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What got me going… �
1990 Survey of 150 AAAI Papers*


•  Roughly 60% of the papers gave no evidence that the work they 
described had been tried on more than a single example problem. 

•  Roughly 80% of the papers made no attempt to explain performance, to 
tell us why it was good or bad and under which conditions it might be 
better or worse.   

•  Only 16% of the papers offered anything that might be interpreted as a 
question or a hypothesis.   

•  Theory papers generally had no applications or empirical work to 
support them, empirical papers were demonstrations, not experiments, 
and had no underlying theoretical support. 

•  The essential synergy between theory and empirical work was 
missing 

* Cohen, Paul R. 1991. A Survey of the Eighth National Conference on Artificial Intelligence: Pulling together or pulling
 apart? AI Magazine, 12(1), 16-41. 
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Source material


MIT Press, 1995 

Exploratory Data Analysis 

Experiment design 

Hypothesis testing 

Bootstrap, randomization, other Monte
 Carlo sampling methods 

Simple effects 

Interaction effects, explaining effects 

Modeling  

Generalization 

This tutorial is organized around seven lessons 
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Lessons


•  Lesson 1:  Evaluation begins with claims 
•  Lesson 2:  Exploratory data analysis means looking beneath 

results for reasons 
•  Lesson 3:  Run pilot experiments 
•  Lesson 4: The job of empirical methods is to explain variability 
•  Lesson 5: Humans are a great source of variance 
•  Lesson 6: Of sample variance, effect size, and sample size, 

control the first before touching the last 
•  Lesson 7: Statistical significance is not the same as being 

meaningful or useful 
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Lesson 1:  Evaluation begins with claims


•  The most important, most immediate and most neglected part of 
evaluation plans. 

•  What you measure depends on what you want to know, on what 
you claim. 

•  Claims:   
–  X is bigger/faster/stronger than Y 
–  X varies linearly with Y in the range we care about 
–  X and Y agree on most test items 
–  It doesn't matter who uses the system (no effects of subjects)  
–  My algorithm scales better than yours (e.g., a relationship between 

size and runtime depends on the algorithm) 
•  Non-claim:  I built it and it runs fine on some test data 
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Case Study: Comparing two algorithms


An Empirical Study of Dynamic Scheduling on Rings of Processors” Gregory, Gao, Rosenberg & Cohen Proc. of 8th IEEE
 Symp. on Parallel & Distributed Processing, 1996 

•  Scheduling processors on ring network;  
jobs spawned as binary trees 

•  KOSO:  keep one, send one to my left or 
right arbitrarily 

•  KOSO*: keep one, send one to my least 
heavily loaded neighbor 

Theoretical analysis went only so far, for unbalanced trees and other conditions it was
 necessary to test KOSO and KOSO* empirically 
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Evaluation begins with claims


•  Hypothesis (or claim): KOSO takes longer than KOSO* because 
KOSO* balances loads better 
–  The “because phrase” indicates a hypothesis about why it 

works.  This is a better hypothesis than the "beauty contest" 
demonstration that KOSO* beats KOSO 

•  Experiment design 
–  Independent variables: KOSO v KOSO*, no. of processors, 

no. of jobs, probability job will spawn, 
–  Dependent variable: time to complete jobs 
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Useful Terms


Independent variable:  A variable
 that indicates something you
 manipulate in an experiment, or
 some supposedly causal factor that
 you can't manipulate such as gender
 (also called a factor)


Dependent variable:  A variable that
 indicates to greater or lesser degree
 the causal effects of the factors
 represented by the independent
 variables 


F1 F2 

X2 X1 

Y 

Independent
 variables 

Dependent
 variable 
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Initial Results


•  Mean time to complete jobs: 
KOSO: 2825  (the "dumb" algorithm) 
KOSO*: 2935  (the "load balancing" algorithm) 

•  KOSO is actually 4% faster than KOSO* ! 
•  This difference is not statistically significant (more about this, 

later) 
•  What happened? 
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Lesson 2:  Exploratory data analysis means looking 
beneath results for reasons


•  Time series of queue length at different processors: 

•   Unless processors starve (red arrow) there is no advantage to good
 load balancing (i.e., KOSO* is no better than KOSO) 
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Useful Terms


Time series:  One or more dependent
 variables measured at consecutive
 time points 
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Time series of queue
 length at processor
 "red" 
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Lesson 2:  Exploratory data analysis means looking 
beneath results for reasons


•  KOSO* is statistically no faster than KOSO. Why???? 

•   Outliers dominate the means, so test isn’t significant 
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Useful Terms


Frequency distribution: The
 frequencies with which the values in
 a distribution occur (e.g., the
 frequencies of all the values of "age"
 in the room)


Outlier: Extreme, low-frequency
 values.


Mean:  The average.


Means are very sensitive to outliers.
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More exploratory data analysis


•  Mean time to complete jobs: 
KOSO: 2825  
KOSO*: 2935 

•  Median time to complete jobs 
KOSO:  498.5 
KOSO*: 447.0 

•  Looking at means (with outliers) KOSO* is 4% slower but looking 
at medians (robust against outliers) it is 11% faster. 
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Useful Terms


Median: The value which
 splits a sorted
 distribution in half.  The
 50th quantile of the
 distribution.


1  2  3  7  7  8  14 15 17 21 22 
Mean: 10.6 

Median: 8 
1  2  3  7  7  8  14 15 17 21 22 1000 

Mean: 93.1 

Median: 11 Quantile:  A "cut point" q
 that divides the
 distribution into pieces of
 size q/100 and 1-(q/100).
 Examples: 50th quantile
 cuts the distribution in half. 
 25th quantile cuts off the
 lower quartile.  75th
 quantile cuts off the upper
 quartile. 
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How are we doing?


•  Hypothesis (or claim): KOSO takes longer than KOSO* because 
KOSO* balances loads better 

•  Mean KOSO is shorter than mean KOSO*, median KOSO is 
longer than KOSO*, no evidence that load balancing helps 
because there is almost no processor starvation in this 
experiment. 


•  Now what?  
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Lesson 3:  Always run pilot experiments


•  A pilot experiment is designed less to test the hypothesis than to 
test the experimental apparatus to see whether it can test the 
hypothesis.   

•  Our independent variables were not set in a way that produced 
processor starvation so we couldn't test the hypothesis that 
KOSO* is better than KOSO because it balances loads better. 

•  Use pilot experiments to adjust independent and dependent 
measures, see whether the protocol works, provide preliminary 
data to try out your statistical analysis, in short, test the 
experiment design. 
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Next steps in the KOSO / KOSO* saga…
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It looks like KOSO* does balance
 loads better (less variance in the
 queue length) but without
 processor starvation, there is no
 effect on run-time


We ran another experiment, varying the number of processors in the
 ring:  3, 9, 10 and 20


Once again, there was no significant difference in run-time
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Variance-reducing transforms


•  Suppose you are interested in which algorithm runs faster on a batch of 
problems but the run time depends more on the problems than the 
algorithms 

•  You don't care very much about the problems, so you'd like to transform 
run time to "correct" the influence of the problem.  This is one kind of 
variance-reducing transform. 

