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Abstract

We present two algorithms for inducing structural equation models from data. Assuming

no latent variables, these models have a causal interpretation and their parameters may be

estimated by linear multiple regression. Our algorithms are comparable with PC [15] and

IC [12, 11], which rely on conditional independence. We present the algorithms and empirical

comparisons with PC and IC.
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1. Structural Equation Models

Given a dependent variable x0 and a set of predictor variables P = fx1; x2; : : : ; xkg, multiple

regression algorithms �nd subsets p � P that account for \much" of the variance in x0. These are

search algorithms, and they are not guaranteed to �nd the \best" p|the one that makes R2 as big

as possible, especially when p is a proper subset of P [10, 3, 7]. The question arises, what should

be done with the variables in T = P � p, the ones that aren't selected as predictors of x0? In many

data analysis tasks, the variables in T are used to predict the variables in p. For instance, we might

select x1 and x3 as predictors of x0; and x2; x5; x6 as predictors of x1; and x4 as a predictor of x2
and x3; and so on. We can write structural equations:

x0 = �0;1x1 + �0;3x3 + u

x1 = �1;2x2 + �1;5x5 + �1;6x6 + v

x2 = �2;4x4 + w

x3 = �3;4x4 + z

The principal task for any modeling algorithm is to decide, for a given \predictee," which

variables should be in p and which should be in T . Informally, we must decide where in a structural

equation model a variable does most good. For example, parents' education (PE) and child's

education (CE) could be used as predictors of a child's satisfaction when he or she takes a job (JS),

but we might prefer a model in which PE predicts CE, and CE predicts JS (or a model in which PE

predicts CE and JS). This paper presents two algorithms that build structural equation models.

There are clear parallels between building structural equation models and building causal mod-

els. Indeed, path analysis refers to the business of interpreting structural equation models as causal

models [9, 16]. Path analysis has been heavily criticized (e.g., [13, 8]) in part because latent variables

can produce large errors in estimated regression coe�cients throughout a model [15]. Recent causal

induction algorithms rely not on regression coe�cients but on conditional independence [11, 15].

These algorithms use covariance information only to infer boolean conditional independence con-

straints; they do not estimate strengths of causal relationships, and, most importantly from our

perspective, they don't use these strengths to guide the search for causal models.

Our algorithms, called fbd and ftc, use covariance information, in the form of estimated

standardized regression coe�cients, to direct the construction of structural equation models and to

estimate the parameters of the models. Because latent variables can result in biased estimates, our

algorithms might be misled when latent variables are at work. In practice, fbd and ftc are more

robust than, say, stepwise multiple regression. They often discard predictors that are related to

the predictee only through the presence of a latent variable [2]. We haven't yet shown analytically

why the algorithms have this advantage. Until we do, our only claim for fbd and ftc is this: when

latent variables are at work, our algorithms build multilevel regression models of heuristic value

to analysts, just as ordinary regression algorithms build useful (but suspect) single-level models.

If we can assume causal su�ciency [15]|essentially, no latent variables|these models may be

interpreted as causal models [5].1

2. FBD and FTC

Structural equation models can be represented by directed acyclic graphs (DAGs) in which a

link x1 ! x0 is interpreted to mean x1 is a predictor of x0. fbd and ftc rely on statistical �lter

1
fbd and ftc run in clip/clasp [1], a Common Lisp statistical package developed at UMass. For more information

on clip/clasp, please contact clasp-support@cs.umass.edu.
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conditions to remove insigni�cant links from the model being constructed. The two algorithms use

the same �lter conditions, di�ering only in how they are applied. The most important �lter (and

the only novel one) is the ! statistic:
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Given a predictee, say xi, and a set of predictors P , we �rst regress xi on all the predictors

in P . This yields a standardized regression coe�cient �ij for each predictor xj . Now, �ij is

partial|it represents the e�ect of xj on xi when the in
uences of all the other variables are �xed.

