. These results are preliminary not only because we
need more experiments, but also because the induction al-
gorithms and the resulting concepts are not yet part of an
architecture for predicting and controlling an agent’s inter-
actions with its environment. In future work we intend to
develop a hierarchical architecture for prediction and con-
trol, with the model and algorithms described in this work
forming the lowest level. As discussed earlier, in the sec-
tion describing the model reduction algorithm, we can now
employ regularization methods to estimate from the data the
network architectures. This is an important problem because
a network’s estimation and generalizations capabilities, and
thus the quality of the induced concepts, depend on its ar-
chitecture.

References
Barron, A. R. 1993. Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions
on Information Theory 39(3):930–945.
Liehr, S.; Pawelzik, K.; Kohlmorgen, J.; and Muller, K. R.
1999. Hidden markov mixtures of experts with an applica-
tion to EEG recordings from sleep. Theory in Biosciences
118(3-4):246–260.
Pinkus, A. 1999. Approximation theory of the MLP model
in neural networks. Acta Numerica 143–195.
Rabiner, L. R. 1989. A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition. Pro-
ceedings of the IEEE 77(2):257–285.
Rissanen, J. 1984. Universal Coding, Information, Predic-
tion, and Estimation. IEEE Transactions on Information
Theory 30(4):629–636.
Tani, J., and Nolfi, S. 1999. Learning to perceive the
world as articulated: an approach for hierarchical learning
in sensory-motor systems. Neural Networks 12(7-8):1131–
1141.