Mean difference looks small relative to
 variability of run time 

Run times for Algorithm 1 and Algorithm 2 
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What causes run times to vary so much?


Run time depends on the number of processors and on the number of
 jobs (size). The relationships between these and run time are different
 for KOSO and KOSO*  Green: KOSO  Red: KOSO* 
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What causes run times to vary so much?


•  Can we transform run time with some function of the number of 
processors and the problem size? 
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Run time decreases with the number of
 processors, and KOSO* appears to
 use them better, but the variance is
 still very high (confidence intervals) 
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Transforming run time


•  Let S be the number of tasks to be done 
•  Let N be the number of processors to do them 
•  Let T be the time required to do them all (run time) 
•  So ki = Si/Ni is the theoretical best possible run time on task i 

(i.e., perfect use of parallelism) 
•  So Ti / ki is how much worse than perfect a particular run time is 
•  The transform we want is Ri = (Ti Ni) / Si.  This restates the run 

time in a way that's independent of the size of the problem and 
the number of processors, both of which caused variance. 
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A small difference


CDF(R,KOSO)  

CDF(R,KOSO*)  

Mean Median 
KOSO 1.61 1.18 
KOSO* 1.40 1.03 

Median KOSO* is almost
 perfectly efficient 
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Useful terms


Cumulative Distribution Function: A
 "running sum" of all the quantities in
 the distribution:


7  2  5  3 …   =>  7  9  14  17  …


CDF(R,KOSO)  

CDF(R,KOSO*)  
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150
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50 100 150
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A statistically significant difference!


Mean Standard 
deviation 

KOSO 1.61 0.78 
KOSO* 1.40 0.7 

Two-sample t test:


difference between the means 

estimate of the variance of the difference between the means 

probability of this result if the difference
 between the means were truly zero 
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The logic of statistical hypothesis testing


difference between the means 

estimate of the variance of the difference between the means 

probability of this result if the difference
 between the means were truly zero 

1. Assume KOSO = KOSO*


2. Run an experiment to find the sample statistics 


Rkoso=1.61, Rkoso* = 1.4, and Δ = 0.21


3. Find the distribution of Δ under the assumption KOSO = KOSO*


4. Use this distribution to find the probability p of Δ = 0.21 if  KOSO = KOSO*


5. If the probability is very low (it is,  p<.02) reject KOSO = KOSO*


6. p<.02 is your residual uncertainty that KOSO might equal KOSO*
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Useful terms

1.  Assume KOSO = KOSO*  


3.  Run an experiment to get the
 sample statistics


Rkoso=1.61, Rkoso* = 1.4, and Δ = 0.21


3.    Find the distribution of Δ under the
 assumption KOSO = KOSO*


4.    Use this distribution to find the
 probability of Δ = 0.21 given H0


5.  If the probability is very low, reject
 KOSO = KOSO*


6.  p is your residual uncertainty


This is called the null hypothesis
 (H0 ) and typically is the inverse of
 the alternative hypothesis (H1)
 which is what you want to show.  


This is called the sampling
 distribution of the statistic under
 the null hypothesis


This is called rejecting the null
 hypothesis. 


This p value is the probability of
 incorrectly rejecting H0
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Useful terms


1.      …


2.      …


3.    Find the distribution of Δ
 under the assumption KOSO =
 KOSO*


4.    Use this distribution to find
 the probability of Δ = 0.21
 given H0


5.  …


6.  …


…the sampling distribution of the
 statistic.  Its standard deviation is called
 the standard error


Statistical tests transform statistics like
 Δ into standard error (s.e.) units


It's easy to find the region of a
 distribution bounded by k standard
 error units


E.g., 1% of the normal (Gaussian)
 distribution lies above 1.96 s.e. units.
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Testing the hypothesis that a coin is fair�
(we'll come back to KOSO and KOSO* soon…)


•  H0: π = .5,   H1: π ≠ .5 
•  Experiment:  Toss a coin N = 100 times, r = 65 heads 
•  Find the sampling distribution of r under H0 

•  Use the sampling distribution to find the probability of r = 65 under H0 

•  If the probability is very small (it is!) reject H0.   
•  In this case the p value is less than 1 in 1000 
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How do we get the sampling distribution??


•  The sampling distribution (I.e., the distribution of the test 
statistic given the null hypothesis) is essential.  How do we get 
it? 

1.  By simulating the experiment repeatedly on a computer 
(Monte Carlo sampling) 

2.  Through exact probability arguments 
3.  Through other kinds of theoretical arguments (e.g. the 

central limit theorem) 
4.  By the bootstrap 
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How do we get the sampling distribution?�
Simulate it on a computer


•  Loop K times 
–  r := 0   ;; r is number of heads in N tosses 
–  Loop N times  ;; simulate the tosses 

•  Generate a random 0 ≤ x ≤ 1.0 
•  If x < p increment r   ;; p is probability of a head 
•   Push r onto sampling_distribution 

•  Print sampling_distribution 
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How do we get the sampling distribution?�
Analytically


•  The binomial probability of r heads in N tosses when the 
probability of a head is p, is N!

r!(N − r)!
⋅ pN
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Probability of 65 or more heads
 is .03 

Residual uncertainty that the
 coin might be fair is ≤ .03 

p value is .03 
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How do we get the sampling distribution?�
Central Limit Theorem


The sampling distribution of the mean is given by 
the Central Limit Theorem:  

The sampling distribution of the mean of samples of size N
 approaches a normal (Gaussian) distribution as N approaches
 infinity. 

If the samples are drawn from a population with mean     and
 standard deviation  , then the mean of the sampling distribution
 is    and its standard deviation is                    as N increases. 

These statements hold irrespective of the shape of the original
 distribution. 

σ
µ σ x = σ N

µ
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The Central Limit Theorem at work


Draw 1000 samples of size
 N, take the mean of each
 sample and plot the
 distributions of the mean: 
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If the samples are drawn from a population with mean     and standard deviation    , then the mean
 of the sampling distribution is     and its standard deviation is                           as N increases. 
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A common statistical test: �
The Z test for different means


•  A sample N = 25 computer science students has mean IQ m=135.  Are 
they “smarter than average”? 