Following [9, 14] we'll call �ij an estimate of the direct in
uence of xj on xi. The correlation rij

represents the total in
uence of xj on xi, so rij � �ij estimates the in
uence of xj that is due to its

relationships with other predictors|its indirect in
uence. Thus, !ij estimates the fraction of xj 's

total in
uence on xi that is indirect. If xj has little direct in
uence on xi relative to its indirect

in
uence through, say, xk , then xk , not xj , is heuristically more apt to be a direct cause of xi. Thus

we �lter xj when !ij exceeds a threshold T!.

Small values of ! are necessary but not su�cient to consider one variable a cause of another.

This is because !ji will be very small if both rij and �ij are small, but in this case the predictor

xj has little in
uence on xi, direct or indirect, and should be �ltered. Even if the � coe�cients are

relatively high, the regression of xi on xj and other variables might account for very little variance

in xi, so we �lter xj if it doesn't contribute enough (perhaps with other variables) to R
2 for xi.

Currently, the only other �lter used by fbd and ftc is a test for simple conditional independence

using the partial correlation coe�cient. If xk renders xi and xj independent, the partial correlation

rij�k will be approximately 0, and we remove the link between xi and xj .

2.1 The FBD Algorithm

The fbd algorithm is told x0, the sink variable, and works backwards, �nding predictors for x0,

then predictors for those predictors, and so on.

1. Enqueue x0 into an empty queue, Q.

2. Create M , an empty model (with n nodes and no links).

3. While Q is not empty, do:

(a) Dequeue a variable xj from Q

(b) Find a set of predictors P = fxi j xi 6= xj and xi ! xj passes all �lter conditions and

xi ! xj will not cause a cycleg

(c) For each xi 2 P , add the link xi ! xj into M

(d) For each xi 2 P , enqueue xi into Q

fbd performs well (see below) but it has two drawbacks: First, we must identify the sink

variable x0; most model induction algorithms do not require this information. Second, predictors

of a single variable are enqueued on Q in an arbitrary order, yet the order in which variables are

dequeued can a�ect the structure of the resulting model. For example, the link xi ! xj will be

reversed if xi is dequeued before xj . These issues led to the development of a second algorithm,

called ftc.
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2.2 The FTC Algorithm

ftc deals with these problems by inserting links into the model in order of precedence, rather

than in order of selection. Precedence is determined by a sorting function S(xj ! xi). The ftc

algorithm is as follows:

1. Let L = fxj ! xi : i 6= j; 1 � i � n; 1 � j � ng; i.e. L is the set of all potential links in a

model with n variables.

2. For each link xj ! xi 2 L, test each �lter condition for xj ! xi. If any condition fails,

remove xj ! xi from L.

3. Sort the links remaining in L by some precedence function S(xj ! xi).

4. Create M , an empty model (with n nodes and no links) to build on.

5. While L is not empty, do:

(a) Remove the link xj ! xi, of the highest precedence, from L.

(b) If xj ! xi does not cause a cycle in M , add xj ! xi to M . Otherwise, discard xj ! xi.

Experiments with di�erent sorting functions led us to the following simple procedure: for a

link xj ! xi, its score for sorting is R
2 from the regression of xi on all the other variables. Thus,

a link's precedence is the R2 of its dependent variable. We justify this policy with the following

observation: variables with high values of R2 are less likely to have latent in
uences, so they are

preferred as dependent variables.

The complexity of these algorithms is O(n4), where n is the number of variables. Most of this

is attributed to the linear regressions, which have complexity O(n3) in our implementation.

3. Empirical Results

We have tested fbd and ftc under many conditions: on arti�cial data (using our own data

generator and the TETRAD generator), on published data [15], and on data generated by running

an AI planning system called Phoenix [6]. We tested how well the ! heuristic selects predictors,

measured in terms of variance accounted for in the dependent variable [4]. Also, we have compared

fbd and ftc with other algorithms|pc for fbd [15] and ic for ftc [11].2 Finally, to assess

how latent variables a�ected its performance, we compared fbd with stepwise linear regression as

implemented in minitab [2].

