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ABSTRACT 

In this paper we discuss a class of  tasks in which to study planning under 
uncertainty. We analyze the interaction between autonomous agents and uncertain 
environments, and review the artificial intelligence literature on planning from this 
perspective. Case studies from our own research are presented to illustrate issues in 
planning under uncertainty and methods for studying these issues. 
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INTRODUCTION 

Reasoning under uncertainty has two aspects. One is to assess the most likely 
states of the world, and the other is to act on those assessments. The former is 
often called judgment  and the latter decision making. Judgment is the primary 
focus of research on reasoning under uncertainty in artificial intelligence (AI). 
Although many AI systems make decisions, those that serve as examples of 
research on uncertainty typically do not. Instead, the literature on uncertainty in 
AI is concerned almost exclusively with a single aspect of a single generic task: 
combining evidence in interpretation tasks. Expert systems for medical 
diagnosis serve as the canonical AI systems in this research. Other aspects of 
interpretation tasks that do involve decisions, such as deciding which evidence to 
acquire and deciding how to treat a patient given a diagnosis, have been largely 
ignored. Other generic tasks and domains, such as planning, design, robotics, 
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and process control, have also been neglected. But AI is increasingly concerned 
with decision making in such tasks and domains and is much less concerned with 
judgment in simple diagnosis. Thus, the research published in, say, the 
proceedings of  the A A A I  Workshops on Uncertainty and Artificial Intelligence 
is largely irrelevant to many current AI research problems, even though these 
problems involve considerable uncertainty. 1 

This paper describes a class of  problems that concern how agents act in 
uncertain environments. Lately, these have been called planning problems and 
the agents planners (e.g., McDermott  [5] and DARPA [6]). We are writing this 
paper to urge researchers in the uncertainty community to expand their focus to 
include planning problems. We advocate this for several reasons. First, although 
uncertainty is the most salient characteristic of  planning problems, current 
research in the uncertainty community tells us nothing about how to design 
planners. Second, much of  the literature on planning comes from the logicist 
community in AI (e.g., Georgeff  and Lansky [7]) and so emphasizes 
nonmonotonic reasoning over probabilistic approaches to uncertainty. But 
probabilities (if you can get them) are better suited than assumptions to the task 
of  selecting actions, because they can be combined with utilities (if you can get 
them) and ranked. 

Third, we believe that too much energy is devoted to making ever-finer 
distinctions between methods for combining evidence, just as symmetric efforts 
are devoted to showing that these methods in fact mathematically subsume one 
another or can be incorporated one within the other. These debates ignore a 
fundamental question: For what purpose are we combining evidence? Interpre- 
tation tasks provide the illusion of  a purpose; but when a researcher from the 
uncertainty community says "medical  diagnosis," he or she usually means 
"evidence combination" only, not planning the diagnosis, not deciding between 
treatments, and not prognosis. In contrast, planning depends on evidence 
combination and so provides a context for research on judgment. Planners need 
to interpret data from the world well enough to act; they need to know the likely 
outcomes of  actions well enough to select among the actions; they need to know 
the probabilities of  events beyond their control well enough to prepare for them. 

For example, of 51 papers published in the Proceedings of the Third Annual Workshop on 
Uncertainty in Artificial Intelligence, roughly one-half mentioned no application whatsoever but 
were clearly influenced by diagnostic expert systems, two described vision systems, and all but four 
of the rest described diagnostic applications, or algorithms for learning or knowledge acquisition for 
diagnostic applications. The remaining four are Tong and Appelbaum's discussion of the relationship 
between knowledge representation and evidential reasoning in information retrieval tasks [1]; Steve 
Hanks' discussion of the persistence problem in planning (i.e., how the passage of time affects one's 
belief in propositions) [2]; Cohen's description of a program and an architecture for planning 
diagnoses [3] (see also the fourth section of this paper); and Wellman and Heckerman's analysis of 
the range of tasks facing all intelligent agents in moderately complex environments [4]. 
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How well is "well enough"? Let us not debate this in abstract interpretation 
tasks, but in the context of planning tasks. 

Planning is concerned with the interaction of agents and their environments. 
Time is an important dimension of this interaction; agents may act or remain 
inactive, but time still passes. Agents are assumed to have goals--among them, 
finding out about the environment, changing it in some way, changing 
themselves, changing their relationships with each other and with the environ- 
ment, and so on. Agents also have plans, which for now are just internal 
structures that dictate how agents respond to their environment. Plans may be 
reflexes, multiaction schemas, symbolic contingency plans, and so on. Agents 
sense their environments. Often, many layers of inference separate sensation 
from perception. Agents also adapt to their environments. 