•  Population mean is 100 with standard deviation 15 
•  The null hypothesis, H0, is that the CS students are “average”, i.e.,  the 

mean IQ of the population of CS students is 100. 
•  What is the probability p of drawing the sample if H0 were true?  If p 

small, then H0 probably is false. 
•  Find the sampling distribution of the mean of a sample of size 25, from 

population with mean 100 
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The sampling distribution for mean IQ of 25 students 
under H0: IQ = 100


•  If sample of N = 25 students were drawn from a population with 
mean 100 and standard deviation 15 (the null hypothesis) then the 
sampling distribution of the mean would asymptotically be normal 
with mean 100 and standard deviation 15/√25 = 3 

100 135 

The mean of the CS students (135) falls
 nearly 12 standard deviations away from the
 mean of the sampling distribution 

Only ~1% of a standard normal distribution
 falls more than two standard deviations
 away from its mean 

The probability that the students are drawn
 from a population with mean 100  is roughly
 zero 
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Standardize the sampling distribution


Instead of having to deal with an infinite number of normal (Gaussian) sampling
 distributions, transform each into a standard normal distribution with mean 0
 and standard deviation 1.0 by subtracting its mean and dividing by its standard
 deviation.   Transform the sample mean      into a z score or standard score in
 the same way:


100 135 

Mean of sampling
 distribution 

Sample 
mean 

std=3 

0 11.67 

Mean of sampling
 distribution 

Z score 

std=1.0 
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The Z test


We know everything there is to know about the standard normal distribution
 N(0,1).  We know the probability of every Z score. 

e.g., Pr(Z>1.65) = .05, Pr(Z>1.96) = .025, … Pr(Z > 11.67) ~ 0  

The Z test involves nothing more than standardizing the difference between     ,
 the mean of the sampling distribution under the null hypothesis and the sample
 mean   

This little equation finds the parameters of the normal sampling distribution via
 the central limit theorem,  N(    ,      ), transforms this into a standard normal,
 N(0,1), and transforms the sample mean     into a point on N(0,1).  Not bad for
 a little equation! 
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The t test�
(getting back to KOSO and KOSO*)


•  Same logic as the Z test, but appropriate when population 
standard deviation is unknown and samples are small. 

•  Sampling distribution is t, not normal, but approaches normal as 
samples size increases. 

•  Test statistic has very similar form but probabilities of the test 
statistic are obtained by consulting tables of the t distribution, 
not the standard normal distribution.  
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The t test


100 135 

Mean of sampling
 distribution 

Sample 
statistic 

std=12.1 

0 2.89 

Mean of sampling
 distribution 

Test 
statistic 

std=1.0 

t = x − µ
s
N

=
135 −100

27
5

=
35
12.1

= 2.89

Suppose N = 5 students have mean IQ = 135, std = 27  

Estimate the standard
 deviation of sampling
 distribution using the sample
 standard deviation 
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The two-sample t test


Just like the ordinary one-sample t test, except each individual
 sample has a sample standard deviation, so the denominator is
 estimated as the weighted average of these: 
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KOSO and KOSO*, again:�
The two-sample t test


Mean Standard 
deviation 

KOSO 1.61 0.78 
KOSO* 1.40 0.7 
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Review of how the t test works


0.21 

0.02 of the
 distribution 

0.21 is 2.49 standard
 deviations above the mean
 of this distribution 

Sampling distribution of the difference between two sample means given
 that the samples are drawn from the same population 

0

difference between the means 

estimate of the variance of the difference between the means 

probability of this result if the difference
 between the means were zero 

.084


1.61 - 1.4 = .21
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Checkpoint


The logic of hypothesis testing relies on sampling distributions, which 
are distributions of values of statistics given the null hypothesis.  
Their standard deviations are called standard errors. 

Statistical tests such as the Z test or t test transform sample statistics 
such as means into standard error units 

The probability of being k standard error units from the mean of a 
sampling distribution is easily found 

Hence the probability of a sample statistic given the null hypothesis is 
easily found 

Hence we can sometimes reject the null hypothesis if the sample result 
under the null hypothesis is too unlikely 
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Some other kinds of tests


•  Tests of equality of two or more means 
•  Tests of association  

–  Is a correlations significantly different from zero? 
–  Is there association between categorical variables (e.g., gender and 

passing driving test on first try) 
•  Tests of goodness-of-fit (e.g., is a relationship linear; are data 

distributed normally) 
•  Tests of predictive power (e.g., does x predict y) 
•  Tests of ordinal values (e.g. do girls rank higher than boys in math 

achievement; are medians equal) 
•  Tests of interactions (e.g., do pretest scores and tutoring strategies 

combine nonlinearly to predict posttest scores) 
•  All these have the same basic form:  Assume H0, compare the test 

statistic with the appropriate sampling distribution 
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The importance of sample size


The sampling distribution of a statistic depends on the sample size
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Row-Line-Plot OF Var[Dataset-29]
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An empirical standard error of the
 mean: the standard deviation of
 the distribution of the means of
 K=1000 samples of size N  

This is why N appears in all
 standard error terms, e.g.: 
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The importance of sample size


General form of test statistics: 

Magnitude of the effect 

Sample or population  variance 

Sample size 

Φ = 

Example: 

So there is a strong temptation to increase the sample size, and thus
 the test statistic, until one can reject the null hypothesis


This is wrong!
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Lesson 4:  Explain the variance


•  The job of empirical science is to explain 
why things vary, to identify the factors that 
cause things to be different 

•  High variance usually means a causal factor 
has a sizeable effect and is being ignored 

•  High variance is an opportunity to learn 
something, not a pest to be bludgeoned 
with data 
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Test of Learning Email Folder Preferences


Subjects' mail Subjects' mail
 folders 

REL 
KB 

SVM 

Training Testing 

Compare to get classification accuracy 

Three learning
 algorithms 
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Lesson 4: Explain the variance�
Lesson 5: Humans are a great source of variance


0.1
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5 10Number of training instances 

Classification accuracy 

Performance of different
 learning algorithms on different
 people's email 
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Accuracy vs. Training Set Size�
Averaged over subject


100 150 200 250 300 350 400 450 500 ≥550 

Number of Training Instances 

0.5

0.6

0.7

2 3 4 5 6 7 8 9 10

REL Accuracy 

No differences are significant 

SVM 

KB 
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Accuracy vs. Training Set Size�
(Grouped levels of training)


0.5

0.6

2 3

100 - 200 250 - 400 450 - 750 

Number of training instances 

Accuracy 
REL 

KB 

SVM 

No differences are significant 
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Lesson 2:  Exploratory data analysis means looking 
beneath results for reasons


0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

100 200 300 400 500 600 700 
Number of training instances 

Person A REL 

Person A SVM 

Person B  SVM 

Person B  REL 

Which contributes more to
 variance in accuracy scores: 
 Subject or Algorithm? 

Accuracy 
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•  Three categories of “errors” identified 
–  Mis-foldered (drag-and-drop error) 
–  Non-stationary (wouldn’t have put it there now) 
–  Ambiguous (could have been in other folders) 

•  Users found that 40% – 55% of their messages fell into one of 
these categories 

Subject Folders Messages
Mis-

Foldered
Non-

Stationary Ambiguous
1 15 268 1% 13% 42%
2 15 777 1% 24% 16%
3 38 646 0% 7% 33%

Lesson 2:  Exploratory data analysis means looking 
beneath results for reasons


0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10
Number of training instances 

Classification accuracy 

EDA tells us the problem:  We're trying to find differences between
 algorithms when the gold standards are themselves errorful – but
 in different ways, increasing variance! 
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Lesson 6:  Of sample variance, effect size, and sample 
size, control the first before touching the last


0

0.1

0.2

0.3

5 10

Subtract REL from SVM for each
 subject, i.e., look at difference
 scores, correcting for variability
 of subjects 