3.1 Arti�cial Models and Data

We worked with a set of 60 arti�cially generated data sets: 20 data sets for each of 6, 9, and 12

measured variables. These were generated from the structural equations of 60 randomly selected

target models. The advantage of this approach is that the model constructed by each algorithm can

be evaluated against a known target.

The target models were constructed by randomly selecting m links from the set of potential

links L = fxi ! xj j i 6= jg. For each model of n variables, m is chosen from the range 1:0(n �

2We are very grateful to Professors Spirtes, Glymour and Scheines, and Professor Pearl, for making the code for

their algorithms available.
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1) : : :3:0(n � 1); thus the target models have an average branching factor between 1 and 3. As

each link is selected, it is inserted into the target model. With probability 0.3, the link will be a

correlation link, indicating the presence of a latent variable.

Once the structure of each target model has been determined, the structural equations are

created for each dependent variable xj . For directed links xi ! xj , a path coe�cient is randomly

selected from the range �1:0 : : :1:0. For correlation links, a latent variable lij is created (these

variables are not included in the �nal data set), and a path coe�cient is selected for the links

lij ! xi and lij ! xj .

Finally, data are generated from the structural equations. For each independent and latent

variable, a set of 50 data points is sampled from a Gaussian distribution with mean of 0 and standard

deviation of 1 (we have also run experiments with variates selected from uniform distributions).

Sample values for the dependent variables are computed from the structural equations, and a

Gaussian error term is added to each (with mean 0 and standard deviation 1).

3.2 How Good Is ! at Selecting Predictors?

Suppose we have a dataset with one dependent variable x0 and a set P of predictor variables,

and we want to �nd the best subset p{best(k) of k predictors. Here, \best" means no other subset

p
0 of k predictors accounts for more variance in x0 than p{best(k) does. We can �nd p{best(k) by

exhaustive search of all subsets of k predictors. Or, we can regress x0 on all the predictors in P ,

and select the k predictors with the lowest ! scores. How well does the latter method perform in

comparison with the former, exhaustive method?

For each of the 60 target models described in the previous section, we found by exhaustive

search the best subsets of k = 3; 4; 5 predictors of the \sink" variable, x0. Next we selected subsets

of k predictors using ! scores. The batch discarding method regresses x0 on x1; x2; : : :, calculates

! for each of these predictors, and selects the k predictors with the best ! scores. This set is

denoted p{batch(k). The iterative discarding method repeatedly regresses x0 on a set of predictors,

discarding the predictor with the worst ! score, until only k predictors remain, denoted p{iter:(k).

We chose to try both methods since one can expect � coe�cients to change substantially even if

one predictor is removed from a regression.

If ! scores select good predictors, then p{best(k), p{batch(k), and p{iter:(k) should contain the

same predictors; if they don't, we would like p{batch(k) and p{iter:(k) to account for nearly as

much of the variance in x0 as p{best(k).

Table 1 shows how many predictors p{batch(k) and p{iter:(k) have in common with p{best(k).

For 12-variable models and k = 5, the mean number of predictors shared by p{batch(k) and p{

best(k) is 3.15, and, for p{iter:(k) and p{best(k) this number is 3.375. Thus, when batch discarding

selects �ve variables, roughly two of them (on average) are not the best variables to select.

k V ars: j p� batch(k) \ p� best(k) j j p� iter:(k) \ p� best(k) j

5 12 3.15 (1.16) 3.375 (.86)

5 9 3.65 (.49) 3.7 (.52)

5 6 5.0 (0) 5.0 (0)

4 12 2.3 (.57) 2.3 (.74)

4 9 3.05 (.36) 3.08 (.53)

4 6 3.33 (.23) 3.33 (.23)

3 12 1.48 (.61) 1.68 (.58)

3 9 2.18 (.46) 2.18 (.51)

3 6 2.28 (.36) 2.33 (.33)