Uncertainty is the most salient characteristic of the relationship between 
agents and their environments. Consider some sources of uncertainty: Agents' 
knowledge about the environment may be inaccurate and incomplete. The space 
of possible futures expands combinatorially, so agents cannot foresee the 
outcomes of more than a few actions. An agent is typically not the only actor in 
an environment, and the behavior of other agents may be unpredictable. The 
environment itself may be unpredictable. Agents may have limited time to 
reason and act; to meet deadlines they may have to rely on heuristic, 
approximate, and thus uncertain methods (Lesser et al. [8]). Time also 
introduces questions about persistence; for example, how does passing time 
affect belief in a predicate such as "can ' t  eat another thing" (Hanks [2])? 

Time is important for another reason: Agents themselves persist and may have 
many opportunities to achieve their goals, so the "one-shot" view of decision 
making is typically not appropriate. Wellman and Heckerman [4], who 
introduce the term one-shot, point out that in most situations agents are not 
required to decide anything but can instead collect data, converse, run 
experiments, and so on. Decisions are rarely unrecoverable; agents can usually 
recover from decisions with bad outcomes at some cost. 

Many tasks can be described in terms of agents interacting with their 
environments. Those studied in AI include robot path planning, process control, 
intensive care unit monitoring, learning to avoid air traffic control mishaps, 
planning diagnoses, and fighting forest fires. All these tasks demand judgment, 
that is, combining evidence to assess the current state of the world. But they also 
require decisions about how to act in pursuit of goals in environments that are 
uncertain for the reasons described above. We urge the uncertainty community 
to embrace these tasks because they offer much richer opportunities to study 
reasoning under uncertainty, especially decision making, than simple interpreta- 
tion tasks. 

This article discusses planning from three perspectives. The following section 
focuses on the design of planners, the third presents an overview of the AI 
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planning literature in terms of these design issues, and the fourth discusses 
planners we have built specifically to study reasoning under uncertainty. 

SELECTING ACTIONS UNDER UNCERTAINTY 

How do agents select actions to achieve their goals in uncertain environments? 
AI and related fields offer a somewhat bewildering array of answers. Some are 
very general; for example, best-first search (Barr and Feigenbaum [9]) and 
decision analysis (Winterfeldt and Edwards [10]) dictate that agents should "do 
what's best," as assessed by unspecified heuristic evaluation functions and 
utility functions, respectively. General planning algorithms find sequences of 
actions, prior to their execution, to satisfy goals and constraints (e.g., Cohen and 
Feigenbaum [ 11]). In fact, this is a traditional view of planning; today, planning 
denotes several other methods, most of which assume some knowledge about the 
environment. These include case-based planning, where agents recall, modify, 
and execute plans from memory (Hammond [12], Sycara [13]), and reactive 
planning, where agents are constructed to respond automatically to changes in 
the environment (see later sections for details). Finally, we have seen many 
control approaches to selecting actions under uncertainty. Control strategies 
specify how programs should act. New control strategies are invented when 
programs do not behave properly (e.g., they ask questions in the wrong order or 
consider alternatives irrespective of their prior probabilities). Sometimes we can 
pry apart control strategies from their implementations, but in general this is 
difficult (Gruber and Cohen [14]). We have discussed the problem of selecting 
actions under uncertainty from the perspective of control in recent papers [3, 15, 
16] and have surveyed the relevant literature [17]. Here, we do not discuss 
control except in the case studies section. 

In this section, we describe the issues that arise when designing autonomous 
agents that operate in complex, real-time, dynamic environments. These issues 
drive our work on reasoning under uncertainty. 

Internal and External Action 

Are the actions taken by the agent internal or external? Intuitively, this is the 
distinction between thinking and acting. For example, chess requires an internal 
search of moves and countermoves before committing to an external action, an 
irrevocable move. Similarly, planning traditionally involves searching internally 
for an ordered sequence of actions that will achieve a goal and then executing 
them externally. Many AI systems take no external actions at all; for example, 
some natural language parsers simply take input and process it internally. Other 
systems' external actions are limited to requesting data; for example, the MUM 
system (see case studies section) is designed to ask medical questions in an 
appropriate order. 
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Balancing Internal and External Actions 

What factors affect the balance between internal and external action? Should 
we explore the space of alternative actions before committing to one, or should 
we commit to the first action that seems appropriate? The answer in general 
depends on the costs and benefits of searching through the outcomes of external 
actions. This search is referred to in the planning literature as projection. 
Sometimes we cannot project, or projected outcomes may be irrelevant, or we 
may lack the resources to compute them. When projection is uninformative, we 
may simply execute an action to see what happens. A related question is: When 
should a problem solver anticipate the outcomes of multiple external actions? 
Since actions are typically not independent, the cost of searching the space of 
joint outcomes is combinatorial in the number of actions. If, in addition, we 
cannot predict some of the outcomes, then searching this space may not be worth 
the effort. 

Representing the External World 

How accurate is the internal representation of the external environment? We 
assume that an AI program's internal representation of a chessboard is accurate, 
at least with respect to the positions of pieces. Traditional planners made similar 
assumptions: The environment is precisely as we represent it and does not 
change except by our action, and our knowledge of these changes is complete 
and accurate. Clearly, planning in the real world cannot proceed on these 
assumptions. Much of the discussion later in this paper is about how to plan 
when the internal representation of the external environment is incomplete and 
inaccurate. 