A matched pairs test 

0 

0.1 

0.2 

0.3 

100 200 300 400 500 600 

Person B difference between
 REL and SVM 

Person A difference
 between REL and SVM 

Number of training instances 

0 

0.1 

0.2 

0.3 

700 

Most of these differences are above zero, so
 there is a consistent effect of algorithm
 (REL vs SVM) once we have controlled the
 variance due to subject 

Number of training instances 
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Matched pairs t test


A  B 

10  11 

0  3 

60  65 

27  31 

Mean(A) = 24.25, Mean(B) = 27.5 

Mean difference:  (10 - 11)  = – 1 

   (0 - 3)     = – 3 

   (60 - 65)  = – 5 

   (27 - 31)  = – 4 

Mean difference = – 13 / 4  =  – 3.25 

Test whether mean difference is zero using a
 one-sample t test 
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Matched pairs t test


A  B 

10  11 

0  3 

60  65 

27  31 

Treated as unrelated samples, the variance in the row variable
 swamps any difference in the column variable (t = .17, p=.87). 
 But if the numbers in each row are matched then the mean
 difference between As and Bs is significant (t = 3.81, p = .03) 
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Significant differences having controlled �
variance due to subjects
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2 3
100 - 200 250 - 400 450 - 750 

Number of training instances 

Accuracy 
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KB 

SVM 

n.s. 

n.s. 
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Lesson 7:  Significant isn't the same as meaningful
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•  Setting the scene:  Two groups of students, in Massachusetts and 
California, used an intelligent tutoring system called Wayang Outpost 
(Beal) 

•  The behaviors of the students on
 each problem were classified into
 one of five action patterns 

•  Here are the proportions of each
 action  pattern by group 

• Action pattern and group are
 categorical variables 
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Useful terms


Categorical (or nominal) variable: A variable that takes names or
 class labels as values.  E.g., male/female, east-coast/left-coast,
 small/medium/large


Ordinal variable:  The distance between two ordinal values on the
 number line is not meaningful, the fact that one is above another is
 meaningful.  E.g., the distance between the first and second rank
 students isn't the same as the distance between the 100th and 101st
 rank students.


Interval variable:  Distances are meaningful, ratios aren't.  Two SAT
 scores of 600 and 650 are as far apart as scores of 700 and 750.  But
 the 700 isn't 7/6ths of the 600 unless zero is the lowest score. If 400
 is the lowest score then 700 is 150% of 600.


Ratio variable:  The scale has a known minimum or maximum and
 ratios are meaningful 
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Contingency table for Wayang Analysis


•  But could the Wayang tutor 
use this highly significant 
result? 

•  What about predicting what 
the student will do next? 

•  The MA and CA students had significantly different distributions of 
action patterns (p < .0001).  CA students had a much bigger 
proportion of pattern "5" and MA students had more "1" and "2" 
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Predicting what the student will do next


Count

Total %

Col %


Row %


1 2 3 4 5 

CA 126

1.72


19.72

6.31


451

6.16


22.24

22.60


412

5.63


26.89

20.64


430

5.88


26.96

21.54


577

7.89


37.91


28.9


1996

27.28


MA 513

7.01


80.28

9.64


1577

21.56

77.76


29.6


1120

15.31

73.11

21.05


1165

15.92

73.04

21.90


945

12.92

62.09

17.76


5320

72.72


639

8.73


2028


27.7

1532

20.94


1595

21.80


1522

20.80


7316 

Knowing that the student is in CA, you'd predict "5" and make (1996 -
 577) = 1419 errors.  Knowing the student is in MA, you'd predict "2"
 and make (5320 - 1577) = 3743 errors.   

Total: 5162 errors 

Knowing nothing about which
 group the student is from, you'd
 say "2" and make (7316 - 2028)
 = 5288 errors.  

Knowing the group reduces
 errors by only 2.4% 

€ 

5288− 5162
5288

= .024

So a significant difference
 isn't the same as a useful
 difference! 
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Lesson 7:  Significant and meaningful are not 
synonyms


•  Suppose you wanted to use the knowledge that the ring is controlled by KOSO or 
KOSO* for some prediction.  How much predictive power would this knowledge confer? 

•  Grand median k = 1.11; Pr(trial i has k > 1.11) = .5 
•  Probability that trial i under KOSO has k > 1.11 is 0.57 
•  Probability that trial i under KOSO* has k > 1.11 is 0.43 
•  Predict for trial i whether k > 1.11: 
•  If it’s a KOSO* trial you’ll say no with (.43 * 150) = 64.5 errors 
•  If it’s a KOSO trial you’ll say yes with ((1 - .57) * 160) = 68.8 errors 
•  If you don’t know which you’ll make (.5 * 310) = 155 errors 
•  155 - (64.5 + 68.8) = 22 
•  Knowing the algorithm reduces error rate from .5 to .43 
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Lesson 7: Significant and meaningful are not 
synonyms


ω 2 = 
σ ? 

2 
- σ ? | Algorithm 

2 

σ ? 
2 Reduction in uncertainty due to knowing Algorithm  

ˆ  ω  2 = 
t 2 - 1 

t 2 + N 1 + N 2 - 1 

Estimate of reduction in variance (recall t = 2.49
 from earlier slides study) 

ˆ  ω  2 = 
2 . 49 2 - 1 

2 . 49 2 + 160 + 150 - 1 
= . 0165 

Suppose you wanted to predict the run-time of a trial.  If you don’t know
 Algorithm, your best guess is the grand mean and your uncertainty is the
 grand variance.  If you do know Algorithm then your uncertainty is less: 

All other things equal, increasing sample size decreases the utility of knowing
 the group to which a trial belongs 
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Brief Review of Seven Lessons


•  Lesson 1:  Evaluation begins with claims 
•  Lesson 2:  Exploratory data analysis means looking beneath 

results for reasons 
•  Lesson 3:  Run pilot experiments 
•  Lesson 4: The job of empirical methods is to explain variability 
•  Lesson 5: Humans are a great source of variance 
•  Lesson 6: Of sample variance, effect size, and sample size, 

control the first before touching the last 
•  Lesson 7: Statistical significance is not the same as being 

meaningful or useful 
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Since we brought it up…Testing the hypothesis that 
two categorical variables are independent
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Are students' action patterns independent of
 the group they are from? 

We want to test the hypothesis that two
 categorical variables are independent  
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Statistics for contingency tables�
Chi-square and Lambda


1 2 3 4 5 

CA 126
 451
 412
 430
 577
 1996


MA 513
 1577
 1120
 1165
 945
 5320


639
 2028
 1532
 1595
 1522
 7316 

If Group was independent of
 Action, then the probability of
 observing action a in group g
 would be 

€ 

P(A = a) × P(G = g)

These probabilities can be
 estimated from marginal
 frequencies, e.g.,  

€ 

P(A = 1) = 639 /7316
P(G = CA) = 1996 /7316
P(A = 1)P(G = CA) =

           639×1996
73162

ˆ F (A = 1,G = CA) =

    7316× 639×1996
73162 =

639×1996
7316

€ 

ˆ F ij
Fi• × F• j

N

€ 

χ 2 =
ˆ F − F( )

2

ˆ F j∑i∑

€ 

χ 2 =

1996× 639
7316

−126
 

 
 

 

 
 
2

1996× 639
7316

+ ...+

5320×1522
7316

− 945
 

 
 

 

 
 
2

5320×1522
7316

= 131.29

Compare this to a chi-square distribution to get a
 p value (p < .0001) 
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More about Variance: Confidence Intervals


•  One reason to draw a sample of data is to make an inference 
about the population 

•  Example:  Mean KOSO* is 1.4 times optimal in our sample of 150 
trials.  If we draw an interval around 1.4 so that we are 95% 
confident that it contains the true population mean, how wide 
would the interval be? 