Table 1: Means and (Standard Deviations) of the size of the intersections
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On the other hand, Table 2 shows that the variables in p{batch(k) and p{iter:(k) account for

almost as much of the variance in x0 as those in p{best(k). Let R2
p�best(k)

be the variance in x0

that is \available" to predictors in p{batch(k) and p{iter:(k). For instance, if the best k predictors

account for only 50% of the variance in x0, then we want to express the predictive power of p{

batch(k) as a fraction of 50%, not 100%. Table 2 therefore contains the ratios R2
p�batch(k)

=R
2
p�best(k)

and R
2
p�iter:(k)=R

2
p�best(k). For example, for 12-variable models and k = 5, the predictors selected

by batch discarding account for 85% of the available variance in x0, on average, and those selected

by iterative discarding account for 86%.

k V ars: R2
p�batch(k)=R

2
p�best(k) R2

p�iter:(k)=R
2
p�best(k)

5 12 .845 (.03) .86 (.023)

5 9 .94 (.006) .94 (.005)

5 6 1.0 (0) 1.0 (0)

4 12 .80 (.04) .82 (.03)

4 9 .94 (.008) .94 (.005)

4 6 .91 (.01) .91 (.01)

3 12 .73 (.06) .80 (.04)

3 9 .91 (.02) .92 (.01)

3 6 .88 (.03) .89 (.03)

Table 2: Means and (Standard Deviations) of the R
2 ratios

Batch and iterative discarding do not �nd exactly the same predictors as exhaustive search

for the best predictors, but the ones they �nd account for much of the available variance in the

dependent variable. Bear in mind that exhaustive search for the best k of N variables requires N -

choose-k multiple regressions with k predictors, whereas iterative discarding requires N�k multiple
regressions with between N and k+1 predictors, and batch discarding requires just one regression

with N predictors. Thus, batch discarding �nds predictors that are nearly as good as exhaustive

search, with a fraction of the e�ort.

We wondered whether something simpler than ! scores, such as sorting by beta coe�cients,

would perform equally well. In most cases, beta coe�cients selected the same predictors as !

scores, but sometimes they recommended di�erent sets with bad R
2 scores. We can see why (and

also why ! is preferable) by considering four cases:

High r0i, high �0i: In this case ! is small in absolute value and xi will be accepted as a predictor

of x0. Similarly, � is high, so by this criterion xi will also be accepted as a predictor. Since

xi should be accepted in this case, both ! and � do the right thing.

High r0i, low �0i: Here, ! is large in absolute value and � small, so both statistics will reject xi,

which is the right thing to do.

Low r0i, high �0i: Here, ! is large in absolute value so xi will be rejected. However, xi's � score

suggests accepting it. The correct action is to reject xi because the only way to get, say,

r0i = 0 and �0i = :8 is for xi's direct in
uence (.8) to be cancelled by its indirect in
uence

(-.8) through other predictors. We want predictors that have large direct in
uence and small

indirect in
uence, so we ought to discard xi. In this case, � coe�cients make the wrong

recommendation.

Low r0i, low �0i: In this case, ! is small but fbd and ftc will discard xi as a predictor because

� is small.
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3.3 Comparative Studies

fbd and ftc were compared to the pc [15] and ic [12, 11] algorithms, respectively. We chose

these algorithms for comparison due to their availability and strong theoretical support. Both pc

and ic build models from constraints imposed by conditional independencies in the data.

In order to provide a comprehensive evaluation of the algorithms, we used a variety of perfor-

mance measures for each model. The measures we used are shown in table 3. See [5, 4] for details

of these and other dependent measures.

Measure Meaning

Dependent R2 The variance accounted for in x0, the sink variable.

�R2 The mean of the absolute di�erences in R2 between all the

predictees in the target model and the model being evaluated.

Correct % The percentage of the directed links in the target

model that were correctly identi�ed.

Wrong/Correct The ratio of wrong links found for every correct one.

Wrong Reversed The number of links xi ! xj that should have been

reversed, xi  xj.