Uncertainty in a planner's world model comes from several sources, 
including the following: 

• The planner may have an inaccurate or incomplete understanding of the 
principles that govern the dynamic behavior of the environment. 

• The planner may have inaccurate information about the current state of the 
environment. 

• The system may not have adequate time (or other resources) to assess the 
state of the environment, the outcomes of actions, or changes in the 
environment beyond its control. 

Real-Time Constraints 

Are real-time constraints placed on the agent by the environment? As agents 
are designed to have more autonomy, we must be concerned about the timeliness 
of  their planning, plans, and actions. We regard real-time planning problems as 
falling between the extremes of adequate time to produce an excellent solution 
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and inadequate time to produce any solution. Real-time planning is thus 
concerned with trade-offs between the quality--broadly construed--and the time 
requirements of  a plan. We do not regard faster computers or more efficient 
planning algorithms as solutions to the real-time planning problem in general, 
though they will obviously help in specific applications. The general real-time 
problem starts with the premise that the available time will at some point be 
inadequate. It demands that our planners adapt their processing to produce the 
best possible solution in the available time. This has been called approximate 
processing because it implies that the solution to a problem will approach but not 
meet all of  our goals (Lesser et al. [8]). 

Constraints Between Actions 

Actions are rarely independent; can dependencies between actions help select 
actions? Some actions interfere with others, so that one prevents another or 
undoes the outcome of another. Some actions are redundant, so one achieves the 
same state or gets the same evidence as another. I f  the outcomes of actions were 
certain, then redundancy might be inefficient; but we can also exploit 
redundancy to make up for uncertainty about the outcomes of actions. In 
addition, constraints between actions will determine the extent to which taking 
one action commits the agent to a particular series of  actions in the future, and so 
emphasizes the importance of considering such constraints before prematurely 
committing to a single action. 

Where Do Plans and Goals Come From? 

Do actions come from internally generated goals and plans, or are goals and 
plans epiphenomena of the direct interaction of the agent with its environment? 
In most AI planners, goals and plans select actions. But the environment can 
play the same role. Thus, an agent that has no goals or plans but responds to its 
immediate environment will appear to have goals and plans if the environment 
provides regularity and continuity. From this perspective, goals and plans are 
not explicit structures within the agent but emerge from its interaction with its 
environment. An intermediate position is associated with "Simon's  ant" (Simon 
[18]). The problem solver is assumed to have goals and plans that bias its 
selection of actions, but the environment also plays a greater or lesser role. 2 

2 Simon notes that the path of an ant in a sand dune appears on a fine scale to be almost random, since 
the ant must respond to random obstacles. Yet it has a general direction dictated by where the ant 
wants to go. 
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Global and Local Evaluation of Actions 

What is the relationship between global properties of plans and local planning 
decisions? Plans are generated by selecting actions, so to generate "good"  plans 
one must somehow evaluate the potential component actions. It is prohibitively 
expensive to calculate the extended ramifications of actions, so many planners 
base decisions about actions on their local outcomes. But sequences of actions 
that look good from a local perspective are not necessarily good plans, because 
they may not satisfy global criteria; for example, an agent that always selects the 
cheapest applicable action will not find the cheapest plan if that plan requires a 
sequence of actions ordered by the inverse of their costs. The agent's evaluation 
of the local outcome of actions, which may frequently ensure low-cost plans, 
does not guarantee the lowest-cost plan in all cases. 

Real-world plans must satisfy so many criteria that agents will not be able to 
generate optimal plans, that is, plans in which the outcomes of all actions look as 
good as possible from a global perspective. Plans should be inexpensive, 
flexible, and likely to succeed; they should take relatively little time to generate, 
require little monitoring, and so on. Since optimality is not a realistic aim, it is 
neither realistic nor desirable to project the global ramifications of actions. 
Nevertheless, agents can get into serious trouble if they do not project to some 
depth the ramifications of some actions. In the case studies section, we discuss 
the characteristics of the environment that require agents to project and, 
conversely, the kinds of environments in which agents can generate good (if not 
optimal) plans without any projection, that is, by evaluating only the local 
ramifications of outcomes of actions. 