/-*-RUN-TIME-NUM-PROC-SIZE

10

20

30

40

50

60

70

80

2 3 4 5

Histogram OF /-*-Run-Time-Num-Proc-Size[Ring-Experiment-Where.Row-Number.Rem.10.Eq.0-Where-Algorithm=Kosostar-5]

1.4 

Sample mean = 1.4 True population mean = ? 

How wide must this interval be to include the
 true population mean with probability 0.95? 
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More about Variance: Confidence Intervals


1.4 

Sample mean = 1.4 True population mean = ? 

1.96σx 

1.96σx 

Since µ = x ± ασx a window of α 
 standard error units around the
 sample mean will include the true
 mean with some probability that
 depends on α.  
1.96σx cuts off 0.025 of the standard
 normal distribution, so a confidence
 interval of ± 1.96σx contains 95% of
 the distribution, so captures the true
 mean with probability ≥ .95. 
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Confidence interval for KOSO*


•  With probability 0.95 the population 
mean R for KOSO* lies between 1.28 and 
1.52 

•  We never give a probability to a 
population parameter (which is a 
constant) but rather give a probability 
that an interval contains the parameter 

•  The advice against unnecessarily large 
samples for hypothesis testing is 
reversed here:  If your goal is to estimate 
a parameter, use as much data as you 
can get!  
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"Accepting" the Null Hypothesis�
An application of confidence intervals


•  Sometimes we want to show that A and B are the same 
•  Hypothesis testing only tells us when they are different 

•  Failure to reject H0 does not mean we can "accept" H0 

•  This is because one can fail to reject H0 for many reasons (e.g., 
too much background variance) 

•  But if the confidence interval for the difference between A and B 
is narrow and includes zero, then we can "accept" H0 
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Example: Is "learned" as good as "true"?


"Narrow" interval in the sense
 of being a small fraction of
 original scores 

Confidence interval
 contains zero 

Oh, J. and S.F. Smith, "Learning
 User Preferences in Distributed
 Calendar Scheduling", Proceedings 
 5th International Conference on the
 Practice and Theory of Automated
 Timetabling (PATAT-04), Pittsburgh
 PA, August 2004
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Example: Is KOSO = KOSO*  ?


•  The raw runtimes for KOSO and KOSO* did not allow us to reject 
the null hypothesis that they are equal 

•  Can we "accept" the null hypothesis? 
–  The means were 2825 and 2935, a difference of -110 
–  The standard error was 587.49 
–  The confidence interval is -110 ± 1151.48.  This contains zero. 
–  However, the confidence interval is not "narrow," it is 2302.98 

wide, almost as wide as the means themselves. 
•  "Accept" the null hypothesis only when the confidence interval 

contains zero and is narrow.
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More about Variance: Analysis of Variance


•  The two-sample t test is based on a generalized linear model: 

•  The variance of x can be broken into components due to being in 
a particular group (α) and error (ε) 

•  t = √(MSα / Msε


•  This analysis can be extended to multiple groups and also 
multiple factors 

xij = µ + αi + εij 
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Comparing Several Means�
The One-way Analysis of Variance
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Analysis of Variance�
Decomposing Variance into Effects
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Analysis of Variance�
Sums of Squared Deviations
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Analysis of Variance�
Mean Squares and Tests of Effects
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Logic of  Analysis of Variance


xij = µ + αi + εij 

 DF  SS      MS  F Ratio  P   
 ALG.  1  3.24      3.24  5.84   0.02   
 Error  308  170.82    0.55     
 Total  309  174.06    

x1 x2 

X1,1 

X1,n 

… …
X2,n 

X2,1 

αi  is "the effect of being in condition 
ALG=KOSO or ALG = KOSO* " and is 
estimated as µ - xi 
εi is estimated from the within-
column variances 
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One-way ANOVA Example�
The AnimalWatch Tutoring System (Beal)


Source DF Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Tutoring 
Strategy 

4 1.5563714 0.389093 22.9760 <.0001 

Error 356 6.0287808 0.016935 

C. Total 360 7.5851522 

The one-way analysis of variance tests
 the hypothesis that the means of two or
 more groups are equal 

It doesn't say which means are not
 equal 

Pr
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Tutoring Strategy
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One-way ANOVA Pairwise Comparisons of Means�
The AnimalWatch Tutoring System (Beal)


Pr
op

or
tio

n 
wr

on
g

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

CONCRETE FORMAL HEURISTIC ML TEXT

Tutoring Strategy

Level Mean 
FORMAL A 0.35362705 

TEXT A 0.34011307 

CONCRETE A 0.31825204 

HEURISTIC B 0.23180080 
ML C 0.17863425 

Levels not connected by same letter
 are significantly different


Compare all pairs of means with t tests: 

The problem with all pairs
 comparisons is that there are 15
 of them, and while the p value of
 each is .05, the p value of the
 test that no pair is significantly
 different is considerably worse! 
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The multiple testing problem of exhaustive pairwise 
comparisons


For ten comparisons,
 experimentwise p = .4 
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No good answers…


•  You can adjust downward the per-comparison α to ensure that 
the experimentwise α is, say, 0.05, but then you will loose 
sensitivity to differences 

•  You can leave the per-comparison α at, say, .05, but then, as K 
increases, you will probably falsely reject H0 at least once 

Apparently, this is still an active
 research area… 

Do we look like these folks? 
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One solution: Bonferroni Adjustment�
Set per-comparison α to be α/k
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Each Pair
Student's t
 0.05

All Pairs
Tukey-Kramer
 0.05

Another solution:  Tukey-Kramer�
Also fixes the experiment-wise error


Level Mean 

FORMAL A 0.35362705 

TEXT A 0.34011307 

CONCRETE A 0.31825204 

HEURISTIC B 0.23180080 

ML C 0.17863425 

Level Mean 

FORMAL A 0.35362705 

TEXT A 0.34011307 

CONCRETE A 0.31825204 

HEURISTIC B 0.23180080 

ML B 0.17863425 
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Two-way Analysis of Variance


xijk = µ + αi + βj + γij + εijk 

X1 • X2 • X3 • X4 • 

X1,1,1 … 

X1,1,n 

X1,2,1 … 

X1,2,n 

X2,1,1 … 

X2,1,n 

X4,2,1 … 

X4,2,n 
X • 2 

X • 1 

αi is the effect of being in group KOSO or KOSO*

βj is the effect of being in group NumProc = 3,6,10,or 20 

γij is the interaction effect, the part of a cell mean that cannot be

 explained by the linear sum of µ, αi,  βj 

γij  = xij – (µ + αi, + βj ) 
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Two-way Analysis of Variance�
Algorithm=KOSO/KOSO* x NUM-PROC = 3,6,10,20