Wrong Not Reversed The number of links xi ! xj that should not have

been drawn in either direction.

Table 3: Dependent measures and their meanings.

We compared fbd with the pc algorithm [15], because pc can be given exogenous knowledge

about causal order, speci�cally, it can be told which is the sink variable x0.
3
ftc was compared

to the ic algorithm, since neither uses external knowledge about the data. Both pc and ic take a

least-commitment approach to causal induction, conservatively assigning direction to very few links

in order to avoid misinterpretation of potential latent in
uences. fbd and ftc, on the other hand,

commit to a direction in all cases. Hence it was necessary to evaluate statistics like DependentR2

for pc and ic models in two ways|by interpreting undirected links as directed (choosing the most

favorable direction, always), or simply ignoring undirected links. In Table 4 the last two rows for

the R2 measures, denoted w/undirected, give scores obtained by interpreting undirected links as

directed in the most favorable way.

fbd and fbd attained signi�cantly higher DependentR2 and �R2 scores than pc and ic (much

higher, when we ignore undirected links). This is to be expected: fbd and ftc are driven by covari-

ance information and pc and ic use covariance only to �nd conditional independence relationships.

( Signi�cance was tested with paired-sample t tests, p < :05.) fbd and ftc have signi�cantly

higher Correct% scores than pc and ic. fbd has a higher Wrong=Correct score than pc, although

not signi�cantly so, because it commits to more directed links than pc. As the models become

larger, ftc becomes signi�cantly better than ic onWrong=Correct scores. Although fbd and ftc

include more links than the other algorithms, ftc maintains a low rate of incorrect identi�cations.

Roughly 72% of pc's wrong links are wrong because they are backwards (i.e., WrongReversed);

conversely, only 28% of pc's links should not have been drawn in either direction. For ic, 44% of

the wrong links are backwards, and for fbd and ftc, the numbers are 33% and 30%, respectively.

Clearly, when fbd and ftc draw an incorrect link, it generally shouldn't be in the model pointing

in either direction, whereas pc and to a lesser extent ic err by drawing links backwards. Keep in

mind, though, that this is an analysis of wrong links, only, and that ftc has betterWrong=Correct

performance than the other algorithms.

3We thank Professor Glymour for suggesting this comparison.
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Measure Algorithm 6vars 9vars 12vars

DependentR2 FBD� 0.734 ( 0.187) 0.787 ( 0.146) 0.728 ( 0.278)

PC� 0.301 ( 0.396) 0.403 ( 0.307) 0.363 ( 0.320)

FTC 0.734 ( 0.187) 0.787 ( 0.146) 0.728 ( 0.278)

IC 0.326 ( 0.389) 0.451 ( 0.338) 0.303 ( 0.363)

w=correlations PC� 0.607 ( 0.337) 0.685 ( 0.266) 0.684 ( 0.269)

IC 0.603 ( 0.31) 0.811 ( 0.12) 0.739 ( 0.216)

�R2 FBD� 0.118 ( 0.087) 0.134 ( 0.077) 0.179 ( 0.130)

PC� 0.333 ( 0.151) 0.321 ( 0.102) 0.372 ( 0.100)

FTC 0.118 ( 0.087) 0.107 ( 0.087) 0.147 ( 0.086)

IC 0.347 ( 0.128) 0.345 ( 0.137) 0.348 ( 0.095)

w=correlations PC� 0.185 ( 0.084) 0.166 ( 0.101) 0.193 ( 0.051)

IC 0.199 ( 0.104) 0.124 ( 0.063) 0.172 ( 0.063)

Correct% FBD� 0.653 ( 0.186) 0.651 ( 0.184) 0.528 ( 0.248)

PC� 0.284 ( 0.181) 0.273 ( 0.172) 0.167 ( 0.109)

FTC 0.658 ( 0.203) 0.682 ( 0.223) 0.566 ( 0.211)

IC 0.293 ( 0.18) 0.272 ( 0.19) 0.165 ( 0.11)