Adaptation 

A problem-solving agent must have knowledge to act in the ways advocated in 
this article. As we note in the following section, general planners are weak, but 
powerful planners require knowledge about their environments. This raises three 
issues: What is learned, how is it learned, and what form does it take? To plan by 
projection, agents must know which actions are applicable and which outcomes 
are possible, given their goals and the state of the environment; and they must 
evaluate those outcomes by projection. Planning without projection also requires 
knowledge about the applicability of actions, but it may not require anything 
else. An agent may simply maintain a list of situation-actions pairs that tell it 
what to do in each state of the environment. In this case, the agent's actions are 
selected by its environment. Such agents are adapted to their environments to 
the extent that they have learned which actions are appropriate in which states of 
the environment. We believe that most agents will project in some situations and 
simply react in others, so both kinds of knowledge must be learned. 
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One advantage of reaction, as opposed to projection, is that agents can learn 
how to act in the absence of explicit knowledge about the dynamics of the 
environment. For example, one can learn to ride a bicycle--how to balance, 
steer, and so on--without knowing the physics of balancing and propelling the 
bicycle. Anecdotal and scientific evidence indicates that one should not  ride a 
bicycle by projecting the ramifications of each tilt and wobble. The reason we do 
not need to project in these situations is that their outcomes always depend on 
predictable interactions of the same factors--gravity, one's angle, velocity, and 
so on. 3 Action sequences such as pedalling a bicycle are often called skills. In 
humans they tend to be automatic, that is, to require no conscious effort. 4 People 
work hard to develop skills in real-time environments such as driving cars, 
flying jets, and most sports, because these environments do not afford the 
opportunity to think through the implications of each action (see earlier 
discussion of real-time constraints). 

Although most knowledge bases are built by hand, agents in complex 
environments will have to learn autonomously how to act. Even in a simple 
medical domain, we found it necessary to augment standard knowledge- 
acquisition mechanisms with an ability to automatically generalize the acquired 
knowledge to a broader range of situations (see ASK and MU case studies). AI 
has developed many learning mechanisms (e.g., Michalski et al. [23]) that may 
be appropriate for agents learning how to act. 

The knowledge that agents need to select actions can take many forms, 
including situation-action rules, general preference rules, contingency plans, 
utility functions, scripts, and so on. The form of the knowledge depends on how 
it will be used, and in turn on the demands placed on the agent by the 
environment. For example, we noted above that humans adopt automatic skills 
in time-constrained environments; unfortunately, skills are inflexible and 
difficult to interrupt. Thus, agents must learn skills that run to completion before 
the environment changes in ways that make them inapplicable. 

AN OVERVIEW OF T H E  P L A N N I N G  L I T E R A T U R E  

AI research in planning, which has concerned itself more than any other part 
of AI with the problems of selecting actions to achieve goals, can be viewed 
from the perspective of  these dimensions. Early on, researchers adopted 
predicate calculus as a representation language for planners and viewed planning 

3 Paradoxically, projection should be reserved for situations where the relationships between actions 
and outcomes are not completely predictable; if they were, then they would eventually be learned as 
situation-action pairs. 
4 For a discussion of the distinction between automatic and controlled behavior, see Schneider and 
Shiffrin [19]. Computational models of these behaviors and their interactions have been suggested by 
Schneider [20] and Day [21, 22]. 
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metaphoricaUy (and sometimes literally) as theorem proving. The initial state of 
the wodd was captured in a set of axioms, the goal state was a theorem, and the 
plan was a proof that the goal state could be reached from the initial state. This 
approach to planning is found in HACKER (Sussman [24]), GPS (Newell and 
Simon [25]), STRIPS (Fikes et al. [26]), INTERPLAN (Tate [27]), Waldinger's 
planner [28], ABSTRIPS (Sacerdoti [29]), NOAH (Sacerdoti [30]), and 
NONLIN (Tate [31]). 

From our perspective, the most salient characteristic of these planners was 
their almost complete avoidance of uncertainty. These programs were crafted 
under the assumptions that they would have complete, accurate knowledge about 
the state of the environment and complete, accurate knowledge about the 
immediate outcomes of all actions. Actions were represented (and indexed) in 
terms of their immediate outcomes; for example, in the blocks world, one of the 
immediate outcomes of the action (take-off x y) is (clear-top y)--removing x 
from y clears off the top of y. But although these planners knew the immediate 
outcomes of actions, they were required to search combinatorial spaces of 
extended ramifications. For example, an action such as (put-on red-block 
green-block) may achieve an immediate goal but may later impede progress 
toward a goal that requires green-block to have a clear top. A better plan may 
involve moving green-block first and then putting red-block on it. Early 
planners dealt with uncertainty about the extended outcomes of actions by 
various forms of search. Some algorithms were more efficient than others (i.e., 
required less backtracking). But all assumed that, because the immediate 
outcomes of actions are certain, the extended ramifications could be discovered 
by projection, that is, by internally simulating the actions in a plan before 
committing to any external actions. 

More recently, AI has developed planning methods that do not depend so 
heavily on these assumptions. One approach, which modifies the earlier 
planning algorithms relatively little, involves replanning when the environment 
turns out to be different than projected. For example, Wilkins' SIPE planner was 
very much like NOAH [30], but when discrepancies were detected between the 
environment and its internal representation, SIPE would efficiently modify its 
plan, maintaining as much of its original plan as possible (Wilkins [32]). Related 
replanning methods have been developed by Broverman and Croft [33]. 