   DF   Sum Square           Mean Square   F Ratio   P   
 Interaction  3  2.88  `  0.96   4.85  0.01   
 ALGORITHM  1  3.42   3.42   17.29  0.00   
 NUM-PROC  3  103.85   34.62   175.01  0.00   
 Error   302  59.74   0.20     
 Total   309  169.89      

/
-
*
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-
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E
-
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-
P
R
O
C
-
S
I
Z
E NUM-PROC

1.5

2

2.5

5 10 2015

2way-Group-Means-Plot OF Num-Proc[Ring-Experiment-Where.Row-Number.Rem.10.Eq.0]
VS /-*-Run-Time-Num-Proc-Size[Ring-Experiment-Where.Row-Number.Rem.10.Eq.0] 

Number of Processors 

KOSO* 

KOSO 
R = (runtime * num-proc)/size The effect of the number of

 processors (and particularly
 processor starvation) on R depends
 on the algorithm:  The effect is less
 for KOSO*. 

Because the interaction effect is
 significant we know KOSO*
 performs better than KOSO overall,
 and more so as the number of
 processors increases. 
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Thinking about Interaction Effects


/
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1.5
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5 10 2015

2way-Group-Means-Plot OF Num-Proc[Ring-Experiment-Where.Row-Number.Rem.10.Eq.0]
VS /-*-Run-Time-Num-Proc-Size[Ring-Experiment-Where.Row-Number.Rem.10.Eq.0] 

Number of Processors 

KOSO* 

KOSO 

R = (runtime * num-proc)/size 

Knowledge 
Engineers 

Naïve Users 

Team A 

Team B 

Score 

The effect of number of processors on R depends on Algorithm 

The effect of being a knowledgeable engineer, as opposed to a naive user,
 is different on team A than on team B  

The relationship between one factor (independent variable) and the
 dependent variable depends on the other factor 
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One doesn't always find interactions


Source Nparm DF Sum of 
Squares 

F Ratio Prob > F 

GENDER X

Tutor Group 

4 4 0.0753413 0.6143 0.6526 

GENDER 1 1 0.0062853 0.2050 0.6510 

Tutor Group 4 4 2.5686226 20.942 <.0001 

0.2
0.4
0.6
0.8
1

1.2
1.4

BOYGIRL

CONCRETE
FORMAL

HEURISTIC ML TEXT

DMAKERTutor Group Thanks to Carole R. Beal for
 these data 
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Additional factors often reduce variance due to 
error – "background variance"


  DF  SS    MS  F Ratio  P   
 ALGORITHM  1  3.24       3.24  5.84  0.02   
 Error   308  170.82      0.55     
 Total   309  174.06    

   DF  SS             MS   F Ratio   P   
 Interaction  3  2.88  `  0.96  4.85  0.01   
 ALGORITHM  1  3.42   3.42  17.29  0.00   
 NUM-PROC  3  103.85   34.62  175.01  0.00   
 Error   302  59.74   0.20     
 Total   309  169.89      
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Wrapping up common tests


•  Tests that means are equal 
•  Tests that samples are uncorrelated or independent 
•  Tests that slopes of lines are equal 
•  Tests that predictors in rules have predictive power 
•  Tests that frequency distributions (how often events happen) are equal 
•  Tests that classification variables such as smoking history and heart 

disease history are unrelated 
 ... 

•  All follow the same basic logic 
•  Return to testing when we discuss bootstap 
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Experiment Design

–  The search for an AIDS vaccine was thrown into disarray last week with the 

disclosure of a "stunning" findings from experiments on monkeys carried out 
by Britain's Medical Research Council. ...  

 The MRC researchers gave four macaques a vaccine based on human T cells 
that had been infected with SIV [a virus related to HIV, which causes AIDS] and 
then inactivated. When they gave these monkeys live virus, three out of four 
were protected.  But the shock came from four other monkeys. The researchers 
gave these animals uninfected human cells of the same type as those used to 
create the vaccine.  These cells had never seen SIV.  To the team's amazement, 
when they gave the animals live SIV, two of them were protected. …Some 
scientists were angry that the vital control experiment with uninfected cells had 
not been done earlier. But Jim Stott of the MRC countered that the need for 
such a control was not obvious at the beginning ... "It's terribly easy to say that 
afterwards," he said. "It would have been such a bizarre experiment to suggest. 
You have to try to save animals." (New Scientist, 21 September, 1991, p.14) 
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Experiment Design


•  What's in an experiment design? 
•  Control, ceiling and floor effects 
•  An elegant experiment 
•  Design checklist 
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What is in an experiment design?


•  Claims or hypotheses (remember Lesson 1:  Evaluation begins 
with claims).  

•  Experimental and control conditions 
•  Independent and dependent measures 
•  Test apparatus and materials 
•  The protocol, or steps involved in running the experiment  
•  A data analysis plan – the methods by which you intend to 

analyze the results 

An experiment design states everything one needs to conduct an
 experiment and analyze results.  Typically a design includes: 
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Types of experiment


•  Manipulation experiment 
–  Hypothesize Xs influence Y, manipulate Xs, measure effects 

on Y.  
–  Algorithm, task size, number of processors affect run time; 

manipulate them and measure run time 
•  Observation experiment 

–  Hypothesize Xs influence Y, classify cases according values 
of X, compare values of Y in different classes 

–  Gender affects math scores.  Classify students by gender and 
compare math scores in these groups 

–  Observation experiments are for when Xs are not easily or 
ethically manipulated 
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Why manipulation is the only "true" way


•  If you can manipulate X and observe a response in Y 
then you can rule out model B.  

•  If you can only observe pairs of Xs and Ys, then you 
cannot rule out model B 

•  "Correlation is not cause" 
•  Three conditions must hold to assert that X causes Y 

–  Precedence: X happens before Y 
–  Covariance: X and Y change together 
–  Control: No Z is responsible for the covariance 

between X and Y  
•  It is notoriously hard to establish causal relationships 

with observation experiments  

X Y 

Z A 

X Y 

Z B 
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MYCIN: An Elegant Experiment


•  MYCIN recommended therapy for bacteremia and blood infections.  
How should we evaluate its expertise? 

•  A bad design (why?): 

10 Therapy Recommendation Problems   

Panel of Experts MYCIN

Expert 
recommendations

MYCIN 
recommendationsCompare

Empirical Methods for Artificial Intelligence. © Paul Cohen, 2008 

The MYCIN Experiment Design


Panel of 8 Therapy 
Recommenders

Expert 
recommendations

MYCIN 
recommendations

MYCIN

A Panel of 8 
Expert Judges 

100 shuffled recommendations

10 Therapy Recommendation Problems   

Correct
recommendations

"Recommendation is:
{equivalent, acceptable, not acceptable}"

What if the
 problems are
 too easy?


