

How do we get the sampling distribution? Central Limit Theorem

The *sampling distribution of the mean* is given by the Central Limit Theorem:

The sampling distribution of the mean of samples of size N approaches a normal (Gaussian) distribution as N approaches infinity.

If the samples are drawn from a population with mean and standard deviation , theorethe mean of the sampling distribution is and its standard deviation is as only incore set.

These statements hold irrespective of the shape of the original distribution.

Empirical Methods for Artificial Intelligence. © Paul Cohen, 2008

The Z test

We know everything there is to know about the standard normal distribution N(0,1). We know the probability of every Z score.

e.g., Pr(Z>1.65) = .05, Pr(Z>1.96) = .025, ... $Pr(Z>11.67) \sim 0$

The Z test involves nothing more than standardizing the difference between the mean μ the sampling distribution under the null hypothesis and the sample mean

$$z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{135 - 100}{\frac{15}{\sqrt{25}}} = 11.67$$

This little equation finds the parameters of the normal sampling distribution via the central limit theorem, N(,), transforms/thos-into a standard normal, N(0,1), and transforms the sample mean into a point on N(0,1). Not bad for a little equation!

Empirical Methods for Artificial Intelligence. © Paul Cohen, 2008

Test

std=1.0

2.89

statistic

 Non-static Ambiguou Jsers found the se categori 	ed (drag-an onary (would is (could ha nat 40% – 55 es	d-drop error) dn't have put it t ve been in other 5% of their mess	here now) · folders) ·ages fell into or	** ** ** ** **	Number of training instances
		Magazza	Mis- Foldorod Sta	Non-	
Subject	Folders	messages i	olueleu Si	auonary .	Ambiguous
Subject	Folders 15	268	1%	13%	Ambiguous 42%
Subject 1 2	Folders 15 15	268 777	1% 1%	13% 24%	Ambiguous 42% 16%
Subject 1 2 3	Folders 15 15 38	268 777 646	1% 1% 0%	13% 24% 7%	Ambiguous 42% 16% 33%

		Matched p	oairs t test					
A	В	Mean(A) = 24.25,	Mean(B) = 2	7.5				
10	11	Mean difference:	(10 - 11)	= - 1				
0	3		(0 - 3)	= - 3				
60	65		(60 - 65)	= - 5				
27	31		(27 - 31)	= - 4				
	Mean difference = $-13/4 = -3.25$							
	Test whether mean difference is zero using a one-sample t test							
		Empirical Methods for Artificia	l Intelligence. © Paul Cohen	, 2008				

Predicting what the student will do next

Knowing that the student is in CA, you'd predict "5" and make (1996 -577) = 1419 errors. Knowing the student is in MA, you'd predict "2" and make (5320 - 1577) = 374

Total: 5162 errors

Knowing nothing about which group the student is from, vo say "2" and make (7316 - 202 = 5288 errors. Knowing the group reduces errors by only 2.4% $\frac{5288 - 5162}{5288} = .024$ So a significant difference isn't the same as a useful difference!

· 3/43 ent	<i>ns</i> .						
ich you'd 2028)	Count Total % Col % Row %	1	2	3	4	5	
2020)	CA	126	451	412	430	577	1996
		1.72	6.16	5.63	5.88	7.89	27.28
s		19.72	22.24	26.89	26.96	37.91	
		6.31	22.60	20.64	21.54	28.9	
	MA	513	1577	1120	1165	945	5320
024		7.01	21.56	15.31	15.92	12.92	72.72
		80.28	77.76	73.11	73.04	62.09	
		9.64	29.6	21.05	21.90	17.76	
се		639	2028	1532	1595	1522	7316
tul		8.73	27.7	20.94	21.80	20.80	
Empirical Methods for Artificial Intelligence. © Paul Cohen, 2008							

Lesson 7: Significant and meaningful are not synonyms synonyms Suppose you wanted to use the knowledge that the ring is controlled by KOSO or KOSO* for some prediction. How much predictive power would this knowledge confer? • Grand median k = 1.11; Pr(trial i has k > 1.11) = .5 • Probability that trial i under KOSO has k > 1.11 is 0.57 $\omega^{2} = \frac{\sigma_{1}^{2} - \sigma_{2|\text{Algorithm}}^{2}}{\sigma_{1}^{2}}$ Reduction in uncertainty due to knowing Algorithm Probability that trial i under KOSO* has k > 1.11 is 0.43 • Predict for trial i whether k > 1.11: • If it's a KOSO* trial you'll say no with (.43 * 150) = 64.5 errors $\hat{\omega}^2 = \frac{t^2 - 1}{t^2 + N_1 + N_2 - 1}$ from earlier slides study) If it's a KOSO trial you'll say yes with ((1 - .57) * 160) = 68.8 errors • If you don't know which you'll make (.5 * 310) = 155 errors • 155 - (64.5 + 68.8) = 22 • Knowing the algorithm reduces error rate from .5 to .43 the group to which a trial belongs Empirical Methods for Artificial Intelligence, © Paul Cohen, 2008

Lesson 7: Significant and meaningful are not

Suppose you wanted to predict the run-time of a trial. If you don't know Algorithm, your best guess is the grand mean and your uncertainty is the grand variance. If you do know Algorithm then your uncertainty is less:

Estimate of reduction in variance (recall t = 2.49

$$\hat{\omega}^2 = \frac{2.49^2 - 1}{2.49^2 + 160 + 150 - 1} = .0165$$

All other things equal, increasing sample size decreases the utility of knowing

Empirical Methods for Artificial Intelligence. © Paul Cohen, 2008

For j gro sums of	Mean S Dups and a total of f squares and me	analysis of varia quares and Tes of N data, calculate an squares:	grand mean, x _g =7.0, and
	Sum of Squares	Mean Squares	Calculate F, the ratio of the mean squares:
Total	$\sum_{j}\sum_{k}\left(x_{jk}-\bar{x}_{G}\right)^{2}$		$F = \frac{MS_{between}}{MS_{within}}$
Between	$\sum_{j} n_{j} (\bar{x}_{j} - \bar{x}_{G})^{2}$	$\frac{\sum_{j} n_{j} (\bar{x}_{j} - \bar{x}_{G})^{2}}{J - 1}$	Under the null hypothesis that the j groups are equal, $F = 1$. Look up the F
Within	$\sum_{j}\sum_{k}\left(x_{jk}-\bar{x}_{j}\right)^{2}$	$\frac{\sum_{j}\sum_{k} (x_{jk} - \bar{x}_j)^2}{N - J}$	statistic in a table with appropriate degrees of freedom for a p value

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Tutoring Strategy	4	1.5563714	0.389093	22.9760	<.0001
Error	356	6.0287808	0.016935		
C. Total	360	7.5851522			
		Empirical Me	thods for Artificial Inte	lligence. © Paul C	ohen, 2008

Empirical Methods for Artificial Intelligence, © Paul Cohen, 2008

Empirical Methods for Artificial Intelligence. © Paul Cohen, 2008

Empirical Methods for Artificial Intelligence, @ Paul Cohen, 2008