Early planners assumed that actions were instantaneous and that their effects 
persisted until they were explicitly negated. However, actions take time, and the 
states they bring about may be ephemeral. Temporal logics and temporal 
planners address these issues (e.g., see McDermott [34], Allen [35], and Dean 
[36] for work on temporal logic, and Vere [37] and Hanks [2] for temporal 
planners). 

Just as actions take time in real physical environments, planning and 
replanning themselves take time (see previous section). In real-time planning, 
the agent must allocate a limited resource--time--to planning, replanning, 
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monitoring the environment, and action. Time usually has costs (e.g., in the fire- 
fighting domain discussed in the PLASTYC case study, later in this paper, 
forests are consumed while the agent plans). The balance between internal and 
external actions is further complicated by uncertainty about the environment: To 
meet time constraints, agents may begin sequences of actions before they have 
all the evidence they need; but if they wait, an opportunity may be lost and the 
evidence will be of no value. Recent work on real-time planning includes that by 
Durfee [38], Lesser et al. [8], Hayes-Roth and her colleagues [39-41], Korf 
[42], Dacus [43], Luhrs et al. [44], Herman et al. [45], Daily et al. [46], Firby 
and Hanks [47], Hendler and Sanborne [48], and others. 

A radically different approach challenges the distinction between planning and 
execution, and thus the distinction between internal and external action 
(discussed earlier). This view holds that, by any metric, projection in uncertain 
environments is inefficient: Dynamic environments will never be as they are 
projected to be, so projection is a waste of resources. Projection involves 
selecting actions that are expected to be appropriate at some point in the future; 
planning without projection involves selecting actions based on the current, 
immediate environment, without explicitly considering their consequences. 
Reactive planners do not project but simply react to their environments, so the 
distinction between planning and execution is absent (Chapman and Agre [49, 
50], Brooks [51], Firby [52]). 

Reactive planning raises questions about the status of goals; planners may 
appear to be goal-directed when, in fact, they are simply responding to their 
environments. One does not need internal structures called goals to explain 
apparently intentional behavior. But we believe that intelligent agents should 
reason about their goals, so some goal-directed behavior will not be generated by 
reactive planning (McDermott [5], Dean [53]). 

Reactive planners need to know how to respond to different situations. They 
recognize situations and respond appropriately, so to be adapted to complex 
environments, reactive planners need to recognize many situations. This 
requires so much knowledge that it will be impossible to build reactive planners 
for some environments; instead, reactive planners must learn how to respond to 
situations through interactions with their environments. Some AI techniques for 
learning concepts have been suggested or applied to the task of learning the 
situation-action contingencies required for reactive planning; these include 
connectionist learning (Barto et al. [54], Sutton and Barto [55], Jordan [56], 
Rumelhart and Norman [57]), knowledge acquisition and generalization (Gruber 
[58]; see also ASK and MUM case studies, this article), chunking (Laird et al. 
[59]), and production rule learning (Mitchell et al. [60], Anderson [61]). 

We believe reactive planning is an extreme response to uncertainty in the 
environment. We agree that the value of projection depends on the certainty with 
which we can predict the outcomes of actions; but since this is variable, and 
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depends on many factors, we do not agree that planners should completely forgo 
projection. [Others have made similar observations (Hayes-Roth [62], Dean 
[53], Swartout [63]).] We illustrate this later in the context of two of our own 
planning systems. 

We can, in fact, project even if we do not know the precise outcomes of 
actions. Decision analysis is a form of planning by projection: When actions 
have uncertain outcomes, and these lead to further actions, then a combinatorial 
space of actions and outcomes is quickly generated (see earlier subsection 
"Representing the External World") .  If  one knows the probabilities that actions 
will lead to particular outcomes, and also the utilities of the outcomes, then one 
can find the subjective expected utility of actions. For example, imagine test-1 
costs $10 and will accurately say whether or not a patient has disease A but says 
nothing about diseases B and C; and test-2 costs $50 and is diagnostic for disease 
B but says nothing about A or C. Which diagnostic action should we take first, 
test-1 or test-2? Assuming A, B, and C have equal priors, it is most efficient to 
do test-1 first. Decision analysis will resolve the question for the general case of 
unequal priors. 5 

But note that two assumptions are implicit in the example: The statement of 
the problem implies that the hypotheses A, B, and C are both mutually 
exclusive and exhaustive. Thus, if test-1 finds A, we need not do test-2; and if 
both tests fail to find A and B, then the answer must be C. Mutual exclusivity is a 
special case of conditional probability: When we say A and B are mutually 
exclusive we mean that the probability of disease B is conditional on the outcome 
of test-1 (and equivalently, our belief in A), and vice versa. Thus, in the general 
case, to plan a sequence of tests to find out which disease a patient has, we need 
to know the conditional probability of each disease given each combination of 
outcomes of tests for these diseases. Even if we assume that the diseases are 
mutually exclusive and exhaustive, and we assume that every test either 
confirms or disconfirms a disease (but does not provide partial support for any 
disease), we are still faced with a combinatorial search because there are N!  
sequences of diagnostic actions, and because each action can have several 
possible outcomes. 