But what if the
 experts aren't
 expert?
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The MYCIN experiment’s clever control


10 Therapy Recommendation Problems   

1 senior medical student

1 senior resident
1 senior postdoctoral fellow

5 faculty from Stanford Med School
MYCIN

90 recommendations (plus 10 correct answers)

These recommendations were then judged
 blind by a panel of experts 

The novice
 controls for the
 possibility that the
 experts are not
 expert and the
 problems are too
 easy 
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Designing factorial experiments


•  Factorial experiments have several factors that are thought to influence 
performance (e.g., algorithm, number of processors, etc.) 

•  If each of F factors has L levels then a fully-factorial design is one that has LF 
conditions (or cells in an analysis of variance) 

•  Fully-factorial designs are easiest to analyze with analysis of variance, 
especially for equal numbers of replications in each cell 

•  They are also   expensive.  Example:  4 factors each with 3 levels and 20 
replications per condition requires 1620 trials.  

•  Don’t include more factors in a design than you want to test for interactions 
with other factors.  Example:  two sub-experiments with 2 factors each requires 
only 360 trials, if you don't care about any three- or four-factor interactions.  
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Checklist for experiment design


•  What are the claims?  What are you testing, and why? 
•  What is the experiment protocol or procedure?  What are the 

factors (independent variables), what are the metrics (dependent 
variables)?  What are the conditions, which is the control 
condition? 

•  Sketch a sample data table.  Does the protocol provide the data 
you need to test your claim? Does it provide data you don't 
need?  Are the data the right kind (e.g., real-valued quantities, 
frequencies, counts, ranks, etc.) for the analysis you have in 
mind? 

•  Sketch the data analysis and representative results.  What will 
the data look like if they support / don't support your conjecture?   
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Guidelines for experiment design, cont.


•  Consider possible results and their interpretation.  For each way 
the analysis might turn out, construct an interpretation.  A good 
experiment design provides useful data in "all directions" – pro 
or con your claims 

•  Ask yourself again, what was the question?  It's easy to get 
carried away designing an experiment and lose the BIG picture 

•  Run a pilot experiment to calibrate parameters 
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Monte Carlo, Bootstrap and Randomization


•  Basic idea:  Construct sampling distributions by simulating on a 
computer the process of drawing samples. 

•  Three main methods: 
–  Monte Carlo simulation when one knows population parameters; 
–  Bootstrap when one doesn’t; 
–  Randomization, also assumes nothing about the population. 

•  Enormous advantage: Works for any statistic and makes no 
strong parametric assumptions (e.g., normality) 
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A Monte Carlo example


•  Suppose you want to buy stocks in a mutual fund; for simplicity 
assume there are just N = 50 funds to choose from and you’ll 
base your decision on the proportion of J=30 stocks in each fund 
that increased in value 

•  Suppose Pr(a stock increasing in price) = .75 
•  You are tempted by the best of the funds, F, which reports price 

increases in 28 of its 30 stocks. 
•  What is the probability of this performance?  
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Simulate...


Loop K = 1000 times 
B = 0    ;; number of stocks that increase in 

     ;; the best of N funds 
Loop N = 50 times   ;; N is number of funds 

H = 0    ;; stocks that increase in this fund 
Loop M = 30 times ;; M is number of stocks in this fund 

Toss a coin with bias p to decide whether this 
stock increases in value and if so increment H 

Push H on a list   ;; We get N values of H 
B := maximum(H)   ;; The number of increasing stocks in 

     ;; the best fund 
Push B on a list   ;; We get K values of B 
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Surprise!


•  The probability that the best of 50 funds reports 28 of 30 stocks increase 
in price is roughly 0.4 

•  Why?  The probability that an arbitrary fund would report this increase is 
Pr(28 successes | pr(success)=.75)≈.01, but the probability that the best 
of 50 funds would report this is much higher. 

•  (BTW: Machine learning algorithms use critical values based on arbitrary 
elements, when they are actually testing the best element; they think 
elements are more unusual than they really are.  This is why ML 
algorithms overfit.* 

*Jensen, David, and Paul R. Cohen. 2000. Multiple Comparisons in Induction Algorithms. Machine Learning, vol. 38, no. 3, pp.
 309-338. 
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The Bootstrap


•  Monte Carlo estimation of sampling distributions assume you 
know the parameters of the population from which samples are 
drawn. 

•  What if you don’t? 
•  Use the sample as an estimate of the population. 
•  Draw samples from the sample! 
•  With or without replacement? 
•  Example: Sampling distribution of the mean; check the results 

against the central limit theorem. 
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The Bootstrap: Resampling from the sample


Monte Carlo Bootstrap 

Infinite population 

Many samples and 
values of R* 

Empirical MC sampling
 distribution of R* 

Sample 

Many samples and 
values of R* 

Resample with replacement 

Empirical bootstrap sampling
 distribution of R* 

10 
20 
30 
40 

90 100 110 

10 

20 

30 

100 110 120 
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Wait…there's a problem:


This is the sampling distribution of
 R under the null hypothesis that
 H0: Π = 100. 

Ho was enforced by sampling from
 a distribution with Π = 100.  

This is not the sampling distribution of
 R under H0: Π = 100. 

It was obtained by resampling from a
 sample, no null hypothesis was
 enforced. 

Monte Carlo Bootstrap 

10 
20 
30 
40 

90 100 110 

10 

20 

30 

100 110 120 
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Turning a bootstrap sampling distribution into a null 
hypothesis bootstrap sampling distribution


Assume the H0 distribution is
 normal with the H0 mean and a
 standard error equal to the
 standard deviation of the
 bootstrap distribution, then run a Z
 test 

Assume the  H0 distribution has the
 same shape and shift the bootstrap
 distribution until its mean coincides
 with the H0 mean.   

Normal approximation method Shift method 

100 

s.e. 
10 

20 

30 

100 110 120 Original: 

102 92 112 Shifted: 108 
108 

4.56 
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Bootstrap for two-sample tests


•  Method 1:  Resample S*1 and S*2 from S1 and S2 separately, 
recalculate the test statistic, collect a sampling distribution of 
pseudostatistics, apply the shift method or normal 
approaximation method to get an Ho distribution 

•  Method 2: Shuffle the elements of the samples together into S, 
resample S*1 and S*2  from S, collect a sampling distribution of 
pseudostatistics.  This is a null hypothesis distribution! 
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Are KOSO runtimes more variable than KOSO* 
runtimes?  Use the interquartile range.


10 

30 

50 

70 

90 

1.5 2 3 2.5 4 3.5 

50 

100 

2 3 4 5 

KOSO KOSO* 

IQR(KOSO) = 1.09    IQR(KOSO*) = .39 .  A significant difference? 
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Testing for a difference in interquartile ranges�
Method 1.  The Logic


•  Resample with replacement from KOSO sample to k and from 
KOSO* sample to k* 

•  Calculate the interquartile ranges of k and k* 
•  Collect the difference IQR(k) – IQR(k*) 
•  Repeat 

•  The resulting distribution is then shifted to have mean zero, 
enforcing H0 : IQR(KOSO) = IQR(KOSO*) 
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Empirical sampling distribution of differences of 
interquartile ranges


50 

100 

-0.5 0 1 0.5 

IQR(KOSO) = 1.09    IQR(KOSO*) = .39 .   Is 0.7  a significant difference? 