Wrong=Correct FBD� 0.685 ( 0.542) 0.932 ( 0.391) 1.396 ( 1.082)

PC� 0.458 ( 0.534) 0.617 ( 0.921) 1.276 ( 1.315)

FTC 0.467 ( 0.627) 0.696 ( 0.496) 0.809 ( 0.288)

IC 1.48 ( 0.944) 1.50 ( 1.11) 2.17 (2.10)

WrongReversed FBD� 1.200 ( 1.056) 2.200 ( 1.824) 4.100 ( 3.323)

PC� 0.650 ( 0.813) 0.950 ( 1.146) 1.950 ( 1.146)

FTC 0.600 ( 0.681) 1.450 ( 1.849) 2.650 ( 1.981)

IC 1.55 ( 1.05) 1.35 ( 1.27) 2.0 ( 1.30)

WrongNotRev: FBD� 1.900 ( 1.165) 4.900 ( 1.997) 9.100 ( 4.388)

PC� 0.250 ( 0.444) 0.300 ( 0.470) 0.950 ( 0.945)

FTC 1.350 ( 0.988) 3.500 ( 1.821) 6.400 ( 2.798)

IC 1.2 ( 1.06) 2.5 ( 2.09) 2.9 ( 1.8)

Table 4: Means and (Standard Deviations) of scores for several causal in-

duction algorithms (* = uses additional knowledge)

3.4 Performance with Latent Variables

Regression coe�cients are unstable, especially when unmeasured or latent variables in
uence

them. Selecting variables by their ! scores lessens this problem. In our lab, Ballesteros [2] has

obtained good results with models Spirtes et al. [15, page 240] show are di�cult for ordinary regres-

sion. For these models, regression often chooses predictors whose relationships to the dependent

variable are mediated by latent variables or common causes (we refer to these variables as proxy

variables). Ballesteros generated 12 di�erent sets of coe�cients for the structural equations for

each of the four Spirtes et al. models, and data sets for each having 100 to 1000 variates. fbd's

performance on these data was measured by the number of times it chose the correct predictors

and number of times it incorrectly chose a proxy variable. The data from these experiments are

given in Table 5. fbd correctly chose true predictors 90% of the time, and correctly rejected proxy

variables 80% of the time.

chosen rejected Total

True Predictor 108 12 120

Proxy Variable 12 48 60

Total 120 60 180

Table 5: Contingency Table FBD Choices
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As a comparison, Ballesteros used Minitab to run stepwise regressions (signi�cance = .05) on

each latent variable dataset to �nd out how often the algorithm chose a proxy variable as a predictor.

The data are given in Table 6.

chosen rejected Total

True Predictor 118 2 120

Proxy Variable 42 18 60

Total 160 20 180

Table 6: Contingency Table Stepwise Choices

MINITAB correctly selected 98% of the true predictors, but it correctly rejected proxies only

30% of the time. We are trying to understand why stepwise regression performs so poorly in

the presence of latent variables and why fbd is less susceptible. Our best guess is that stepwise

regression is a \step up" procedure that starts with no predictors and adds them one at a time,

whereas fbd starts with all predictors, computes regression coe�cients, and then removes some

predictors with �lter conditions. We think that a regression coe�cient for a predictor is less likely

to be biased when it is one of several variables in a regression 0 , than when it is one of very

few predictors. If so, step up procedures will be more susceptible to bias than, say, backward

elimination and fbd. Ballesteros has some evidence to support this conjecture.

4. Conclusions

fbd and ftc are simple, polynomial-time algorithms that construct models without searching

the entire space of models. Our empirical results show that ! does remarkably well as a heuristic

for selecting predictors. In fact, it performs so well that fbd and ftc build models that are in some

respects superior to those constructed by pc and ic. Admittedly, neither fbd nor ftc infers the

presence of latent variables, which may be a signi�cant drawback for some applications. However,

we have shown that fbd will often avoid predictors that are connected to the variables they predict

via a common but latent cause.
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