We are not rejecting decision analysis as a technique for planning under 
uncertainty, only noting that its inherent combinatorics must be managed 
carefully (e.g., Wellman and Heckerman have proposed some approximate 
forms of decision analysis [64]). All planning by projection generates 
combinatorial spaces of plans; uncertainty about outcomes simply makes the 
problem worse. We expect that decision analysis can be merged with AI 
planning techniques (e.g., least commitment and hierarchical planning) to 

5 We are grateful to Professor Glenn Shafer for this example. 
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reduce the combinatorics of projection. For example, hierarchical planning 
reduces the combinatorics of projection by generating plans at successive levels 
of abstraction (Cohen and Feigenbaum [ 11]). Decision analysis might be used to 
select actions at each level. 

CASE STUDIES IN P L A N N I N G  UNDER UNCERTAINTY 

In this section we describe some of our research on planning under uncertainty. 
We begin with MUM, a system for planning medical workups. MUM led to a 
shell for building planners called MU, which in turn is the basis of a knowledge- 
acquisition system called ASK. We also describe a system called PLASTYC 
that, though not yet completed, highlights differences between reactive planning 
and planning with projection and also illustrates how simulators can facilitate 
research on planning under uncertainty. 

M U M  

The MUM system plans diagnostic workups of chest pain (Cohen et al. [15]). 
Its goal is to ask questions, request tests, and prescribe therapies in an efficient 
order. By efficient, we mean that MUM should not take a sequence of actions (a 
diagnostic plan, or work-up) to gain evidence if another sequence would be as 
informative but less expensive. Viewing this as a traditional planning problem, 
we would project the outcomes of all sequences of evidence-gathering actions 
and select the sequence that provides us with maximum diagnosticity for 
minimum cost. Planning diagnoses is then a matter of searching this space. 

In MUM we assume that the space of diagnostic plans or work-ups is too large 
to search exhaustively; that is, we will be unable to generate the most efficient 
work-up. We propose instead that work-ups are generated one action at a time 
or, equivalently, that the search for diagnostic plans proceeds incrementally, 
with each action being executed before the next is contemplated. MUM is 
essentially a reactive planner because its actions are determined largely by its 
environment (the state of the patient) and its preferences. The search is guided 
by heuristics that we call preferences. One preference is to ask cheap questions 
first; another is to ask diagnostic questions first. A more specific preference 
resolves the conflict that can arise between these two: If the patient is in danger, 
take the most diagnostic action regardless of cost, but if the patient is not in 
danger, take the cheaper action. In the worst case, we might require a specific 
preference for every situation that could arise, but in practice we can generate 
moderately efficient work-ups with relatively few preferences. 

MUM has two components: an interpreter and an inference network with 
nodes representing evidence-gathering actions at the bottom, intermediate 
conclusions in the middle, and diseases at the top. MUM's interpreter selects and 
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executes an evidence-gathering action and propagates the data it acquires 
through the inference network; then, on the basis of its preferences and the new 
state of the network, it selects and executes another evidence-gathering action, 
and so on (see Figure 1). 

The ASK and MU Systems 

After building the MUM system, we abstracted its essential components and 
built an architecture called MU (Cohen et al. [16]). MU has been used to 
develop other systems like MUM that generate diagnostic work-ups via 
preferences. The central idea in MU is that decisions about actions are based on 
many features of a situation; for example, in medicine these include the cost, 
diagnosticity, risk, discomfort, and time required for a test; the number of 
supported disease hypotheses; the prior probabilities of these diseases, and 
whether any are serious; relationships between disease hypotheses such as 
causality or mutual exclusivity; relationships between actions and hypotheses, 
such as whether a test can discriminate two disease hypotheses; and contextual 
information such as whether the patient is feeble or robust. 6 MU allows 
knowledge engineers to rapidly define features and automatically updates them. 

Features characterize the states of MU-based planners; for example, in one 
state we may have a feeble patient with suggestive evidence of a dangerous 
hypothesis, and we may have available a completely diagnostic but risky test, 
and another moderately diagnostic treatment that protects against heart attack. 

6 MUM did not incorporate all these features. 
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Given this characterization of the choice between actions, MU requires 
preferences to tell it which to do. To be useful, preferences should be general. 
That is, preferences should apply at many points in diagnostic plans, and over 
many plans. A Ph.D. student in our laboratory has developed a technique for 
acquiring and then generalizing expert preferences (Gruber [58]). The method, 
called ASK for Acquiring Strategic Knowledge, uses a small set of preferences 
to generate diagnostic work-ups that experts then criticize. The criticisms are 
used to specialize the original preferences and to add new, specific ones that are 
not in the original set. These are generalized if later criticisms suggest that their 
applicability is too narrow. 