Mean = 0 

-1.05 -.55 -.05 .45 

To test H0: IQR(KOSO – IQR(KOSO*) = 0, shift the distribution so its
 mean is zero by subtracting .55 from each value 

.7 
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Testing for a difference in interquartile ranges�
Method 2.  The Logic


•  Merge the KOSO and KOSO* samples into one sample S and shuffle 
it thoroughly.   

•  Resample with replacement from S to k and from S to k* 
•  Calculate the interquartile ranges of k and k* 
•  Collect the difference IQR(k) – IQR(k*) 
•  Repeat 

•  The merging and shuffling enforces Ho: IQR(KOSO) = IQR(KOSO*) 
so no shift is necessary 
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Shuffled-bootstrap sampling distribution of the 
difference of interquartile ranges, KOSO & KOSO*


10 

20 

30 

40 

-0.5 0 0.5 

IQR(KOSO) = 1.09    IQR(KOSO*) = .39 .   Is 0.7  a significant difference? 
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Bootstrap confidence interval


•  Sample of grad student ages: (22 22 23 23 24 30 35), mean = 25.57, std = 4.99 
•  Analytical:  µ = 25.57 ± 1.96 ( 4.99 / √ 7) = [21.87, 29.26] 

•  Bootstrap 2.5% and 97.5% quantiles: [22.71, 29.14] 
23 24 25 26 27 28 29 30
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Bootstrapping the sampling distribution of the mean*


•  S is a sample of size N: 
Loop K = 1000 times 

Draw a pseudosample S* of size N from S by sampling with 
replacement 

Calculate the mean of S* and push it on a list L 
•  L is the bootstrapped sampling distribution of the mean** 
•  This procedure works for any statistic, not just the mean. 

* Recall we can get the sampling distribution of the mean via the central limit theorem – this example is just
 for illustration. 

** This distribution is not a null hypothesis distribution and so is not directly used for hypothesis testing, but
 can easily be transformed into a null hypothesis distribution (see Cohen, 1995). 
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Randomization


•  Four women score 54 66 64 61, six men score 23 28 27 31 51 32.  Is score 
independent of gender? 

•  f = difference of means of men’s and women’s scores: 29.25 
•  Under the null hypothesis of no association between gender and score, 

the score 54 might equally well have been achieved by a male or a 
female. 

•  Toss all scores in a hopper, draw out four at random and without 
replacement, call them female*, call the rest male*, and calculate f*, the 
difference of means of female* and male*.  Repeat to get a distribution of 
f*.  This is an estimate of the sampling distribution of f under H0: no 
difference between male and female scores.  
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Randomization vs bootstrap schematically


Group AB 
size Nab 

Group B 
size Nb 

PsuedoSample AB* 
size Nab 

PsuedoSample B* 
size Nb 

shuffle 

Draw pseudosamples without replacement 

F(AB*,B*) 

Group AB 
size Nab 

Group B 
size Nb 

PsuedoSample AB* 
size Nab 

PsuedoSample B* 
size Nb 

shuffle 

Draw pseudosamples with replacement 

F(AB*,B*) 

Randomization 

Bootstrap 
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Caution


•  Monte Carlo sampling distributions generalize to the population 
by drawing samples from the population 

•  Bootstrap sampling distributions generalize to the population 
because the sample is the "best estimate" of the population  

•  Randomization sampling distributions say nothing whatsoever 
about the population.  They say whether a particular 
configuration (e.g., male vs. female scores) is unusual if these 
particular scores are independent of these particular gender 
labels 

•  No inference to the population is possible; e.g., don't use the 
sampling distributions for parameter estimation and confidence 
intervals 
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The Problem


•  By design ITSs cause each student to take a unique path through a 
multidimensional space of problems 

•  Successive points on any path are not independent 
•  We need statistical methods to compare not only endpoints of paths 

(overall accomplishment) but paths themselves 
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How to compare 2 (or K) groups of students


Any methods can compare endpoints by group (e.g., ANOVA) 

Our methods compare paths by group 
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Δ and Φ, our basic sample statistics


between-group Φ within-group Φ


For pairs of students xi , xj and a comparison statistic Φ(xi,xj)
 groups are different if 

mean between-group Φ

mean within-group Φ
 >  1.0 Δ(G1,G2) = 
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Hypothesis testing


Randomization is a general, nonparametric method for finding the
 sampling distribution of Δ(G1,G2) for any comparison function Φ


Hypothesis testing assumes Ho: G1 = G2 and then "rejects the null
 hypothesis" if the sample statistic D is very improbable under Ho.   

mean between-group Φ

mean within-group Φ
 =  1.0 Δ(G1,G2) = 

Under Ho:  G1 = G2 

To test Ho – to find the probability of Δ(G1,G2) under Ho – we need
 the sampling distribution of Δ(G1,G2).   

It isn't F because points on paths are nonindependent, etc. 
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Example:  Progress through classes of problems


Topic mastery Mi(t) is the number of classes of problems mastered to the
 50% accuracy level  by student i after t problems, 

Compare two students I and j with:  

   Φ = Σ (Mi(t) - Mj(t))
2 

t 

Problems solved 

10 20 30 40 50 60 

2 

3 

4 

5 
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Calculating the test statistic


t (problems solved) 

M(t): Number of problem classes
 mastered at 50% level Students in group G1 

Students in group G2 

Φ = Σ (Mi(t) - Mj(t))
2 

t 

mean between-group Φ

Δ(G1,G2) = 

mean within-group Φ
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Randomization


t (problems solved) 

M(t): Number of problem classes mastered
 at 50% level Students in group G1* 

Students in group G2* 

Φ = Σ (Mi(t) - Mj(t))
2 

t 

mean between-group Φ

Δ(G1,G2)* = mean within-group Φ


Δ(G1,G2)* 

Δ(G1,G2) 
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Visualizing the results


Students in group G1 

Students in group G2 

M(t): Number of problem classes mastered
 at 50% level 

t (problems solved) 

2 

3 

4

5 

20 40 60 80 100 

Heuristic Group  
101 students 

Text Group 
65 students 

Groups significantly different
 at p = .002 level 

For AnimalWatch students, those in the Heuristic
 (multimedia) condition mastered a greater number of classes
 of problems than those in Text condition, and this effect
 appears to increase with the number of problems solved 
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Conclusion:  Engineering sciences require both 
empirical and theoretical effort


General 

System- 
specific 

Descriptive Predictive Explanatory 

Empiric
al Generalization  

more empirical 

more theoretical 
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Conclusion


•  Seven lessons 
•  Some descriptive statistics 
•  Exploratory data analysis 
•  Statistical hypothesis testing and confidence intervals 
•  Analysis of variance 
•  Experiment design 
•  Monte Carlo, Bootstrap and Randomization 

•  AI and Computer Science don't have a standard curriculum in 
research methods like other fields do; let's make one together.  