In sum, MU makes it easy to define and maintain the values of features, and 
the ASK system makes it easy to define preferences based on features. Features 
and their values make up the dynamic state of the planner, and states and 
preferences determine which problem-solving actions will be taken. 

THE RELATIONSHIP BETWEEN PREFERENCES AND PLANS We rely on 
preferences to guide MUM's planning without any projection. Plans and 
preferences serve the same purpose, namely, to tell the problem solver what to 
do next. But plans require projection, while preferences do not. We claim that, 
in MUM at least, plans and preferences are related in such a way that sequences 
of actions based on preferences will appear to be good plans. The simplest such 
relationship between preferences and plans is that preferences are local 
applications of  the evaluation criteria for plans (see Figure 2). For example, 

subjective expected 
utility judgment 
based on cost, time, 
risk to patient 
diagnosticity, etc. 

FIGURE 2. 

preference judgment based on 
cost, time, risk to patient, 
diagnosticity, etc. 

Plans versus preferences. 
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we noted earl ier  that if  we prefer  inexpensive plans, then we can generate plans 
without projection by locally selecting the cheapest applicable action. This will 
not always find the cheapest plan, but as a heuristic for guiding diagnostic 
work-ups,  especially in combination with other preferences,  it generates 
acceptable work-ups without the combinatorics of  planning. 

The relationship between plans and preferences is illustrated by the work-up 
graph for chest pain in Figure 3. This is an explicit  contingency plan for the 
diagnosis of  angina, generated by an expert  internist and full of  implicit  
preferences.  Obviously,  one can generate hundreds of  other work-up graphs for 
chest pain by taking actions in different orders; for example,  one might generate 
a plan that puts angiograrn before therapy. But this and other syntactically 
possible work-ups violate expert  preferences.  7 By following these preferences,  
one can generate a sequence of  actions reactively,  one at a t ime, that look as if 
they were planned in advance (as discussed earlier) and concur with Figure 3. 

WHY WE NEED BOTH PREFERENCES AND PLANS Although M U M  generates 
diagnostic plans from preferences alone, we believe that expert  physicians plan, 
that is, project  the outcomes of  actions. They do not plan complete diagnostic 
work-ups,  but they do some limited lookahead. 8 Here are two examples of  
lookahead in M U M ' s  domain:  

• The cascade effect. Some tests lead inexorably to others that you may want 
to avoid, and so should be avoided themselves.  For  example,  you want to 
avoid a stress test if  possible because unless the patient is absolutely 
cleared, you are obl iged to go on to the next step, which is an angiogram. 
Now almost everyone has some degree of  coronary artery blockage,  and 
nobody knows how much is too much. So you start with a stress test that is 
not conclusive, and then you find some blockage,  and then you are forced to 
do surgery,  even though the patient may not have coronary artery disease. 

• Dependent tests. If  test 1 is diagnostic but costs a lot, and test 2 costs less 
but provides lower-quali ty evidence,  then you may plan to do test 2 first and 
only do test 1 if  test 2 comes back positive. 

7 For example, doing an angiogram before prescribing therapy violates at least four preferences: 
First, therapy provides evidence about angina that is more efficient, that is, a bit less diagnostic than 
an angiogram but much, much less expensive in terms of dollars, pain, and risk; second, therapy has 
few side effects; third, it provides evidence about the relevance of later tests, specifically evidence 
about whether the angiogram is necessary; fourth, therapy extends the time before the physician 
must take his or her "final action," which is surgery. Each of these is an argument, or preference, 
for therapy over an angiogram at a particular point in a work-up. 
s The word lookahead suggests an analogy with game-tree search, in which preferences have the 
same role as static evaluation functions and projection is lookahead to some depth horizon. The 
analogy suggests that reactive planners are at one end of a continuum (they evaluate actions at a 
horizon of 1 or 0) and that planners can be more or less reactive depending on where they draw their 
depth horizon. 
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In both these cases, the selection (or avoidance) of an action is based on 
projecting the outcomes of the actions. 

These examples hint at two circumstances in which projection is desirable. In 
the cascade effect, projection detects pitfalls--situations where an attractive 
action leads to an unattractive one. A more familiar example of a pitfall is shown 
in Figure 4: When presented with a queen for the taking, my preferences say go 
ahead. The pitfall is that the queen is a sacrifice and checkmate follows. My 
preferences should say "Prefer  piece exchanges that end with me ahead," but 
this requires projection. MUM was able to plan without projection because its 
search space of plans contained almost no pitfalls; however, some diagnostic 
plans are more efficient than others. Efficiency is the other reason for 
projection. If the order of actions affects the efficiency of plans, as it does 
whenever actions are not independent, then projection will contribute to 
efficiency. 

In the following section, we describe a planning problem in which both pitfalls 
and efficiency are concerns. This problem involves real-time planning in highly 
uncertain environments. We are using it to study trade-offs between projection 
and reaction. 

PLASTYC: Planning in Real-Time Dynamic Environments 

We have built a large simulation of forest fires and the equipment commonly 
used to put them out. We are building a planner called PLASTYC that operates 
in this dynamic, real-time world. The planner's goal is to manage the fire--limit 
the loss of human life, limit the damage to forest and buildings, and limit the 

move: 

I° , , , , ,  I °°°" I 

your move: 

[checkmate I 

FIGURE 4. A decision in Chess. 



320 Paul R. Cohen and David S. Day 

monetary costs of achieving these goals. This task closely approximates the 
problems faced by a forest fire manager, but, more important, it is representa- 
tive of a class of problems that we believe require both traditional planning and 
the kind of reactive planning we used in MUM. In this section we describe the 
characteristics of this class of problems and sketch the planner we are building. 
This work is in progress, so the conclusions of this section are tentative. 

Our simulation consists of a large geographical area (Explorer National Park) 
in which there is a considerable variety of topography and ground cover, as well 
as roads, lakes, and streams. These features affect how forest fires burn. Equally 
important features are wind speed and direction, both of which can change 
unpredictably, and the moisture content of the ground cover, which varies over 
time and geographically. To fight the fire, the simulation provides bulldozers, 
crews, transport vehicles, planes, and helicopters. These cut fire line, move 
firefighters, spray water, or dump retardant. 

These fire-fighting agents can be directed either by an automatic planner or by 
a human player of what is essentially a complex, real-time video game. We have 
already gained considerable insight into (and respect for) the dynamics of this 
miniworld by playing against the simulation--often losing many lives and 
considerable real estate to a seemingly slow and containable fire. It is difficult 
for a planner, human or AI program, to do very well at the game (i.e., put out 
the fire with reasonable costs, no loss of life, etc.) because: 

• The planner's knowledge of the fire is limited to what the agents in the field 
can " see . "  Crews and bulldozers can see only short distances; aircraft can 
see further. The planner rarely, if ever, has complete knowledge of the 
extent or location of the fire (see Figure 5). 

• The behavior of the fire cannot be accurately predicted, because some 
factors that affect it (e.g., terrain, ground cover, and the moisture content 
of the ground cover) are known only approximately. Moreover, wind speed 
and direction can change unpredictably. 

• The behavior of the fire-fighting agents cannot be accurately predicted. In 
particular, the time required to move to a location or perform some task 
depends on terrain and ground cover. Fire-fighting agents also have limited 
autonomy to run away from a fire, so the central planner cannot always be 
sure of their location. 

• The simulation is real-time with respect to the fire. While fire-fighting 
agents move, cut line, and drop retardant, the fire keeps burning. Most 
important, any time the planner devotes to deliberation loses real estate to 
the fire. 

The environment with which the planner interacts is independent, dynamic, 
and probabilistic. It is independent because the planner is not the only agent of 
change, dynamic because changes take place over time, and probabilistic 
because the magnitude and temporal extent of changes to the environment are 
unpredictable. 
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FIGURE 5. (.4) The State of the Fire as It Can Be Seen by the Planner. (B) The State 
of the Fire as It Really Is. 
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To plan in this environment an agent needs to know when to project and when 
to plan reactively. Projection is desirable to avoid pitfalls and to increase the 
efficiency of plans. But projection itself takes time, uncertainty precludes 
avoiding all pitfalls, and efficient plans are useless if no time remains to execute 
them; so there will be situations when the timeliness of reaction will make the 
difference between success and failure. 

We have described the desired behavior of PLASTYC but not how the 
program will get the knowledge it needs to behave that way. We have become 
adept at putting out fires in the forest fire simulation, and we will encode this 
knowledge in PLASTYC. But this is slow. PLASTYC itself should acquire and 
refine these skills through practice. The extent to which this can be accomplished 
remains to be seen; the project is in its early stages. 

CONCLUSION 

We argued in the Introduction that we should study reasoning under 
uncertainty in the context of autonomous action. In conclusion, we offer some 
methodological observations. In MUM, we wanted to study problem-solving 
strategies in medical diagnosis, but first we had to build an expert system, and 
then we had to acquire test cases from an expert. We wanted to generate 
thousands of problems for our planner and to evaluate the planner on objective 
criteria; neither was possible in internal medicine. We needed to challenge our 
planners with something like a game, but one that is played in a complex 
environment, in real time, under significant uncertainty. PLASTYC is designed 
to play autonomously against such a game--a simulation of forest fires. Not only 
does this simulated world provide an objective and efficient way to evaluate 
PLASTYC's abilities, but it will also present thousands of individual problems 
from which PLASTYC will begin to learn. 

Our experience with PLASTYC suggests a general method for addressing 
problems in approximate reasoning. If you can build a simulator that presents 
agents with difficult problems in uncertain environments, and you can build 
agents that solve these problems autonomously, then you will have demonstrated 
unambiguous progress toward theories of action under uncertainty. 
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